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Abstract

Although the human hand is a complex biomechanical systemstibnal

grasps may be described by small set of features. Superigestuare

selection is used to evaluate the performance of reducekiemsets for
grasp classification from motion capture data. Our redueatufe set
maintains 85% grasp classification accuracy, compareddo&uracy
from using the full 30 marker set. Using a linear classifiet an few as
5 surface markers allows for dramatic simplification of thpeximental

procedure and reduced computational cost for grasp clzetsiin.

1 Introduction

The human hand has several degrees of freedom, which pribddezing flexibility as a
manipulator, but pose challenges for measuring and maglbimd movement. One tech-
nique for measuring the human motion is motion capture, betical markers attached
to body segments are used to reconstruct joint movementioMagpture of the hands
is difficult because of marker occlusions due to the wide eaoighand poses and close
position of the fingers.

A reduced marker set would simplify the capture proceduteaso describe hand config-
uration in a low-dimensional space. Furthermore, ther@istandardized motion capture
protocol for the hand. The aim of this study is to evaluate tmnselected marker positions
on the hand can affect the measured motion and investigathwiarkers may be the best
to include in a reduced hand marker protocol for future expents.

2 Related work

Previous literature in biomechanics has also investightad to represent grasping and
reach-to-grasping actions in a low-dimensional featugespusing principal components
analysis. For example, [1, 2] suggest that hand graspingpnmtan be represented by just
a few principal components in the joint space. These studied a data glove to capture
the motion of the hand, and the experiments involved mimed In@otion or reach-to-grasp

motion before the hand was in contact with the object.

Other work in the robotics community has investigated gdagsification. One study [3]
used neural networks for predicting grasps, based on a ¢axpmproposed in [4]. The
experiments focused on only three object shapes and sizddeidMarkov Models have
also been used for grasp recognition from data glove measumnts [5]. Data gloves can



be cumbersome to the user, may affect the natural graspitigrmand do not always fit
individual subjects well. In our study, we focus on inputadatthe context of marker-based
methods for motion capture and examine how to design an ppate protocol which can
simplify the data acquisition procedure.

3 Problem definition

This study investigates feature selection of the markeitipagnputs in conjunction with
grasp classification. The classification goal is to predietdrasp at a single time frame
given the measured marker positions representing the taafayaration. The purpose of
feature selection is to evaluate which markers are the ledtqtors of the grasp class and
determine which markers could be eliminated to simplify merker protocol. We aim to
explore questions such as: What is the minimum number of markeeded to represent the
hand pose well, and where on the hand should those marketadesl The redundancy
in hand grasping motion found by [1, 2] suggests that the rarmob markers could be
dramatically reduced without severely compromising graapsification.

4 Proposed method

4.1 Grasp classification

Our approach uses linear classifiers for predicting grabmwwill then be combined with

supervised feature selection. Although the fingers do éxhdmnlinear kinematics relative

to the palm, the constraints on hand motion will limit eachfate marker to a small set
of clustered reachable positions. Different grasps areacterized by the relationships
between marker positions, which will vary, but not in a selenonlinear way. Thus, we

believe that a classifier with linear decision boundaries lva successful for predicting
grasp types from motion capture data. In addition, usingdirclassifiers can provide a
simpler implementation and reduced computational cosipeoad to neural networks and
Hidden Markov Models, as used in [3, 5].

We will evaluate three candidates for a baseline classifiécinwuses the full feature set for
predicting grasps: Gaussian Naive Bayes (GNB) with cladsfiendent variances, multi-
class logistic regression (LR), and linear support vectacimmes (SVM). We expect that
GNB will be less successful than LR and SVM due to the assumgtdf conditional
independence and Gaussian distribution of the marker awaiss$, which are unlikely to
be satisfied in our case of coordinated hand movement.

4.2 Supervised feature selection

Given a single baseline classifier, we wish to select a sudidettures which simplifies
the model. We use two standard approaches for supervistadeslection, as described
in [6]. First, in the filter approach, single features areivigiially ranked by a scoring
criterion, and the reduced set consists of khbest scoring features. The advantage of
this method is that each feature need only be scored onde thdtexpense that the final
selection does not consider possible interdependencieeée the features. We evaluate
two scoring criteria: (1) the mutual information betweea thrget value and a single fea-
ture, and (2) the prediction accuracy of a single featuresifier on a validation test set.
To compute the mutual information with the discrete targdu®, the continuous marker
position features are discretized rather than fit to an asdudistribution.

