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1 Introduction

Functional Magnetic Resonance Imaging, or fMRI, is a 3D brain imaging technique that
can be used to observe which portions of the brain are activated by different types of phys-
ical or mental stimuli. The technology opens the door to new ways of studying human
cognitive processes, in particular, the challenge of finding a predictable pattern in the brain
images produced while the human subject is in a certain cognitive state. The historical ap-
proach to such a problem has been to keep the human subject in a particular cognitive state
during some time interval by repeatedly stimulating them with the same activity (such as
reading a variety of words), and then averaging the brain images collected over the interval.
However, there is another, machine learning approach to the problem, that allows for the
analysis of patterns in individual images without having to average over a time interval. It
has been shown that trained machine learning classifiers can be employed to successfully
find relevant features in fMRI brain images and link them to specific cognitive states [7].
Examples of classifiers that have already been tried include Gaussian Naive Bayes, Support
Vector Machines, and k Nearest Neighbor approaches.

In particular, the Naive Bayes classifier is competitive with state-of-the-art classifiers like
C4.5 despite its unrealistic and overly strong assumption that observed features are con-
ditionally independent given a class assignment. Friedman et. al. has proven that the
Naive Bayes classifier can be improved by relaxing the condtional independence assump-
tion using a Tree-augmented Naive Bayes Network (TAN).[4] This method is shown to
outperform Naive Bayes while maintaining its computational simplicity and robustness.
This paper explores the use of Tree-augmented Naive Bayes (TAN) in comparison to Naive
Bayes. In particular, I focus on solutions to the problem of learning Naive Bayes and
TAN networks with continuous fMRI data. Both data discretization methods and Gaussian
Naive Bayes/TAN methods are discussed. A coarse frequency discretization is applied to
the data which was used for both Naive Bayes and TAN network classifiers. This was then
compared with an implementation of the Gaussian Naive Bayes method.

2 Problem Definition

Our goal is to decode which cognitive activity is being performed, given an fMRI image
taken while the human subject performs one of a set of known cognitive activities. The
problem can be framed as training a machine learning classifier to output a cognitive state
class given a sequence of brain scans from time t1 and t2.



f :fMRI-sequence(t1, t2) → CognitiveState

The specific classification problem presented in this paper classifies fMRI scans into two
classes: intervals during which the subject viewed a sentence then picture in which the
sentence is negated and non-negated.

f :fMRI-sequence(t1, t2) → {Negated,NotNegated}

3 Proposed Method

We focus on training two flavors of bayesian classifiers: Naive Bayes and Tree-augmented
Naive Bayes (TAN). These methods require discrete-valued datasets in order to compute
the conditional probabilities used to do Bayesian inference. Thus, an interesting problem
posed by fMRI data is how to adapt either the data or the classifier algorithms to deal with
the continuous-valued data. We explore various data discretization methods, as well as the
Gaussian Naive Bayes and Gaussian TAN methods.

3.1 Data Preprocessing

The fMRI data is collected from human subjects, pre-processed to remove unwanted ar-
tifacts due to head motion, signal drift, and other sources. Then all voxel activities are
normalized by mean values during fixation conditions. The resulting image data is still
very high-dimensional, noisy, and sparse. We hope to extract the most relevant features
to reduce the dimensionality of the data before using it train the two classifiers for com-
parison: Naive Bayes and Tree-augmented Naive Bayes (TAN). Several feature (voxel)
extraction methods have been employed by Mitchell et. al [7]. One involves selecting the n
most discriminating voxels (Discrim). A second involves selecting the n most active voxels
(Active). The one employed by this paper is Active feature selection as it has been shown
that this method out-performs discriminative methods [7].

