
SVM Kernel Optimization: An Example in Yeast
Protein Subcellular Localization Prediction

T. aráz E. Buck
Computational Biology Program
tebuck@andrew.cmu.edu

Bin Zhang
School of Public Policy and Management

binzhang@cmu.edu

Abstract

Localization of proteins, a flourishing area in bioinformatics, can help
us understand their respective functions. Currently there exist a number
of localization approaches based on machine learning algorithms, and
support vector machines (SVMs) have been used extensively. However,
in terms of kernel optimization, a critical step in SVM design, there is
no well-established systematic method so far. In this paper, we apply
the Levenberg-Marquardt (LM) algorithm in kernel optimization, an al-
gorithm that we believe will have better optimization performance than
simple gradient descent and that hasn’t been used in this field according
to our knowledge, and test it using protein location data from yeast. We
then experimentally compare the performance of our optimized system
with others. Results show that automated parameter optimization can
improve classification accuracy. Further research can complement such
a method by controlling over-fitting.

1 Introduction

The prediction of protein subcellular localization is a thriving area in bioinformatics
and a critical step of genomic data exploration. It is the foundation of any further
research in protein functional characterization. With the help of machine learning,
cellular protein localization accuracies are improving significantly. Several methods
and systems have been developed using decision trees, SVMs, etc. Many researchers
have issued different multiple-class SVM classifiers, using the one-versus-one [5],
one-versus-all [3], and DAGSVM [12] methods. However, many researchers design their
kernels by trying a finite number of different parameter values manually. Such a method
is inefficient and often inaccurate. The objective of our research is to design a more
automatic method for optimizing kernel function parameters. Such methods also provide a
guideline for designing classifiers with better performance and comparing kernel functions.

In this project, we optimize SVM classifiers for predicting protein localization and test it
against Horton’s and Nakai’s Yeast data set. Our features consist of 8 input scores for the
protein sequence that are characteristic of a given localization pattern. Detailed explana-
tion of features can be found in section 3.1. In section 2, we review relevant literature in
protein localization using machine learning. We introduce our chosen kernel optimization
method, the Levenberg-Marquardt algorithm, in section 3. In section 4, we implement our



algorithm to optimize kernels, then design an SVM classifier using this kernel and conduct
experiments to show our SVM method is numerically superior to other methods. Experi-
ment results show that our method attains an overall prediction accuracy of 74.60%, which
is much higher than 54.9%, the accuracy rate of the system by Nakai [6], the data provider.
Finally we present discussion and the prospect of future work in section 5.

2 Background and literature review

2.1 Protein localization prediction

Machine learning has been used widely in computational biology and bioinformatics.
Given the size and complexity of these data sets, most researchers are compelled to use
machine learning techniques to classify genes and proteins. A number of systems have
been developed that support automated prediction of subcellular localization. Some widely
implemented methods are: training artificial neural networks (ANN) such as NNPSL [13];
exploiting the existence of peptide signals, which are short sub-sequences of approximately
3 to 70 amino acids, to predict specific cell locations, such as TargetP [4]; and otherwise ex-
tracting data, such as from homologs, and using a classifier on the sequence features. Other
approaches include LOCkey [11] and then support vector machines (SVM) like SubLoc [7],
which is a method attracting more attention.

2.2 Kernel optimization

Kernel selection plays an important role in SVM training and classification. A properly
designed kernel function can minimize generalization error, accelerate convergence speed,
and increase prediction accuracy. There are two common optimization methods, adding
parameters and kernel alignment. Adding parameters is a method for putting additional
parameters in the kernel and optimizing those parameters so as to improve the performance.
”These parameters could be simple as theβ parameter in the radial basis kernel, weight
each dimension of the input vectors, or more flexible as finding the best convex combination
of basic kernels. [8]” The critical part of this method is choosing the measure we would
optimize. We usually choose cross-validation or geometric margin. Geometric margin must
be used accompany with normalization, since some linear operation of the feature vector
will change the geometric margin. The most widely used optimization approach is kernel
alignment. Alignment can be understood as similarity between Gram matrices. It adjusts
the kernels parameters to align them to a target kernel.