Wrapper methods are a second approach for feature seledtiooontrast to the filter
approach, wrapper algorithms consider the interactiowden features in constructing the



reduced set. By modeling how the set of features is relatabetdarget attribute rather
than only the relation between each single feature with d@inget, wrapper methods can
potentially select a feature set of the same size whichtesubetter prediction. However,
this requires additional computational cost for trainiag,the features must be re-scored
each time the current feature set changes. To avoid coirgjdbe exponential number of
possible feature sets, the simplest wrapper algorithmsidena single feature at a time
for locally-optimal feature selection. In this work, we ibnsider two versions of greedy
wrappers. The forward method adds features incrementaedly¢duced feature set, and the
backward method discards features incrementally fromgefaset of available features.

We make one modification to these standard algorithms famibtégon capture application.
Although the marker coordinates are represented by inagiie, y, andz features, which
could be scored and added individually, our methods will tiodfeatures in subsets of
three which correspond to the three coordinates of one markés is more useful for the
practical application, where the goal is to reduce the numbenarkers in the protocol,
instead of using one coordinate and ignoring the other twih@fsame marker. Thus the
ranking method will be modified to score a single marker frésitiree features.

5 Experiments and results

The data set consists of labeled hand grasps of varioustspyeltere the marker positions
are described in local coordinates with respect to the battkechand. Each example con-
sists of a 90-dimensional vector which represents the 3Ripos of 30 markers on a single

subject’s right hand at a single time frame of a grasp. Sisg@asses were considered,
selected from the functional grasps for daily living [7]. iRy grasps, characterized by
large contact areas, included cylindrical grasp, sphiegiesp, and lumbrical grasp. Preci-
sion grasps, for fine manipulation by the fingertips, inctigiach grasp, tripod grasp, and
handwriting grasp.

The available data is separated into three sets. The firatsddthas over 40,000 frames
from 88 motion clips of grasps for 38 objects. Due to the vauof data and limited
computational resources, training will generally only tisefirst data set. The second data
set consists of frames from a separate set of motion clipsemhe demonstrator grasped
the same 38 objects as the first data set. The second datasedias a validation set in the
early stage of model selection and for training the finaltel®classifier. The final data set
represents grasps for 19 new objects and will be used as abetdst set for evaluating
the final selected methods.

5.1 Baseline classifier

Our tests of the three linear classifiers aim to evaluate thspgclassification accuracy
when the entire feature set is used. We implemented GNB \#sdndependent variances
and multi-class LR with cross entropy error and softmax fiamcfor class probabilities.
Parameters for LR were estimated from maximum conditioikalihood using gradient
ascent. Software available from [8] was used for linear SMKe training data in the
first data set was split into two folds, and the selected mémfe¢ach of three methods
was chosen based on the cross-validation accuracy. Taldpatts the cross-validation
accuracy of the three classifiers from two-fold cross-wl@h. The classifiers were also
evaluated on the second data set with grasps on the samésdijeérom different motion
clips.

GNB had the worst performance, as expected due to its régrimodeling assumptions.
Although SVM had over 98% cross-validation accuracy on tist fiata set used for train-
ing, its performance was similar to that of LR for the secoathdset used as an additional



Table 1: Performance of three linear classifiers on the éaltdre set.

Evaluation metric GNB  multi-class LR linear SVM
Cross-validation accuracy on training data 0.7149 0.9120 .9881
Accuracy on validation set with same objects 0.7251 0.9043 .9065B

validation test. The linear SVM model may have been overfit anly had high cross-
validation accuracy because the training and validatiangtes in the first training data
set came from the same motion clip sources. Because of thparatrie performance on
the second data set and shorter training time, multi-cl&&svas selected as the baseline
classifier for the further investigations of feature seatett

5.1.1 Regularization parameter selection

To prevent over-fitting, the maximum conditional likeliteboost function for logistic re-
gression can be modified by an additional term which peralaege weights on the fea-
tures. The regularization paramegedetermines the penalty on the weight vector magni-
tude relative to the data log likelihood. Several values @fre evaluated by 2-fold cross
validation accuracy on the first training data set and vébideaccuracy on the second data
set. The results in Figure 1 suggest that regularization meaymprove the performance
of LR significantly, if at all. Based on these tests, the failng experiments on feature
selection will use multiclass LR without regularization= 0.
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Figure 1: Classification accuracy for logistic regressidatihwegularization. Penalty on the
weights does not improve the classifier performance ndtige# at all.

