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Abstract

Although the human hand is a complex biomechanical system, functional
grasps may be described by small set of features. Supervisedfeature
selection is used to evaluate the performance of reduced marker sets for
grasp classification from motion capture data. Our reduced feature set
maintains 85% grasp classification accuracy, compared to 90% accuracy
from using the full 30 marker set. Using a linear classifier and as few as
5 surface markers allows for dramatic simplification of the experimental
procedure and reduced computational cost for grasp classification.

1 Introduction

The human hand has several degrees of freedom, which provideit amazing flexibility as a
manipulator, but pose challenges for measuring and modeling hand movement. One tech-
nique for measuring the human motion is motion capture, where optical markers attached
to body segments are used to reconstruct joint movement. Motion capture of the hands
is difficult because of marker occlusions due to the wide range of hand poses and close
position of the fingers.

A reduced marker set would simplify the capture procedure and also describe hand config-
uration in a low-dimensional space. Furthermore, there is no standardized motion capture
protocol for the hand. The aim of this study is to evaluate howthe selected marker positions
on the hand can affect the measured motion and investigate which markers may be the best
to include in a reduced hand marker protocol for future experiments.

2 Related work

Previous literature in biomechanics has also investigatedhow to represent grasping and
reach-to-grasping actions in a low-dimensional feature space using principal components
analysis. For example, [1, 2] suggest that hand grasping motions can be represented by just
a few principal components in the joint space. These studiesused a data glove to capture
the motion of the hand, and the experiments involved mimed hand motion or reach-to-grasp
motion before the hand was in contact with the object.

Other work in the robotics community has investigated graspclassification. One study [3]
used neural networks for predicting grasps, based on a taxonomy proposed in [4]. The
experiments focused on only three object shapes and sizes. Hidden Markov Models have
also been used for grasp recognition from data glove measurements [5]. Data gloves can



be cumbersome to the user, may affect the natural grasping motion, and do not always fit
individual subjects well. In our study, we focus on input data in the context of marker-based
methods for motion capture and examine how to design an appropriate protocol which can
simplify the data acquisition procedure.

3 Problem definition

This study investigates feature selection of the marker position inputs in conjunction with
grasp classification. The classification goal is to predict the grasp at a single time frame
given the measured marker positions representing the hand configuration. The purpose of
feature selection is to evaluate which markers are the best predictors of the grasp class and
determine which markers could be eliminated to simplify themarker protocol. We aim to
explore questions such as: What is the minimum number of markers needed to represent the
hand pose well, and where on the hand should those markers be placed? The redundancy
in hand grasping motion found by [1, 2] suggests that the number of markers could be
dramatically reduced without severely compromising graspclassification.

4 Proposed method

4.1 Grasp classification

Our approach uses linear classifiers for predicting grasp, which will then be combined with
supervised feature selection. Although the fingers do exhibit nonlinear kinematics relative
to the palm, the constraints on hand motion will limit each surface marker to a small set
of clustered reachable positions. Different grasps are characterized by the relationships
between marker positions, which will vary, but not in a severely nonlinear way. Thus, we
believe that a classifier with linear decision boundaries can be successful for predicting
grasp types from motion capture data. In addition, using linear classifiers can provide a
simpler implementation and reduced computational cost compared to neural networks and
Hidden Markov Models, as used in [3, 5].

We will evaluate three candidates for a baseline classifier which uses the full feature set for
predicting grasps: Gaussian Naive Bayes (GNB) with class-independent variances, multi-
class logistic regression (LR), and linear support vector machines (SVM). We expect that
GNB will be less successful than LR and SVM due to the assumptions of conditional
independence and Gaussian distribution of the marker coordinates, which are unlikely to
be satisfied in our case of coordinated hand movement.

