
TAN network classifers for fMRI data

Michael P. Ashley-Rollman
mpa@cs.cmu.edu

Lucia Castellanos Ṕerez-Bolde
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Abstract

The goal of this work is to try a new solution for the classification task of
predicting when a subject is reading a sentence versus perceiving a pic-
ture using brain imaging data (fMRI). fTAN, an algorithm that both re-
laxes the conditional independence assumptions from a traditional Naive
Bayes classifier, and assumes continuous variables, is implemented and
compared to other methods.

1 Introduction

A particular portion of the generic problem of decoding mental states from brain activity in
humans is addressed in this work. The aim is at trying a new approach for the classification
task of predicting when a subject is reading a sentence versus perceiving a picture read
from brain imaging data (fMRI).

Previous attempts have used Gaussian Naive Bayes classifiers, support vector machines,
and k-nearest neighbors. In this work some conditional independence assumptions of the
Gaussian Naive Bayes classifier are removed, in a way that each attribute is assumed to be
conditionally independent of every other attribute, giventhe class variable and one other
attribute. This probabilistic structure corresponds to the tree augmented naive Bayes (TAN)
approach [1], where a restricted Bayes network is built withthe property that each attribute
node has got at most two parents, namely the class variable and another attribute.

fMRI data is continuous, extremely high dimensional, sparse, and noisy. The learning
scheme used to analyze these data must take into account suchcharacteristics.

Specifically tailored feature selection methods have been successfully used to reduce di-
mensionality and noise before [2]. In this work these methods are employed as a pre-
processing step for the data.

Continuous attributes can not be incorporated directly into the original TAN algorithm [1]
since this model assumes discrete variables. There are two ways to tackle this problem:
either discretize the data before applying the algorithm, or make some assumptions about
the distribution of the features and incorporate the distributions into the learning scheme. In
particular, conditional Gaussian distributions can be used to deal with continuous variables
avoiding a discretization step. Intuitively, this latter approach is preferred over discretizing
the data because discretization implies loss of information. In this work the conditional
Gaussian assumptions are incorporated as suggested in [3].

In section 2 a brief overview of previous work in decoding mental states from brain imaging
data and of the theory on bayesian network classifiers is exposed. In section 3 a detailed
description of the process to analyse the data used in this work is presented. In section 4



the experiment design is explained and in 5 the results are summarized. Finally, in section
6 our conclusions are reported and an outline of future work is presented.

2 Previous work

2.1 fMRI data analysis

Haynes and Rees [4] review gives an overview of the work done for decoding mental states
from brain imaging. However, with views to the particular problem addressed in this work,
Mitchell’s et al. work [2] is more representative because they showed three different fMRI
studies demonstrating the feasibility of training classifiers to distinguish a variety of cogni-
tive states based on single-interval fMRI observations. Inparticular, they trained classifiers
to categorize whether a subject was being presented a sentence or a picture during a partic-
ular time interval in a fMRI session. In fact, they learnt a function of the form:
f:fMRI-sequence(timeinterval) → {Picture, Sentence}.

As a pre-processing step, they applied somefeature selectionmethods that improved clas-
sification accuracy in all of their studies. The success of these methods consisted in taking
into consideration the signal when the subject is neither viewing a picture nor a sentence,
but simply fixating on the screen data. They called these methodsactivity based feature
selection.

Among the most successful methods was the one that selected the n most active voxels
(Active), that consists in selecting voxels according to at-test. The idea is to compare the
voxel’s fMRI activity in examples belonging to a specific class to its activity in examples
belonging to fixation periods. Then then voxels with greatestt statistic are selected.n is
selected to minimize the mean error of all single subject classifiers trained for the specific
study. In thepicture versus sentencestudyn = 240 features where selected.

The methodn most active voxels per region of interest (roiActive) is similar toActivebut
ensuring that voxels are selected uniformly from the user specified regions of interest within
the brain. In the case ofpicture versus sentencestudy, these regions of interest are:CALC,
LIPL, LT, LTRIA, LOPER, LIPS andLDLPFC. A method based on the average of active
voxels per ROI was also tried.