5.2 Supervised feature selection
5.2.1 Filter methods

Given the chosen baseline classifier, we then use supefeatoe selection to examine the
rate of trade-off between accuracy and using fewer markdltsr methods are the simplest
approach to investigating this trade-off, and also can bd tsselect an appropriate scoring
criterion for use in the more computationally-expensivapper methods. Two popular
scores used are the mutual information between a singlaréeand the target attribute,
and the single feature classifier accuracy. We consider fatboals of scoring an individual
marker, which is a set of three y, z coordinate features:



the maximum single mutual information of any of its three rchioates,

the sum of the mutual information scores of all three coartdis,

the maximum single-coordinate LR prediction accuracyofhtee coordinates,

the sum of the three single-coordinate LR prediction aaiesaand

the single marker LR prediction accuracy from training dritakee coordinates.

The markers are first ranked according to each of the scorgthads. For each feature
set sizek, a LR classifier is trained based on the togcoring markers and evaluated
using two-fold cross validation. Figure 2 shows that refgessl of the scoring method,
grasp classification accuracy generally increases stdeply small number of markers

but plateaus after about 15 markers. This suggests thatatiemtapture protocol could

be simplified dramatically with small loss in classificatiaocuracy. Scoring based on
prediction accuracy was only slightly more successful thging the mutual information

gain. The last scoring method is generally the most suadefesfsmall set sizes of 3-7

markers. This is probably because the single marker predieiccuracy does consider
interaction between coordinates of the same marker.

Filter methods: Tradeoff between accuracy and number of markers

“““““ maximum mutual information per marker

-+ sum of mutual information per marker

maximum single coordinate classifier accuracy per marker

—+—sum of single coordinate classifier accuracies per marker

—e—single marker classifier accuracy trained on 3 coordinates
T T T T

0 5 10 15 20 25 30
number of markers

2-fold cross validation accuracy
o O o o o o o
w N 00 O N 0 ©
. T

Figure 2: Filter methods: Feature selection based on iddalimarker scoring criterion.

5.2.2 Wrapper methods

Wrapper methods provide a framework for selecting a redueatlife set which can ac-
count for interaction not only between coordinates of thmesanarker, but between dif-
ferent markers as well. For either greedy addition or reof/éeatures, each candidate
feature is re-scored conditioned on the current selectaiife set. Our implementation
uses the classifier prediction accuracy as the scoringrioritdor the wrapper method,
analogous to the last scoring criterion investigated irnfilter approach experiments. The
classifier accuracy most directly relates to the end goatletsing a locally-optimal subset
for grasp classification, and the filter method results ssiggashould be more successful
than the other choices of scoring functions.

The forward wrapper starts with an empty set of markers, aoth step of the algorithm
augments the current feature set by the marker whose indlusisults in the best LR
classifier accuracy. The backward wrapper starts with theét of 30 markers, and each
iteration removes the least informative marker. Both weapdgorithms were evaluated
using two-fold cross validation on the first training dat& seigure 3 shows the cross-
validation accuracy of the two wrapper methods for difféistnes of marker sets.



Wrapper methods: Tradeoff between accuracy and number of markers
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Figure 3: Wrapper methods: Feature selection based on f@agsiediction accuracy
scored on feature subsets.

The forward wrapper algorithm was the most successful iecsielg a reduced set of fea-
tures with small loss in the classifier accuracy. In othetiapfions, the backward wrapper
could be better because it may not remove features which trigher order interactions

that would be missed by a greedy forward wrapper. Howevemdio application, the re-

sults suggest that distinguishing the worst feature is mdfieult than selecting the best
feature. The backward algorithm may have removed potgnsaiong features early on
in an almost random fashion since the classification ac@saif different large feature

sets usually differed by less than 1%. In contrast, the ifleason accuracies for the for-

ward wrapper differed by up to 20% for different choices obfirmarker sets, so the best
features were quickly added to build strong classifiers fedimited number of markers.