4.2 Supervised feature selection

Given a single baseline classifier, we wish to select a subsetof features which simplifies
the model. We use two standard approaches for supervised feature selection, as described
in [6]. First, in the filter approach, single features are individually ranked by a scoring
criterion, and the reduced set consists of thek best scoring features. The advantage of
this method is that each feature need only be scored once, with the expense that the final
selection does not consider possible interdependencies between the features. We evaluate
two scoring criteria: (1) the mutual information between the target value and a single fea-
ture, and (2) the prediction accuracy of a single feature classifier on a validation test set.
To compute the mutual information with the discrete target value, the continuous marker
position features are discretized rather than fit to an assumed distribution.

Wrapper methods are a second approach for feature selection.In contrast to the filter
approach, wrapper algorithms consider the interaction between features in constructing the



reduced set. By modeling how the set of features is related tothe target attribute rather
than only the relation between each single feature with the target, wrapper methods can
potentially select a feature set of the same size which results in better prediction. However,
this requires additional computational cost for training,as the features must be re-scored
each time the current feature set changes. To avoid considering the exponential number of
possible feature sets, the simplest wrapper algorithms consider a single feature at a time
for locally-optimal feature selection. In this work, we will consider two versions of greedy
wrappers. The forward method adds features incrementally to a reduced feature set, and the
backward method discards features incrementally from a larger set of available features.

We make one modification to these standard algorithms for themotion capture application.
Although the marker coordinates are represented by individual x, y, andz features, which
could be scored and added individually, our methods will addthe features in subsets of
three which correspond to the three coordinates of one marker. This is more useful for the
practical application, where the goal is to reduce the number of markers in the protocol,
instead of using one coordinate and ignoring the other two ofthe same marker. Thus the
ranking method will be modified to score a single marker from its three features.

5 Experiments and results

The data set consists of labeled hand grasps of various objects, where the marker positions
are described in local coordinates with respect to the back of the hand. Each example con-
sists of a 90-dimensional vector which represents the 3D positions of 30 markers on a single
subject’s right hand at a single time frame of a grasp. Six grasp classes were considered,
selected from the functional grasps for daily living [7]. Power grasps, characterized by
large contact areas, included cylindrical grasp, spherical grasp, and lumbrical grasp. Preci-
sion grasps, for fine manipulation by the fingertips, included pinch grasp, tripod grasp, and
handwriting grasp.

The available data is separated into three sets. The first data set has over 40,000 frames
from 88 motion clips of grasps for 38 objects. Due to the volume of data and limited
computational resources, training will generally only usethe first data set. The second data
set consists of frames from a separate set of motion clips where the demonstrator grasped
the same 38 objects as the first data set. The second data set isused as a validation set in the
early stage of model selection and for training the final selected classifier. The final data set
represents grasps for 19 new objects and will be used as a heldout test set for evaluating
the final selected methods.

5.1 Baseline classifier

Our tests of the three linear classifiers aim to evaluate the grasp classification accuracy
when the entire feature set is used. We implemented GNB with class-independent variances
and multi-class LR with cross entropy error and softmax function for class probabilities.
Parameters for LR were estimated from maximum conditional likelihood using gradient
ascent. Software available from [8] was used for linear SVM.The training data in the
first data set was split into two folds, and the selected modelfor each of three methods
was chosen based on the cross-validation accuracy. Table 1 reports the cross-validation
accuracy of the three classifiers from two-fold cross-validation. The classifiers were also
evaluated on the second data set with grasps on the same objects but from different motion
clips.

GNB had the worst performance, as expected due to its restrictive modeling assumptions.
Although SVM had over 98% cross-validation accuracy on the first data set used for train-
ing, its performance was similar to that of LR for the second data set used as an additional



Table 1: Performance of three linear classifiers on the full feature set.

Evaluation metric GNB multi-class LR linear SVM

Cross-validation accuracy on training data 0.7149 0.9120 0.9881
Accuracy on validation set with same objects 0.7251 0.9043 0.9066

validation test. The linear SVM model may have been overfit and only had high cross-
validation accuracy because the training and validation examples in the first training data
set came from the same motion clip sources. Because of the comparable performance on
the second data set and shorter training time, multi-class LR was selected as the baseline
classifier for the further investigations of feature selection.