Mitchell et al. built Gaussian Naive Bayes (GNB) classifiers, linear Support Vector Ma-
chine (SVM) andk-Nearest Neighbors. They found that Gaussian Naive Bayes (GNB) and
linear Support Vector Machine (SVM) classifiers outperformk- Nearest Neighbors in all
three studies.

In this work a TAN classifier, that relaxes the Gaussian NaiveBayes assumptions, is tried
out with views to at least yield competitive results with thetwo leading classifiers.

2.2 Bayesian Networks and Probabilistic Graphical Models

Bayesian Networks classifiers based on probabilistic graphical models are described in
detail in [1] and have proven to be effective. A Bayesian Network is a directed acyclic graph
of nodes representing variables and arcs representing conditional independence relations
between the variables. Bayesian Networks assume that each random variable follows a
conditional probability function given a specific value of its parents. These conditional
probability functions are usually assumed to be multinomial, that is, the networks handle
discrete values.

In a problem setting where there are continous variables, there are two ways of proceed-
ing: discretize the data in advance, and consequently risk lossing some information; or
incorporate the continuous variables in the learning scheme by assuming that continous



variables are sampled from a Gaussian distribution. The latter kind of network is known as
a conditional Gaussian network.

A solution to a classification task can be obtained considering the Bayes rule together
with the fact that probabilistic graphical models can be used to encode the joint distribu-
tion among the predictor variables, based on the conditional independence represented by
the graph structure. Indeed, a general classification problem that considers only predictor
variables and that would like to be addressed in the framework of a conditional Gaussian
network can be described as follows [3].

Let C be the class variable, and{Xi}
n
i=1

the continuous predictor variables. Consider that
the class variableC is the root of the graph. Thus, ifΠi denotes the set of parents of
variablei, then{C} ⊆ Πi for all i.

In order to classify an instancex = (x1, ..., xn) the class with the highest a posteriori prob-
ability P (c|x) should be selected. The classification process can be done inthe following
way:

P (c|x) ∝ p(c, x) = P (c)p(x|c) = P (c)

n
∏

i=1

p(xi|πi)

Whereπi denotes the value ofΠi. Also:

p(xi|πi) is distributedN(mi|c, vi|c) and:
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i is the set of continuous predictors that are parents ofXi, i.e. Π
′

i = Πi\{C}. ΣS|c is the
covariance matrix of the set of variablesS conditioned to the class valueC = c. βij|c is
the regression coefficient ofXi onXj conditioned on the class valueC = c, and is defined
asβij|c =

σij|c

σ2

j|c

. σij|c is the covaraiance between the variablesXi andXj conditioned to

c, andσ2

j|c is the variance ofXi conditioned toc.

3 Proposed Method

3.1 Theoretical approach

The tree augmented Bayesian network structures (TAN structures) are a type of Bayesian
network that loosen the conditional independence assumption made by Naive Bayes
structures, in the sense that TAN structures allow probabilistic dependencies among
variables (predictors). TAN structures consist of graphs with edges from the classvariable
to the predictors, and with edges between predictors takinginto account that the maximum
number of parents of a variable is two: another variable and the class.

Friedmanet al. [1] proposed the TAN algorithm to train TAN structure based classifiers.
This algorithm only works with discrete features. There hasbeen other work that propose
a pre-discretization step to deal with continous variables, however this step usually results
in lose of information.



Pérezet al. [3] proposed thefilter tree augmented naive Bayes (fTAN), that adapts the
original TAN algorithm [1] to continuous variables by defining themutual information
between two continuous variables that are jointly distributed givenC as a bivariate normal.
Indeed, ifC is a multinomial random variable, and the joint density function of variables
Xi andXj conditioned toC = c follows a bivariate normal distribution with a vector of
meansµij|c and a covariance matrixΣij|c, then the mutual information between variables
Xi andXj conditioned toC is such that:

I(Xi;Xj |C) = −
1

2
log(1 − ρ2

c(Xi,Xj))

whereρc(Xi,Xj) =
σij|c

√

σ2

i|c
σ2

j|c

is the correlation coefficient betweenXi andXj condi-

tioned to the valueC = c.