3.2 Naive Bayes vs. TAN Networks with Discrete
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Figure 1: (a) Naive Bayes network structure (b)TAN network structure

The Naive Bayes network has a very simple structure. This structure encodes the strong
conditional independence assumption among attributes. The class node has no parents
and is the parent node for each and every attribute node. Additionally, attribute nodes are
restricted to only being child nodes 3.2(a). Thus the joint probability as represented by
this structure is given as the class prior probabilities multiplied by the class conditional
probabilities:

p(c, x1, x2, ..., xn = p(c)
∏

i

p(xi|c)



The TAN network improves on Naive Bayes by relaxing the strong conditional indepen-
dence assumption. Like Naive Bayes, the class node has no parents and is the parent
for each attribute node. However, unlike Naive Bayes, each attribute can have one so-
called augmenting edge pointing to it. These augmenting edges encode statistical depencies
among attributes 3.2(b). Thus, the joint probability of this structure depends on probabili-
ties conditioned not only on class, but also on an attribute parent node paxi

as well.

p(c, x1, x2, ..., xn) = p(c)
n∏

i=1

p(xi|paxi
, c)

From these network structures and corresponding joint distributions, we can compute class
predictions Ĉ(X)

Ĉ(X) = argmaxcP (C|X) ∝ P (C)
∏

i

P (X|C)

In the case of Naive Bayes, the network structure is already known. However, TAN net-
work structures must be learned. The procedure for doing this is based on the Chow-Liu
algorithm which uses a conditinal mutual-information function between two attributes to
construct the maximum-likelihood tree by finding the maximal weighted spanning tree in
a graph. The steps are shown below [8].

1. Compute the conditional mutual information given C between each pair of distinct
variables,

I(Xi;Xj |C) =
∑

xi,xj ,c

P̃ (xi, xj , c)log
P̃ (xi, xj |c)
P̃ (xi)P̃ (xj)

where P̃ (·) is an empirical distribution (computed using the training data). Intu-
itively, this quantity represents the gain in information of adding Xi as a parent of
Xj given that C is already a parent of Xj .

2. Build a complete undirected graph on the features X1, ..., Xn whre the weight of
the edge between Xi and Xj is I(Xi, Xj |C). Call this graph GF .

3. Using Kruskal or Prim’s algorithm, find a maximum weighted spanning tree on
GF . Call it TF .

4. Pick an arbitrary node in TF as the root and set the direction of all the edges in TF

to be outward from the root. Call the directed tree T ′
F .

5. The structure of the TAN model consists of a Naive Bayes model on the joint
probability P (C,X1, ..., Xn) augmented by the edges in T ′

F .

3.3 Data Discretization for Naive Bayes and TAN

As it has been said, basic Naive Bayes and TAN network classifiers do not accomodate
continuous-valued features. Thus, in order to test these classifiers, an effort is be made to
discretize the data into N number of discrete values. One popular and simple method is
range discretization in which the range of data values is divided into N range partitions
and all the data values within those ranges take on the same value. The problem is that
this method ignores the distribution of the underlying data causing some partitions to be
over-populated and others to be empty.

In an alternate method, known as frequency discretization, an effort is made to create
equally-populated partitions. Compared to range discretization, this method creates a more



Figure 2: A plot of the frequencies of rounded data values takes on a roughly Gaussian
distribution for fMRI data.

evenly-varied discretized data set. The frequency discretization method has been success-
fully employed with other continuous-valued datasets describing biological phenomena in
the case of predicting protein fold structures [1]. With this precedent, it was the discretiza-
tion method explored in this report.

In the case of fMRI data, a plot of the frequencies of rounded data values reveals a roughly
Gaussian distributed frequency plot 2. The data is cleaved at the mode of the frequency
plot leading to two roughly equivalent frequency intervals.

It is of note that there have been other discretization methods as suggested by [3], [5], and
[6]. Most noted is a method developed by Fayyad and Irani which discretizes the data
according to two criterion: one which involves finding the discretization which minimizes
a recursive entropy heuristic coupled with a Minimum Description Length (MDL) criterion
to limit the number of intervals produced over the space. Friedman and Goldszmidt attempt
to jointly learn the discretization policy and the Bayesian network over the discretized data
with a modified MDL approach. However, this is noted to be computationally costly and
still in its exploratory stages.

