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Abstract

The goal of this work is to try a new solution for the classifica task of
predicting when a subject is reading a sentence versusigiega pic-
ture using brain imaging data (fMRI). fTAN, an algorithm theoth re-
laxes the conditional independence assumptions from #itnaal Naive
Bayes classifier, and assumes continuous variables, igimgpited and
compared to other methods.

1 Introduction

A particular portion of the generic problem of decoding na¢states from brain activity in
humans is addressed in this work. The aim is at trying a newoagh for the classification
task of predicting when a subject is reading a sentence sgrsiceiving a picture read
from brain imaging data (fMRI).

Previous attempts have used Gaussian Naive Bayes class#igaport vector machines,
and k-nearest neighbors. In this work some conditionalpedeence assumptions of the
Gaussian Naive Bayes classifier are removed, in a way thatattbute is assumed to be
conditionally independent of every other attribute, gitke class variable and one other
attribute. This probabilistic structure corresponds #ttke augmented naive Bayes (TAN)
approach [1], where a restricted Bayes network is built Withproperty that each attribute
node has got at most two parents, namely the class variatlarather attribute.

fMRI data is continuous, extremely high dimensional, spaend noisy. The learning
scheme used to analyze these data must take into accounttsrettteristics.

Specifically tailored feature selection methods have beenessfully used to reduce di-
mensionality and noise before [2]. In this work these meshark employed as a pre-
processing step for the data.

Continuous attributes can not be incorporated directly the original TAN algorithm [1]
since this model assumes discrete variables. There are &ys @ tackle this problem:
either discretize the data before applying the algorithmmake some assumptions about
the distribution of the features and incorporate the distions into the learning scheme. In
particular, conditional Gaussian distributions can belusaleal with continuous variables
avoiding a discretization step. Intuitively, this lattgpaoach is preferred over discretizing
the data because discretization implies loss of informatim this work the conditional
Gaussian assumptions are incorporated as suggested in [3].

In section 2 a brief overview of previous work in decoding ta¢atates from brain imaging
data and of the theory on bayesian network classifiers issexpoln section 3 a detailed
description of the process to analyse the data used in this iw@resented. In section 4



the experiment design is explained and in 5 the results anensuized. Finally, in section
6 our conclusions are reported and an outline of future weopkésented.

2 Previous work

2.1 fMRI data analysis

Haynes and Rees [4] review gives an overview of the work donddcoding mental states
from brain imaging. However, with views to the particulaoplem addressed in this work,
Mitchell’s et al. work [2] is more representative because they showed thffsetit fMRI
studies demonstrating the feasibility of training classito distinguish a variety of cogni-
tive states based on single-interval fMRI observationgdriicular, they trained classifiers
to categorize whether a subject was being presented a serdea picture during a partic-
ular time interval in a fMRI session. In fact, they learnt adtion of the form:
f.fMRI-sequencétimeinterval) — {Picture, Sentence}.

As a pre-processing step, they applied sdasure selectiomethods that improved clas-
sification accuracy in all of their studies. The success e$¢imethods consisted in taking
into consideration the signal when the subject is neithewiig a picture nor a sentence,
but simply fixating on the screen data. They called these odstactivity based feature
selection

Among the most successful methods was the one that seldéetedrmost active voxels
(Active), that consists in selecting voxels according tetast. The idea is to compare the
voxel's fMRI activity in examples belonging to a specific €3ao its activity in examples
belonging to fixation periods. Then thevoxels with greatest statistic are selected is
selected to minimize the mean error of all single subjectsifeers trained for the specific
study. In thepicture versus sentenstudyn = 240 features where selected.

The methodh most active voxels per region of interestif\ctive) is similar toActivebut
ensuring that voxels are selected uniformly from the usecigipd regions of interest within
the brain. In the case giicture versus sentenstudy, these regions of interest a@ALC,
LIPL, LT, LTRIA LOPER LIPSandLDLPFC. A method based on the average of active
voxels per ROl was also tried.

Mitchell et al. built Gaussian Naive Bayes (GNB) classifiers, linear Supygector Ma-
chine (SVM) andk-Nearest Neighbors. They found that Gaussian Naive Bay’8j@nd
linear Support Vector Machine (SVM) classifiers outperfdriiNearest Neighbors in all
three studies.

In this work a TAN classifier, that relaxes the Gaussian N&&ages assumptions, is tried
out with views to at least yield competitive results with th@ leading classifiers.

2.2 Bayesian Networks and Probabilistic Graphical Models

Bayesian Networks classifiers based on probabilistic gcapimodels are described in
detail in [1] and have proven to be effective. A Bayesian Nekws a directed acyclic graph
of nodes representing variables and arcs representingticovad independence relations
between the variables. Bayesian Networks assume that aadom variable follows a
conditional probability function given a specific value té parents. These conditional
probability functions are usually assumed to be multindntiet is, the networks handle
discrete values.