2.3 Gradient descent

Gradient descent is widely used in non-linear optimization. In most cases, gradient descent
is sufficient “to find satisfactory weights for a multi-layer perceptron (MLP) or a radial
basis function (RBF) network, adapting possible hyper-parameters requires an estimation
of the gradient after each training process, and then a downhill step toward a local minima
could be done” [1]. However, gradient descent also has several shortcomings. First, gra-
dient descent is time consuming because it takes infinitesimal steps in the direction of the
gradient. Second, sometimes we cannot confirm which step size would be optimal. Third,
the SVM needs a lot of training iterations until a solution is found. Fourth, in many cases,
gradient descent does not produce reproducible results. It is not necessary to produce a
downhill direction toward a minimum and “any discontinuity can lead to an arbitrary step
along the error surface” [1].

Many current research deals with hyper-parameter adaption in neural networks. Most of
this research consider fixing parameters involved in the training process that are not. Given
the disadvantages of gradient descent, we use the Levenberg-Marquardt algorithm in kernel



optimization. It has been used in neural networks but hasn’t been put to use in kernel
optimization. A detailed introduction is in the next section.

3 Methods and Systems

In this paper, we implement and evaluate the performance of the LM algorithm, a
method for finding minima of sum-of-squares functions. Specifically, we are apply-
ing it to kernel optimization in support vector machines (SVMs). Its behavior varies
between gradient descent and Gauss-Newton optimization, depending on the topol-
ogy of the space it searches. It resembles the former method when the current solution
is still far from the minimum, then changes to the latter when it is closer to the optimum. [9]

More [10] describes the LM algorithm as more robust than several other optimization
methods, and he states that it shows “strong convergence properties.” We hope that the LM
algorithm will quickly converge on the distribution of our test data set, the Yeast Protein
Database, which is introduced later.

The LM algorithm is listed below in pseudo-code.

k = 0

nu = 2

p = p 0

A = J’ * J

epsilonp = x - f(p)

g = J’ * epsilon p

stop = (g’ * g <= epsilon 1)

mu = tau * max(A ii)

while (∼stop and k < k max)

k = k+1

do

solve ((A + mu * I) * delta p = g)

if (delta p’ * delta p <= epsilon 2 * p’ * p)

stop = true

else

p new = p + delta p xmfpn = x - f(p new)

rho = (epsilon p’ * epsilon p - xmfpn’ * xmfpn)

/ (delta p’ * (mu * delta p + g))

if (rho > 0)

p = p new

A = J’ * J

epsilon p = x - f(p)

g = J’ * epsilon p



stop = (g’ * g <= epsilon 1) or (epsilon p’ * epsilon p <= epsilon 3)

mu = mu * max(1/3, 1 - (2 * rho - 1)3̂)

nu = 2

else

mu = mu * nu

nu = 2 * nu

endif

endif

until (rho > 0 or stop)

end

p plus = p

return p plus

4 Experiments

4.1 Data

We are using the Yeast database from the UCI ML Repository. There are 1484 records,
each with eight feature values. These features are for signal sequence recognition such
as transmembrane segments, mitochondrial proteins, endoplasmic reticulum (ER) recog-
nition, peroxisomal protein recognition, vacuolar protein recognition, and nuclear protein
recognition.

1. MCG: McGeoch’s method for signal sequence recognition. This method calculates
discriminant score using length of N-terminal positively-charged region (H-region), peak
value of central hydrophobic region (H-region), and net charge of N-region. High discrim-
inant score indicates high possibility of signal sequence.

2. GVH: von Heijne’s method for signal sequence recognition. This method uses weight-
matrix and the cleavage sites consensus pattern to detect signal-anchor sequences. High
score indicates high possibility of having cleavable signal sequence.

3. ALM: Feature for transmembrane segments recognition. Score of the ALOM membrane
spanning region prediction program. It indicates whether a segment is transmembrane or
peripheral.

4. MIT: Feature for mitochondrial proteins recognition. Through discriminant analysis of
the N-terminal region amino acid content, we can differentiate between mitochondrial and
non-mitochondrial proteins.