In this manner the fTAN algorithm can be stated in an analogous way to the original TAN
algorithm [1] as follows:

1. For every pair of attributes{Xi,Xj} wherei, j ∈ {1, 2, .., n} andi 6= j obtain
I(Xi;Xj |C).

2. Build a complete undirected graph with the set{Xi}
n
i=1

as the set of vertices.
Assign a weightI(Xi;Xj |C) to the edge connectingXi with Xj for all i, j ∈
{1, 2, .., n} andi 6= j.

3. Build a maximum weighted spanning tree.

4. Select one root variable and set the direction of all edgesto be outward from it,
obtaining a directed tree.

5. Add a vertexC and add an arc fromC to each variableXi.

A TAN model built like this is guaranteed to maximize the loglikelihood of the data [1].
However, it is important to note that the structural likelihood maximization does not neces-
sarily imply a predictive error minimization.

The fTAN algorithm constructs a complete TAN structure, meaning that all variables are in-
cluded in the structure, all possible conditional independence assumptions are represented
and no more dependencies can be allowed. This may imply that some redundant variables
and irrelevant edges could be added [3].

The computational cost of fTAN is polynomial in the number ofvariables, that is, it holds
the Naive Bayes’s computational simplicity.

Pérezet al. [3] showed empirically that even if the data sets do not obey the Gaussian
distribution assumption, these methods perform competitively well compared to others.

3.2 Solution in context

In this work the fTAN algorithm was implemented, and tried inthe framework ofpicture
versus sentenceproblem in fMRI data. This algorithm deals with the continous data from
the fMRI measurements and relaxes the Naive Bayes classifierassumptions.

To deal with the noise and high dimensionality of the data, the analysis included a pre-
processing step of feature selection as explained in section 2.1. Cross-validation is used
with views to deal with sparsity of the data, that is, in orderto maximize the information
extracted from the data sets. Since variables are continuous, it is assumed that the variables
present a Gaussian distribution.



Table 1: fTAN algorithm errors

FEATURE SELECTION Avg. 4799 4820 4847 5680 5710
Active(240) 0.19 0.06 0.14 0.32 0.16 0.28
roiActive(240) 0.27 0.08 0.28 0.40 0.26 0.34
roiActiveAvg(120) 0.09 0.10 0.12 0.06 0.12 0.06

Table 2: Time series Gaussian Naive Bayes errors

FEATURE SELECTION Avg. 4799 4820 4847 5680 5710
All features 0.20 0.20 0.20 0.20 0.20 0.20
Active(240) 0.14 0.08 0.12 0.14 0.14 0.20
roiActive(240) 0.19 0.18 0.18 0.20 0.18 0.20
roiActiveAvg(120) 0.05 0.08 0.04 0.04 0.06 0.04

4 Experiments

The experiments were run on the brain imaging data of subjects 4799, 4820, 4847, 5680,
and 5710 individually using a specific variable selection method, a particular classifier and
a fixed data presentation.

Three different classifiers were employed in the study, namely Gaussian Naive Bayes clas-
sifiers, Support Vector Machines and fTAN. The feature selection methods considered were
Active, roiActiveandAverage roiActive. These methods were also employed by Mitchellet
al. [2]. In addition, for the Naive Bayes classifiers and the Support Vector Machines, all of
the features were also considered. In the fTAN algorithm using all the features is infeasible
due to memory constraints.

The original data sets for each subject consisted of a seriesof 54 time point measurements
per voxel. Due to memory constraints, in order to apply the fTAN algorithm the 54 time
points were averaged and a unique measurement per voxel was considered. With views to
fairly compare the algorithms, in addition to considering the time series data for the Naive
Bayes classifier and for the Support Vector Machines, the averaged data was also tried in
these two classifiers.

All experiments were run with cross-fold validation leaving out one example on each fold.