In a problem setting where there are continous variablesgthre two ways of proceed-
ing: discretize the data in advance, and consequently oisiig some information; or
incorporate the continuous variables in the learning sehbynassuming that continous



variables are sampled from a Gaussian distribution. Therlkind of network is known as
a conditional Gaussian network.

A solution to a classification task can be obtained congidetihe Bayes rule together
with the fact that probabilistic graphical models can bedugeencode the joint distribu-
tion among the predictor variables, based on the conditiodapendence represented by
the graph structure. Indeed, a general classification gnolbhat considers only predictor
variables and that would like to be addressed in the framewba conditional Gaussian
network can be described as follows [3].

Let C be the class variable, aqd(; }* , the continuous predictor variables. Consider that
the class variabl€’ is the root of the graph. Thus, If; denotes the set of parents of
variablez, then{C} C II; for all 5.

In order to classify an instanee= (z1, ..., z,,) the class with the highest a posteriori prob-
ability P(c|x) should be selected. The classification process can be ddhe following
way:

n

P(efx) o ple,x) = P(e)p(Xle) = P(c) [ ] p(ailm:)
i=1

Wherer; denotes the value df;. Also:

p(x;|m;) is distributedN (m;)., v;).) and:
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I, is the set of continuous predictors that are parents;of.e. IT, = I1,\{C}. ¥s|c is the
covariance matrix of the set of variabl§sconditioned to the class valug = c. f;;. is
the regression coefficient of; on X; conditioned on the class valde= c, and is defined

asfiji. = % oj|c IS the covaraiance between the variablgsand X; conditioned to
ile
c, anda]?‘c is the variance of{; conditioned tac.

3 Proposed Method

3.1 Theoretical approach

Thetree augmented Bayesian network structures (TAN strustare a type of Bayesian
network that loosen the conditional independence assomptiade by Naive Bayes
structures, in the sense that TAN structures allow prolsdicildependencies among
variables predictor9. TAN structures consist of graphs with edges from the classble
to the predictors, and with edges between predictors takiogaccount that the maximum
number of parents of a variable is two: another variable hedlass.

Friedmanet al. [1] proposed the TAN algorithm to train TAN structure baséaksifiers.
This algorithm only works with discrete features. There besn other work that propose
a pre-discretization step to deal with continous varigtiesvever this step usually results
in lose of information.



Pérezet al. [3] proposed thdilter tree augmented naive Bayes (fTAMW)at adapts the
original TAN algorithm [1] to continuous variables by defigi the mutual information
between two continuous variables that are jointly distedugivenC' as a bivariate normal.
Indeed, ifC' is a multinomial random variable, and the joint density fiimre of variables
X; and X; conditioned toC' = c follows a bivariate normal distribution with a vector of
means.;;|. and a covariance matri,; ., then the mutual information between variables
X, and X ; conditioned taC is such that:

1
I(Xi;Xj|C) = —ilog(l - pi(szXj))

wherep.(X;, X;) = % is the correlation coefficient betweety, and X; condi-

gy, o
ile” jle

tioned to the valu€ = c.

In this manner the fTAN algorithm can be stated in an analegeay to the original TAN
algorithm [1] as follows:

1. For every pair of attribute§X,, X;} wherei,j € {1,2,..,n} andi # j obtain

2. Build a complete undirected graph with the $&f;}” , as the set of vertices.
Assign a weight/ (X;; X;|C) to the edge connecting’; with X; for all ¢, j €
{1,2,..,n} andi # j.

3. Build a maximum weighted spanning tree.

4. Select one root variable and set the direction of all edigds outward from it,
obtaining a directed tree.

5. Add a vertexC and add an arc fror@' to each variableX;.

A TAN model built like this is guaranteed to maximize the li&glihood of the data [1].
However, it is important to note that the structural likelifd maximization does not neces-
sarily imply a predictive error minimization.

The fTAN algorithm constructs a complete TAN structure, meg that all variables are in-
cluded in the structure, all possible conditional indepsmae assumptions are represented
and no more dependencies can be allowed. This may imply ¢ha¢ sedundant variables
and irrelevant edges could be added [3].

The computational cost of fTAN is polynomial in the numbewafiables, that is, it holds
the Naive Bayes’s computational simplicity.

Pérezet al. [3] showed empirically that even if the data sets do not olheyGaussian
distribution assumption, these methods perform compeljtivell compared to others.

3.2 Solution in context

In this work the fTAN algorithm was implemented, and triectfie framework ofpicture
versus sentengeroblem in fMRI data. This algorithm deals with the contisalata from
the fMRI measurements and relaxes the Naive Bayes classsemptions.