5.1.1 Regularization parameter selection

To prevent over-fitting, the maximum conditional likelihood cost function for logistic re-
gression can be modified by an additional term which penalizes large weights on the fea-
tures. The regularization parameterλ determines the penalty on the weight vector magni-
tude relative to the data log likelihood. Several values ofλ are evaluated by 2-fold cross
validation accuracy on the first training data set and validation accuracy on the second data
set. The results in Figure 1 suggest that regularization maynot improve the performance
of LR significantly, if at all. Based on these tests, the following experiments on feature
selection will use multiclass LR without regularization,λ = 0.
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Figure 1: Classification accuracy for logistic regression with regularization. Penalty on the
weights does not improve the classifier performance noticeably, if at all.

5.2 Supervised feature selection

5.2.1 Filter methods

Given the chosen baseline classifier, we then use supervisedfeature selection to examine the
rate of trade-off between accuracy and using fewer markers.Filter methods are the simplest
approach to investigating this trade-off, and also can be used to select an appropriate scoring
criterion for use in the more computationally-expensive wrapper methods. Two popular
scores used are the mutual information between a single feature and the target attribute,
and the single feature classifier accuracy. We consider five methods of scoring an individual
marker, which is a set of threex, y, z coordinate features:



• the maximum single mutual information of any of its three coordinates,

• the sum of the mutual information scores of all three coordinates,

• the maximum single-coordinate LR prediction accuracy of its three coordinates,

• the sum of the three single-coordinate LR prediction accuracies, and

• the single marker LR prediction accuracy from training on all three coordinates.

The markers are first ranked according to each of the scoring methods. For each feature
set sizek, a LR classifier is trained based on the topk scoring markers and evaluated
using two-fold cross validation. Figure 2 shows that regardless of the scoring method,
grasp classification accuracy generally increases steeplyfor a small number of markers
but plateaus after about 15 markers. This suggests that the motion capture protocol could
be simplified dramatically with small loss in classificationaccuracy. Scoring based on
prediction accuracy was only slightly more successful thanusing the mutual information
gain. The last scoring method is generally the most successful for small set sizes of 3-7
markers. This is probably because the single marker prediction accuracy does consider
interaction between coordinates of the same marker.
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Figure 2: Filter methods: Feature selection based on individual marker scoring criterion.

5.2.2 Wrapper methods

Wrapper methods provide a framework for selecting a reduced feature set which can ac-
count for interaction not only between coordinates of the same marker, but between dif-
ferent markers as well. For either greedy addition or removal of features, each candidate
feature is re-scored conditioned on the current selected feature set. Our implementation
uses the classifier prediction accuracy as the scoring criterion for the wrapper method,
analogous to the last scoring criterion investigated in thefilter approach experiments. The
classifier accuracy most directly relates to the end goal of selecting a locally-optimal subset
for grasp classification, and the filter method results suggest it should be more successful
than the other choices of scoring functions.

The forward wrapper starts with an empty set of markers, and each step of the algorithm
augments the current feature set by the marker whose inclusion results in the best LR
classifier accuracy. The backward wrapper starts with the full set of 30 markers, and each
iteration removes the least informative marker. Both wrapper algorithms were evaluated
using two-fold cross validation on the first training data set. Figure 3 shows the cross-
validation accuracy of the two wrapper methods for different sizes of marker sets.
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Figure 3: Wrapper methods: Feature selection based on classifier prediction accuracy
scored on feature subsets.

The forward wrapper algorithm was the most successful in selecting a reduced set of fea-
tures with small loss in the classifier accuracy. In other applications, the backward wrapper
could be better because it may not remove features which havehigher order interactions
that would be missed by a greedy forward wrapper. However, for our application, the re-
sults suggest that distinguishing the worst feature is moredifficult than selecting the best
feature. The backward algorithm may have removed potentially strong features early on
in an almost random fashion since the classification accuracies of different large feature
sets usually differed by less than 1%. In contrast, the classification accuracies for the for-
ward wrapper differed by up to 20% for different choices of small marker sets, so the best
features were quickly added to build strong classifiers froma limited number of markers.