3.4 Non-discretization Methods of Dealing with Continuous Data

Another approach to dealing with continuous data is to alter the algorithm itself to acco-
modate such a dataset. In this case, the data values take on a Gaussian disstribution, which
naturally lends to being modeled in a Gaussian manner. Thus, we explore the Gaussian
Naive Bayes and Gaussian TAN network algorithms.

The Gaussian Naive Bayes Algorithm assumes that the class conditional probabilities∏
i P (Xi|C) are Gaussian distributed with mean µxi|c and variance σ2

xi|c. These parame-
ters are calculated directly from the data, plugged into a Gaussian distribution, and multi-
plied by the class prior probabilities P (C = c) to obtain the joint distribution, from which
classification can be performed.

The Gaussian TAN Algorithm is almost the same as discrete-data TAN Algorithm except
with slight modifications to the mutual information function for structure learning, and the
parameters required to write conditional probabilities. However, once these have been ob-
tained and the joint distribution can be written, the prediction step is exactly as before.
While this method is not implemented and tested experimentally in this report, it is pre-



sented for personal interest [2].

For structure learning, the same algorithm is used as the discrete-data TAN, however, the
following mutual information function is used instead:

I(Xi, Xj |C) = −1
2

|C|∑
c=1

P (C = c)log(1− ρ2
(i,j)|c)

where ρ2
(i,j)|c is the correlation coefficient between Xi and Xj given the class label c.

ρ(i,j)|c) =
cov(Xi, Xj |C = c)
σXi|C=cσXj |C=c

=
E(XiXj|c)− E(Xi|c)E(Xj |c)

σXi|cσXj |c

Now for parameter training to find the full joint distribution of the Gaussian-TAN model.
The full joint distribution is given by:

p(c, x1, x2, ..., xn) = p(c)
n∏

i=1

p(xi|paxi , c)

where paxi
is the additional (non-class) parent node of xi which we now know after learn-

ing the structure with the modified mutual information function. The conditional distribu-
tion p(Xi = xi|paxi , C = c) is given by a Gaussian distribution given class C = c as
such:

p(Xi = xi|paxi
, C = c) ∼ Normalc(µxi

+ a · paxi
, σ2

xi
· (1− ρ2))

where µxi and σ2
xi

are the mean and variance of feature xi,

ρ =
cov(xi, paxi

)
σxiσpaxi

is the correlation coefficient between xi and paxi
, and

a =
cov(xi, paxi)

σ2
paxi

4 Experiments

4.1 Discretized Data with Naive Bayes and TAN networks

The implementation of TAN networks used in this project was computationally expensive,
especially in the calculation of mutual information between each parent and child nodes,
and in the evaluation of the TAN network. The datasets had to be heavily restricted to
allow for some results to be obtained in time for this report to be completed. I restricted
the datasets to be only the top N = 5, 10, 15 Active Voxels. I also discretized coarsely into
two partitions, in other words, I created binary data sets from the continuous data.

Then, the data was split 20-80 into a test and training set respectively. The instances chosen
for the test set were drawn randomly and the classifiers were trained on the remaining
instances, which made up the training set. Then the error for TAN and Naive Bayes was
computed. This was repeated for fifty trials and then the errors were averaged to form
the final classification error associated with the network. This approach in which test/train



instances were chosen randomly allowed for some variations in TAN network and Naive
Bayes errors so that they could be compared on a trial by trial basis as well.