5.3 Final classifiers based on selected feature set

The final classifier is chosen from the marker ranking ordenfbfrom the forward wrapper

algorithm, which was the most successful of the featureciele methods tested. Two

feature sets are chosen based on the size for which the fbmwapper cross-validation

accuracy was at least 85% and 90%, resulting in a small setafrkers and a medium set
of 12 markers, respectively. For these two feature setstenfltl feature set, a multi-class
logistic regression classifier is trained on a total examspleconsisting of the first data set
and second data set of grasp examples from the same objdwse Tlassifiers are then
evaluated on the final held out test set with grasps of newcthjd@ he results in Table 2

confirm that the marker protocol can be dramatically simgadifio only 5 or 12 markers for

a negligible loss of grasp classification accuracy.

Table 2: Classification performance of three feature setserh from forward wrapper
results.
Number of markers small: 5 medium: 12 full: 30

Accuracy on total training set 0.8801 0.9210 0.9381
Accuracy on test set with new objects  0.8543 0.8867 0.8993



5.4 Analysis and extensions

The test set prediction rates shown in Figure 4 show thatrgah@nd handwriting grasps

were the most difficult to classify for all three model siz&$ie spherical grasp examples
in the test set were all from the same, small object, and ibisuarprising that these hand
poses were mistaken for pinch, tripod, and handwriting ipi@e grasps usually used for
small objects. Similarly, the error of classifying the hamiing grasp as tripod grasp

underscores the resemblance between the two grasps whitlcdittact objects with the

first three finger tips.
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Figure 4: Test set predictions of different grasp classeslifterent size feature sets. The
values in each column denote the percentage of examplexfeedo be in each class,
such that high values on the diagonal denote an accurasifidasThe six grasp types are:
(1) cylindrical, (2) spherical, (3) lumbrical, (4) pinchp)(tripod, and (6) handwriting.

The feature selection experiments not only suggest theo$itee reduced marker set, but
also where the markers should be placed on the hand. Onestitgy result of the tests
is that the top 5 and top 12 markers selected include marketiseolower arm and on the
back of the hand (Figure 5(a)), which intuitively should betable to predict the shape of
the hand. This is most likely due to an artifact of the avddatata, where the motion clips
are from a single hand with exactly the same marker placer&ethand and arm markers
may have been correlated with grasp due to systematic skiemment and systematic wrist
angles due to the controlled position of objects.

To address the practical concern of grasp classificatiodiféerent users and different
object locations, the forward wrapper method was testedloni@d feature set with only

the 21 finger markers. Using this modification, the top 5 fingerkers (Figure 5(b))

suggest that a reduced marker set should include one marlesah of the first four digits

and an additional marker on the index finger, which is redsiergiven the index finger role
in precision grips. Using the selected finger markers resaolcomparable classification
accuracy for the same number of markers (Table 3) compaithe wriginal method which

allowed markers on the arm and back of the hand (Table 2).

Table 3: Classification performance on three feature setsechfrom finger markers only.
Number of markers small: 5 medium: 12 full finger set: 21

Accuracy on total training set 0.8744 0.9064 0.9147
Accuracy on test set with new objects  0.8620 0.8882 0.9021
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Figure 5: Selected markers from forward wrapper method pfulleset of 30 markers and
(b) only the 21 finger markers, excluding markers on the bétkeohand or arm.

6 Discussion

In summary, supervised feature selection has been usedttmdieally design a reduced
marker protocol for motion capture of the hand. Using as few markers as input features
still maintains above 85% grasp classification accuraayygared to about 90% accuracy
when using a full set of 30 markers. In addition, the dramag@uction of the number of

features with small loss in accuracy was possible usingeaficlassifier which is compu-

tationally less expensive than the more complex models inggevious studies.

The main limitation of the study is the controlled condisoof the motion capture data
used for training and evaluation. More exploration is nelefbevalidate the performance
of the reduced marker protocol in practical applicationgarticular with respect to other
subjects whose hand geometry and method of grasping widlrdiDther extensions of the
work might address the restrictions of the six grasps cemsitiby developing methods to
handle a larger grasp taxonomy, automatically learn thepgerkasses, or reduce the marker
set size using unsupervised feature selection.
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