5.3 Final classifiers based on selected feature set

The final classifier is chosen from the marker ranking order found from the forward wrapper
algorithm, which was the most successful of the feature selection methods tested. Two
feature sets are chosen based on the size for which the forward wrapper cross-validation
accuracy was at least 85% and 90%, resulting in a small set of 5markers and a medium set
of 12 markers, respectively. For these two feature sets and the full feature set, a multi-class
logistic regression classifier is trained on a total exampleset consisting of the first data set
and second data set of grasp examples from the same objects. These classifiers are then
evaluated on the final held out test set with grasps of new objects. The results in Table 2
confirm that the marker protocol can be dramatically simplified to only 5 or 12 markers for
a negligible loss of grasp classification accuracy.

Table 2: Classification performance of three feature sets chosen from forward wrapper
results.

Number of markers small: 5 medium: 12 full: 30

Accuracy on total training set 0.8801 0.9210 0.9381
Accuracy on test set with new objects 0.8543 0.8867 0.8993



5.4 Analysis and extensions

The test set prediction rates shown in Figure 4 show that spherical and handwriting grasps
were the most difficult to classify for all three model sizes.The spherical grasp examples
in the test set were all from the same, small object, and it is not surprising that these hand
poses were mistaken for pinch, tripod, and handwriting precision grasps usually used for
small objects. Similarly, the error of classifying the handwriting grasp as tripod grasp
underscores the resemblance between the two grasps which both contact objects with the
first three finger tips.
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Figure 4: Test set predictions of different grasp classes for different size feature sets. The
values in each column denote the percentage of examples predicted to be in each class,
such that high values on the diagonal denote an accurate classifier. The six grasp types are:
(1) cylindrical, (2) spherical, (3) lumbrical, (4) pinch, (5) tripod, and (6) handwriting.

The feature selection experiments not only suggest the sizeof the reduced marker set, but
also where the markers should be placed on the hand. One interesting result of the tests
is that the top 5 and top 12 markers selected include markers on the lower arm and on the
back of the hand (Figure 5(a)), which intuitively should notbe able to predict the shape of
the hand. This is most likely due to an artifact of the available data, where the motion clips
are from a single hand with exactly the same marker placement. The hand and arm markers
may have been correlated with grasp due to systematic skin movement and systematic wrist
angles due to the controlled position of objects.

To address the practical concern of grasp classification fordifferent users and different
object locations, the forward wrapper method was tested on alimited feature set with only
the 21 finger markers. Using this modification, the top 5 fingermarkers (Figure 5(b))
suggest that a reduced marker set should include one marker on each of the first four digits
and an additional marker on the index finger, which is reasonable given the index finger role
in precision grips. Using the selected finger markers results in comparable classification
accuracy for the same number of markers (Table 3) compared tothe original method which
allowed markers on the arm and back of the hand (Table 2).

Table 3: Classification performance on three feature sets chosen from finger markers only.

Number of markers small: 5 medium: 12 full finger set: 21

Accuracy on total training set 0.8744 0.9064 0.9147
Accuracy on test set with new objects 0.8620 0.8882 0.9021



(a) full marker set (b) finger markers only

Figure 5: Selected markers from forward wrapper method on (a) full set of 30 markers and
(b) only the 21 finger markers, excluding markers on the back of the hand or arm.

6 Discussion

In summary, supervised feature selection has been used to methodically design a reduced
marker protocol for motion capture of the hand. Using as few as 5 markers as input features
still maintains above 85% grasp classification accuracy, compared to about 90% accuracy
when using a full set of 30 markers. In addition, the dramaticreduction of the number of
features with small loss in accuracy was possible using a linear classifier which is compu-
tationally less expensive than the more complex models usedin previous studies.

The main limitation of the study is the controlled conditions of the motion capture data
used for training and evaluation. More exploration is needed to validate the performance
of the reduced marker protocol in practical applications, in particular with respect to other
subjects whose hand geometry and method of grasping will differ. Other extensions of the
work might address the restrictions of the six grasps considered by developing methods to
handle a larger grasp taxonomy, automatically learn the grasp classes, or reduce the marker
set size using unsupervised feature selection.
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