5 Results

The fTAN algorithm implementation was written within the existing fMRI Matlab frame-
work.

In Table 1 the results of applying the fTAN algorithm to the data averaged over the 54 time
points are shown. In Table 3, the corresponding Gaussian Naive Bayes classifier results are
presented; whereas in Table 2 the algorithm was applied to the time series data. Table 4
contains the Support Vector Machine classifier results on the time series data, and Table 5
on the averaged data.

Tables 6, 7, and 8 show a comparison of the classifiers when Active, roiActive, and
roiActiveAverage feature selection is used respectively.



Table 3: Averaged Gaussian Naive Bayes errors

FEATURE SELECTION Avg. 4799 4820 4847 5680 5710
All features 0.14 0.14 0.06 0.14 0.18 0.18
Active(240) 0.09 0.12 0.08 0.08 0.08 0.10
roiActive(240) 0.08 0.14 0.08 0.04 0.10 0.06
roiActiveAvg(120) 0.10 0.12 0.08 0.06 0.10 0.12

Table 4: Time series Support Vector Machine errors

FEATURE SELECTION Avg. 4799 4820 4847 5680 5710
All features 0.12 0.14 0.12 0.12 0.10 0.14
Active(240) 0.06 0.10 0.04 0.04 0.06 0.08
roiActive(240) 0.08 0.12 0.04 0.06 0.06 0.12
roiActiveAvg(120) 0.04 0.14 0.04 0.02 0.00 0.02

Table 5: Average Support Vector Machine errors

FEATURE SELECTION Avg. 4799 4820 4847 5680 5710
All features 0.028 0.06 0.02 0.02 0.02 0.02
Active(240) 0.04 0.06 0.04 0.02 0.04 0.04
roiActive(240) 0.04 0.02 0.06 0.04 0.06 0.02
roiActiveAvg(120) 0.084 0.06 0.14 0.10 0.06 0.06

6 Conclusions

6.1 Discussion

In Table 8 fTAN is shown to be competitive in the averaged caseagainst the other classifiers
in the same modality, in fact, it beats the Averaged GNB classifiers on average; is the best
on two of the five subjects; and, it beats or ties each of the other classifiers in three subjects.
If fTAN were extended to support more random variables in theimplementation it would
likely be competitive on the time series data as well.

While the fTAN classifier performed well with roiActiveAvg feature selection method, it
performed poorly with Active and roiActive as shown in Table1 . Thus this classifier is
affected by the feature selection methods differently thanthose studied in [2] where Active
feature selection method yielded the best results. It is, however, interesting to note that
fTAN was able to cut the error of GNB in half and match the SVM results for one subject
with Active feature selection. It is also interesting to note that the variance of the results
across the subjects is much higher for the fTAN algorithm than the other classifiers when
using Active feature selection as shown in Table 6. It is interesting to note that fTAN
performed consistently well on subject 4799 regardless of the feature selection method
applied. This implies that fTAN is more sensitive to the training data it is provided than
the other algorithms and demonstrates that it is competitive when given ‘good’ data. It
is our conjecture that the sparsity of the training data results in a poor estimation of the
dependency of the random variables on each other resulting in trees of questionable validity.
When the tree does a good job of approximating the dependency relations the classifier is
competitive and when the tree is less accurate the classifierdoes poorly.



Table 6: Classifiers withActiveFeature selection
Classifiers Avg. 4799 4820 4847 5680 5710

Averaged fTAN 0.19 0.06 0.14 0.32 0.16 0.28
Averaged GNB 0.09 0.12 0.08 0.08 0.08 0.10
Averaged SVM 0.04 0.06 0.04 0.02 0.04 0.04
Time Series GNB 0.14 0.08 0.12 0.14 0.14 0.20
Time Series SVM 0.06 0.10 0.04 0.04 0.06 0.08

Table 7: Classifiers withroiActiveFeature selection
Classifiers Avg. 4799 4820 4847 5680 5710