5. ERL: Feature for endoplasmic reticulum (ER) recognition. It is a binary value indicating
”HDEL” substring presence, which is a signal of endoplasmic reticulum lumenal protein.

6. POX: Feature for peroxisomal protein recognition. We use peroxisomal-matrix targeting
sequences as targeting signal in the C-terminus.

7. VAC: Feature for vacuolar protein recognition. It is a score of discriminant analysis of
the amino acid content of vacuolar and extracellular proteins. In yeasts, vacuoles contain
numerous hydrolytic enzymes.

8. NUC: Feature for nuclear protein recognition. Indicator of nuclear and non-nuclear
proteins. Nuclear proteins occupy the majority in yeast genome, so the the total prediction



Table 1: Results of classifications and kernels

Kernels Best Accuracy Average Accuracy
Linear 56.04% 56.04%
Polynomial 74.60% 66.81%
RBF 70.34% 59.01%

accuracy depends a lot on nuclear proteins prediction accuracy.

Through the features introduced above, we consider 10 localization patterns within a yeast
cell as below: cytosolic (CYT), endoplasmic reticulum lumen (ERL), extracellular (EXC),
membrane protein with signal cleaved (ME1), membrane protein with signal uncleaved
(ME2), membrane protein without N-terminal signal (ME3), mitochondrial (MIT), nuclear
(NUC), peroxisomal (POX), vacuolar (VAC).

4.2 Results

We now compare the behavior of different kernels with the Yeast data set. We randomly
chose a training set of 1126 records and a testing set of 358. We trained SVM classifiers
using different kernels, namely the linear, polynomial, and radial basis function (RBF or
Gaussian) kernels. We set the slack penalty toC = 1 and verified results with ten-fold
cross-validation. The accuracies are listed in Table 1. A polynomial kernel yielded the
highest average accuracy of 74.60%, an improvement of 19.7% over Horton and Nakai’s
classifier’s 54.9%. Figure 1 displays a plot of a polynomial-kernel SVM classifier over our
data. Our polynomial degrees are between two and ten, so we do not expect any issues
with over-fitting. The best and average accuracies in Table 1 are taken with respect to a
range of different kernel parameters.

Figure 1: 1-vs-1 SVM decision boundary with 10th degree polynomial kernel

Table 2 shows accuracies for the RBF kernel. The RBF kernel can fit the data differently
depending on its parameter, with classification improving asa decreases.



Table 2: Accuracies of different parameters, RBF kernel

Parametera Accuracy
0.125 70.34%
0.25 64.21%
0.5 61.19%
1 56.13%
2 43.16%

Slack penaltyC = 1

Table 3: Accuracies before and after optimization

Initial Accuracy Optimized Accuracy
Kernel Parameter without LM Parameter with LM ∆Accuracy

Polynomial 2 60.21% 2 60.21% 0.00%
10 74.60% 10 74.60% 0.00%

RBF 2 43.16% 2 43.16% 0.00%
1 56.13% 0.97 56.22% 0.89%

0.5 61.19% 0.5 61.01% -0.18%
0.25 64.21% -0.0044 100% 35.79%
0.125 70.34% 0.046 91.74% 21.40%

We optimized the polynomial and RBF kernels with the LM algorithm to contrast the
performance with unoptimized kernels. Results are shown in Table 3. Polynomial kernels
showed no difference between the initial and final parameters and thus the accuracy. The
algorithm consistently failed to detect any gradient for polynomial kernels using both
default and other settings for the finite differencing. We also found that RBFs showed a
mean increase of 11.42% in classification accuracy, demonstrating LM’s ability to properly
locate a better parameter value. Given other kernels, the technique can be used to select a
multidimensional parameter to aid in supervised optimization.

We also noticed the possibility that the overall increase in RBF accuracy is caused by
over-fitting, a known issue with these kernels [2]. In the last two cases listed in Table 3,
the LM algorithm significantly reduced the RBF parameter to the order of thousandths or
ten thousandths, allowing many instances of the kernel to be placed by the SVM software.
Given a large enough number of instantiated kernels and a small enough parameter, it is
possible to properly classify all data points by creating a convoluted transformation to the
higher dimensional space. However, upon examining a classifier trained on the first two
principle components of the data set that showed high classification success, we recognize
the need to do further investigation into this issue.