To deal with the noise and high dimensionality of the date, ahalysis included a pre-
processing step of feature selection as explained in se2tih Cross-validation is used
with views to deal with sparsity of the data, that is, in orttemaximize the information
extracted from the data sets. Since variables are continitds assumed that the variables
present a Gaussian distribution.



Table 1: fTAN algorithm errors
FEATURE SELECTION  Avg. 4799 4820 4847 5680 5710

Active(240) 0.19 0.06 014 032 0.16 0.28
roiActive(240) 0.27 0.08 028 040 026 034
roiActiveAvg(120) 0.09 0.10 0.12 0.06 0.12 0.06

Table 2: Time series Gaussian Naive Bayes errors
FEATURE SELECTION  Avg. 4799 4820 4847 5680 5710

All features 0.20 020 0.20 0.20 0.20 0.20
Active(240) 0.14 0.08 0.12 0.14 0.14 0.20
roiActive(240) 0.19 0.18 0.18 0.20 0.18 0.20
roiActiveAvg(120) 0.05 0.08 0.04 0.04 0.06 0.04

4 Experiments

The experiments were run on the brain imaging data of subgt®9, 4820, 4847, 5680,
and 5710 individually using a specific variable selectiornthud, a particular classifier and
a fixed data presentation.

Three different classifiers were employed in the study, ma@aussian Naive Bayes clas-
sifiers, Support Vector Machines and fTAN. The feature $&laenethods considered were
Active roiActiveandAverage roiActive These methods were also employed by Mitckell
al. [2]. In addition, for the Naive Bayes classifiers and the Supgector Machines, all of
the features were also considered. In the fTAN algorithmagiall the features is infeasible
due to memory constraints.

The original data sets for each subject consisted of a sefrife4 time point measurements
per voxel. Due to memory constraints, in order to apply theNTalgorithm the 54 time
points were averaged and a unique measurement per voxebwaiglered. With views to
fairly compare the algorithms, in addition to considerihg time series data for the Naive
Bayes classifier and for the Support Vector Machines, theagesl data was also tried in
these two classifiers.

All experiments were run with cross-fold validation leayiout one example on each fold.

5 Results

The fTAN algorithm implementation was written within theigting fMRI Mat | ab frame-
work.

In Table 1 the results of applying the fTAN algorithm to theadaveraged over the 54 time
points are shown. In Table 3, the corresponding GaussiareN&ziyes classifier results are
presented; whereas in Table 2 the algorithm was appliedetdirie series data. Table 4
contains the Support Vector Machine classifier results ertithe series data, and Table 5
on the averaged data.

Tables 6, 7, and 8 show a comparison of the classifiers whewel\abiActive, and
roiActiveAverage feature selection is used respectively.



Table 3: Averaged Gaussian Naive Bayes errors
FEATURE SELECTION  Avg. 4799 4820 4847 5680 5710

All features 0.14 0.14 0.06 0.14 0.18 0.18
Active(240) 0.09 0.12 0.08 0.08 0.08 0.10
roiActive(240) 0.08 0.14 0.08 0.04 0.10 0.06
roiActiveAvg(120) 0.10 0.12 0.08 0.06 0.10 0.12

Table 4: Time series Support Vector Machine errors
FEATURE SELECTION  Avg. 4799 4820 4847 5680 5710

All features 0.12 0.14 0.12 0.12 010 0.14
Active(240) 0.06 0.10 0.04 0.04 0.06 0.08
roiActive(240) 0.08 0.12 0.04 0.06 0.06 0.12
roiActiveAvg(120) 0.04 0.14 0.04 0.02 0.00 0.02

Table 5: Average Support Vector Machine errors
FEATURE SELECTION  Avg. 4799 4820 4847 5680 5710

All features 0.028 0.06 0.02 0.02 0.02 0.02
Active(240) 0.04 0.06 0.04 0.02 0.04 0.04
roiActive(240) 0.04 0.02 0.06 0.04 0.06 0.02
roiActiveAvg(120) 0.084 0.06 0.14 0.10 0.06 0.06

6 Conclusions

6.1 Discussion

In Table 8 fTAN is shown to be competitive in the averaged eagenst the other classifiers
in the same modality, in fact, it beats the Averaged GNB dfi@ss on average; is the best
on two of the five subjects; and, it beats or ties each of theratlassifiers in three subjects.
If fTAN were extended to support more random variables inithglementation it would
likely be competitive on the time series data as well.