Averaged fTAN 0.272 0.08 0.28 0.40 0.26 0.34
Averaged GNB 0.084 0.14 0.08 0.04 0.10 0.06
Averaged SVM 0.04 0.02 0.06 0.04 0.06 0.02
Time Series GNB 0.188 0.18 0.18 0.20 0.18 0.20
Time Series SVM 0.08 0.12 0.04 0.06 0.06 0.12

Table 8: Classifiers withroiActiveAvgFeature selection

Classifiers Avg. 4799 4820 4847 5680 5710
Averaged fTAN 0.092 0.10 0.12 0.06 0.12 0.06
Averaged GNB 0.096 0.12 0.08 0.06 0.10 0.12
Averaged SVM 0.084 0.06 0.14 0.10 0.06 0.06
Time Series GNB 0.052 0.08 0.04 0.04 0.06 0.04
Time Series SVM 0.044 0.14 0.04 0.02 0.00 0.02

6.2 Future work

A first expansion of the current project is to do experiments with a classifier for multiple
subjects. The results of such experiments could be affectedby differences on the intensity
of fMRI responses to stimuli or on the spatial-temporal patterns of fMRI activation accross
subjects. It is yet unclear if different brains present sucha similar behaviour that implies
similar activation patterns, but some evidence in [2] suggests that building classifiers in a
set of subjects can be used to analyse novel subjects data. Itwould be interesting to try this
expansion on the fTAN algorithm.

fTAN builds a complete TAN structure adding arcs in order of their conditional mutual
information. However this algorithm presents three drawbacks. In the first place, the struc-
tural likelihood maximization performed by fTAN does not imply a predictive error min-
imization. In the second place, due to the completeness of the built TAN structure some
redundant variables and irrelevant arcs could be included.Finally, building a maximum
spanning tree requires huges amount of memory for problems like time series fMRI data
such as the one considered here.

To tackle the first two problems Pérezet al. [3] suggested thewrapper tree augmented
naive Bayes(wTAN) algorithm. This algorithm obtains a TAN structure, either complete or
incomplete, by greedily searching in the space of allowed structures using as optimization
function the estimated classification accuracy.

The third drawback can be solved as follows. Step 1 in the fTANalgorithm may consume



too much memory and the problem might be intractable, for instance, in the time series
fMRI problem the number of features to consider in theActivecase is240× 54 = 12, 960.
In theory, the information gain for each pair of features in the variable set needs to be com-
puted. Instead, the suggestion is to substitute steps1 to 3 in the original fTAN algorithm
as follows. LetT be a graph initially empty; features represent vertices andinformation
gain between features, represent the weights of the edges.(1) Select an arbitrary feature
(a vertex)i; (2) compute the information gain between featuresi ands for all s, take this
value as the weight betweeni ands that labels an edge going fromi to s; (3) select the edge
corresponding to weightwi,k such thatwi,k = maxj {wi,j} and add it toT ; (4) keep in the
queue then−1 edges corresponding to the otherwi,j weights such thatj 6= k; (5) compute
the information gain between featurek and every other features, and list these valueswk,s;
(6) make comparisons betweenwk,s andwi,s and keep in the queue onlymax {wk,s, wi,s}
for eachs; (6) pick the edge corresponding to the highest weight and consider the vertex
that is not inT to apply the procedure as before in an analogous manner (repeat from(5)).

This procedure is equivalent to steps1 to 3 in the original fTAN algorithm and needs only
to keepn−1 values in memory at each time point, instead of an×n matrix containing the
information gain for each pair of features. Therefore in theproblem studied in this work, a
modified fTAN version with the above mentioned variant wouldallow the fTAN algorithm
to classify the fMRI time series data without memory problems.
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[3] Aritz Pérez, Pedro Larrãnaga, and Ĩnaki Inza. Supervised classification with conditional gaus-
sian networks: Increasing the structure complexity from naive bayes.International Journal of
Approximate Reasoning, 43(1):1–25, 2006.

[4] John-Dylan Haynes and Geraint Rees. Decoding mental states from brain activity in humans.
Nature Reviews Neuroscience, (7):523–534, 2006.