We have shown that the accuracies for some classifiers can be optimized, so LM can be
useful as a method to optimize SVM kernels. Over-fitting, and determining when it occurs,
is a major issue with many learning algorithms. To allow techniques such as LM-based
parameter optimization to be properly utilized, we suggest that optimization requires an-
other heuristic function to approximate the level of over-fitting associated with a particular
decision boundary. Of course, this is a challenging problem given the vast variation in



type of data, the number of samples present in the many data sets available, and individual
preferences for elegant solutions.

5 Conclusion

In a multiple-category classification problem, it is very important for an SVM classifier
to use optimal kernel parameters because the proper clustering of the data depends on the
ability of kernel functions to properly partition the higher-dimensional space. We studied
and compared different kernels against the Yeast data set, and we found that the polynomial
kernel yielded the best classification accuracy. We also proposed an empirical error based
method that uses a Levenberg-Marquardt algorithm to optimize the parameters, and test
the accuracy before and after optimization. However our results did not show significant
improvement for all kernels. We provided analytical explanation. On the other hand, Ayat
et al. used the quasi-Newton method to optimize SVM kernels and had positive results [1].
We suspect that their results depend significantly on their data set. We have identified their
NIST database, so a future task would be to obtain their data and test our algorithm against
them.

References

[1] N. E. Ayat, M. Cheriet, and C. Y. Suen. Optimization of the svm kernels using an
empirical error minimization scheme. pages 354–369, Niagara Falls, Canada, 2002.

[2] L. Bi, H. Huang, Z. Zheng, and H. Song. New heuristic for determination Gaussian
kernels parameter. InProceedings of the Fourth International Conference on Machine
Learning and Cybernetics, pages 4299–4304, Guangzhou, China, 2005.

[3] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, L. Yam, U. Muller,
E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: A case
study in handwriting digit recognition. InProceedings of International Conference
Pattern Recognition, pages 77–87, Israel, 1994.

[4] O. Emanuelsson, H. Nielsen, S. Brunak, and G. von Heijne. Predicting subcellular
localization of proteins based on their n-terminal amino acid sequence.Journal of
Molcular Biology, 300:1005–1006, 2000.

[5] J. Friedman. Another Approach to Polychotomous Classification. Department of
Statistics, Stanford University, Stanford, CA, 1996.

[6] P. Horton and K. Nakai. A probabilistic classification system for predicting the cellu-
lar localization sites of proteins. InProceeding of the Fourth International Conference
on Intelligent Systems for Molecular Biology, pages 109–115, St. Louis, MO, 1996.

[7] S. Hua and Z. Sun. Support vector machine approach for protein subcellular localiza-
tion prediction.Bioinformatics, 17:721–728, 2001.

[8] T. S. Jaakkola. Machine Learning. Massachusetts Institute of Technology, Cam-
bridge, MA, 2006.

[9] M. I. A. Lourakis. A Brief Description of the Levenberg-Marquardt Algorithm Imple-
mented by levmar. Foundation for Research and Technology, Greece, 2005.

[10] J. J. More. The levenberg-marquardt algorithm: implementation and theory. In G. A.
Watson, editor,Numerical Analysis, Lecture Notes in Mathematics, pages 105–116.
Springer-Verlag, Heidelberg, 1977.

[11] R. Nair and B. Rost. Mimicking Cellular Sorting Improves Prediction of Subcellular
Prediction.Journal of Molecular Biology, 348(1):85–100, 2005.



[12] J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin dags for multiclass
classification. InAdvances in Neural Information Processing Systems, volume 12,
page 547C553. MIT Press, Cambridge, MA, 2000.

[13] A. Reinhardt and T. Hubbard. Using neural networks for prediction of the subcellular
location of proteins.Nucleic Acids Research, 26:2230–2236, 1998.