As expected, several trials gave high (greater than 50%) classification errors for TAN and
Naive Bayes. However, there were also many trials with surprisingly low classification
errors (less than 50%). The errors averaged over the fifty trials came out to be less than
50% over all suggesting that even with the limited number of features and the coarsely dis-
cretized data set, the predictions obtained from classifiers were better than random guess-
ing. While Naive Bayes had a lower over-all average error that was lower than error for
TAN networks, when the errors for both classifiers were compared on a trial by trial basis,
the TAN algorithm outperformed Naive Bayes about 50% of the time, meaning for data
this coarse, it didn’t really make much of a difference to use TAN instead of Naive Bayes.
Classification errors turned out to be relatively uniform across human subjects, perhaps
also due to the coarse-discretization, which eliminated variations among subjects.

A table comparing the classification error (in percent) obtained for TAN and Naive Bayes
Networks trained with 5, 10, and 15 Active Voxel features.

# Active Voxels TAN Naive Bayes
5 45.25 38
10 44.72 40.42
15 44.5 41.48

Firstly, these results show that even under the circumstances of extremely sparse and
coarsely discretized data, both TAN and Naive Bayes algorithms are robust enough to ex-
tract some information from the data to provide predictions that are better than just random
guessing. As for revealing differences between TAN and Naive Bayes, we would have
expected TAN networks to provide more accurate predictions compared to Naive Bayes
because of the relaxed conditional independence assumptions. However, these results sug-
gest that for this coarse frequency discretization method, it is unclear which algorithm is
better, and that if anything, it might be better to hold a strict conditional independence as-
sumption instead of a more relaxed assumption. The classifiation error for Naive Bayes
grows as the number of features selected increases as predicted by previous work [7]. The
classification error doesn’t seem to change much for TAN networks. This is somewhat ex-
pected since there isn’t a huge difference between using 5, 10 or 15 active voxels. A greater
difference would be expected if the number of active voxels used varied widely (say 5 to
1000) as shown in the next selection.

4.2 Active Feature Selection

In the section above comparing Naive Bayes and TAN networks on sparse and coarse data,
it was stated that to a degree, having a larger number of Active features increases the classi-
fication error. This is consistent with [7] which states that reducing the number of features
increases classification accuracy. To check this, I took the continuous data set, selected
an increasing number of voxels from 5 to 1000 and plotted the error of Gaussian Naive
Bayes classifier. The results are shown in 3. It makes intuitive sense that you need a certain
number of relevant voxels to do classification, but that using more than that will simply
reduce classification accuracy. Thus, I expected the classification accuracy to increase up
to a certain number of features selected and then decrease after a threshold. It turns out this
threshold seems to happen at around 500 voxels selected. The number of voxels selected
for the Naive Bayes and TAN classifiers in the previous section fell well below that (in
the 5-15 voxel range). Thus, I probably shouldn’t take the increasing classification error
for Naive Bayes to mean something. And it explains why the TAN classifiers don’t really
decrease in accuracy as the number of active voxels selected increases.



Figure 3: Classification error as a function of active (Voxels) features employed.

4.3 Gaussian Naive Bayes

The implementation of Gaussian Naive Bayes was computationally faster than discrete-
data Naive Bayes, and could take advantage of the full range of values within continuous
data. The classification error rates for Gaussian Naive Bayes turned out to be much lower
compared with error rates of discrete Naive Bayes using the same number of selected Active
features. It might have been that Gaussian TAN would have had reduced classification
errors in comparison to normal TAN.

5 Conclusions

A very-coarse frequency-based discretization method was chosen to adapt the continuous
data to Naive Bayes and TAN networks. It is seen that both Naive Bayes and TAN trees are
robust algorithms that can decode cognitive states from even roughly-processed data. It is
also shown that when data is this rough, it might be that Naive Bayes’s strong conditional
independence assumption may cause it to be a better predictor of cognitive state than TAN
networks.

This report also reveals a Gaussian nature in the fMRI data that may lend naturally to using
methods such as Gaussian Naive Bayes and Gaussian TAN networks. This algorithm is
shown above but not explored experimentally.
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