While the fTAN classifier performed well with roiActiveAvg &ure selection method, it
performed poorly with Active and roiActive as shown in Talile Thus this classifier is
affected by the feature selection methods differently thase studied in [2] where Active
feature selection method yielded the best results. It igjeler, interesting to note that
fTAN was able to cut the error of GNB in half and match the SVMulés for one subject
with Active feature selection. It is also interesting toentliat the variance of the results
across the subjects is much higher for the fTAN algorithrmttiee other classifiers when
using Active feature selection as shown in Table 6. It isredéing to note that fTAN
performed consistently well on subject 4799 regardlesshefféature selection method
applied. This implies that fTAN is more sensitive to thenrag data it is provided than
the other algorithms and demonstrates that it is competitinen given ‘good’ data. It
is our conjecture that the sparsity of the training dataltesn a poor estimation of the
dependency of the random variables on each other resultingds of questionable validity.
When the tree does a good job of approximating the dependefatjons the classifier is
competitive and when the tree is less accurate the classdes poorly.



Table 6: Classifiers witlhctiveFeature selection

Classifiers Avg. 4799 4820 4847 5680 5710
Averaged fTAN 0.19 0.06 0.14 032 0.16 0.28
Averaged GNB 0.09 0.12 0.08 0.08 0.08 0.10
Averaged SVM 0.04 0.06 0.04 0.02 0.04 0.04
Time SeriesGNB  0.14 0.08 0.12 0.14 0.14 0.20
Time Series SVM 0.06 0.10 0.04 0.04 0.06 0.08

Table 7: Classifiers withoiActive Feature selection

Classifiers Avg. 4799 4820 4847 5680 5710
Averaged fTAN 0.272 0.08 0.28 040 0.26 0.34
Averaged GNB 0.084 0.14 0.080.04 0.10 0.06
Averaged SVM 0.04 0.02 0.06 0.04 0.06 0.02
Time SeriesGNB  0.188 0.18 0.18 0.20 0.18 0.20
Time SeriesSVM 0.08 0.12 0.04 0.06 0.06 0.12

Table 8: Classifiers witmiActiveAvgFeature selection

Classifiers Avg. 4799 4820 4847 5680 5710
Averaged fTAN 0.092 0.10 0.12 0.06 0.12 0.06
Averaged GNB 0.096 0.12 0.08 0.06 0.10 0.12
Averaged SVM 0.084 0.06 0.14 0.10 0.06 0.06
Time Series GNB  0.052 0.08 0.04 0.04 0.06 0.04
Time Series SVM 0.044 0.14 0.04 0.02 0.00 0.02

6.2 Future work

A first expansion of the current project is to do experimerith & classifier for multiple
subjects. The results of such experiments could be affdstetifferences on the intensity
of fMRI responses to stimuli or on the spatial-temporalgras of fMRI activation accross
subjects. It is yet unclear if different brains present sadimilar behaviour that implies
similar activation patterns, but some evidence in [2] sstgythat building classifiers in a
set of subjects can be used to analyse novel subjects dataulld be interesting to try this
expansion on the fTAN algorithm.

fTAN builds a complete TAN structure adding arcs in order ledit conditional mutual

information. However this algorithm presents three drasidaln the first place, the struc-
tural likelihood maximization performed by fTAN does notpiy a predictive error min-

imization. In the second place, due to the completenesseolbtiiit TAN structure some
redundant variables and irrelevant arcs could be includedally, building a maximum

spanning tree requires huges amount of memory for problémdiine series fMRI data

such as the one considered here.

To tackle the first two problemsé&rezet al. [3] suggested tharapper tree augmented
naive Baye$wTAN) algorithm. This algorithm obtains a TAN structuréher complete or
incomplete, by greedily searching in the space of allowatctires using as optimization
function the estimated classification accuracy.

The third drawback can be solved as follows. Step 1 in the fBAddrithm may consume



too much memory and the problem might be intractable, falaimse, in the time series
fMRI problem the number of features to consider in &ativecase i240 x 54 = 12, 960.

In theory, the information gain for each pair of featuredia variable set needs to be com-
puted. Instead, the suggestion is to substitute steps3 in the original fTAN algorithm
as follows. LetT be a graph initially empty; features represent verticesiafatmation
gain between features, represent the weights of the edtieSelect an arbitrary feature
(a vertex)i; (2) compute the information gain between featuresds for all s, take this
value as the weight betweeéands that labels an edge going frointo s; (3) select the edge
corresponding to weight; j such that; , = maz; {w; ;} and add it tdl"; (4) keep in the
queue ther — 1 edges corresponding to the othgr; weights such that # k; (5) compute
the information gain between featut@nd every other feature and list these values, ;
(6) make comparisons between , andw; s and keep in the queue onlyax {wy, s, w; s }
for eachs; (6) pick the edge corresponding to the highest weight and censiie vertex
that is not in7" to apply the procedure as before in an analogous manneiafrepm(5)).

This procedure is equivalent to stepto 3 in the original fTAN algorithm and needs only
to keepn — 1 values in memory at each time point, instead af:an matrix containing the
information gain for each pair of features. Therefore inghablem studied in this work, a
modified fTAN version with the above mentioned variant woalldw the fTAN algorithm
to classify the fMRI time series data without memory probdem
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