Rationale: Combination of methods

- There is no algorithm that is always the most accurate
- We can select simple “weak” classification or regression methods and combine them into a single “strong” method
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations (Modalities)
 - Training sets
 - Subproblems
- The problem: how to combine them
Some early algorithms

- **Boosting by filtering (Schapire 1990)**
 - Run weak learner on differently filtered example sets
 - Combine weak hypotheses
 - Requires knowledge on the performance of weak learner

- **Boosting by majority (Freund 1995)**
 - Run weak learner on weighted example set
 - Combine weak hypotheses linearly
 - Requires knowledge on the performance of weak learner

- **Bagging (Breiman 1996)**
 - Run weak learner on bootstrap replicates of the training set
 - Average weak hypotheses
 - Reduces variance

Combination of classifiers

- Suppose we have a family of component classifiers (generating ±1 labels) such as decision stumps:

\[h(x; \theta) = \text{sign}(wx_k + b) \]

where \(\theta = \{k, w, b\} \)

- Each decision stump pays attention to only a single component of the input vector
Combination of classifiers con’d

- We’d like to combine the simple classifiers additively so that the final classifier is the sign of

\[\hat{h}(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m) \]

where the “votes” \(\{\alpha\} \) emphasize component classifiers that make more reliable predictions than others.

- Important issues:
 - what is the criterion that we are optimizing? (measure of loss)
 - we would like to estimate each new component classifier in the same manner (modularity)

Measurement of error

- Loss function:

\[\bar{\lambda}(y, h(x)) \quad \text{(e.g. } I(y \neq h(x)) \text{)} \]

- Generalization error:

\[L(h) = E[\bar{\lambda}(y, h(x))] \]

- Objective: find \(h \) with minimum generalization error.

- Main boosting idea: minimize the empirical error:

\[\hat{L}(h) = \frac{1}{N} \sum_{n=1}^{N} \bar{\lambda}(y_n, h(x_n)) \]
Exponential Loss

- One possible measure of empirical loss is

$$
\sum_{i=1}^{n} \exp\left\{-y_i \hat{h}_m(x_i)\right\}
$$

$$\hat{h}(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)$$

$$
= \sum_{i=1}^{n} \exp\left\{-y_i \hat{h}_{m-1}(x_i) - y_i \alpha_m h(x_i; \theta_m)\right\}
$$

$$
= \sum_{i=1}^{n} \exp\left\{-y_i \hat{h}_{m-1}(x_i)\right\} \exp\left\{-y_i \alpha_m h(x_i; \theta_m)\right\}
$$

$$
= \sum_{i=1}^{n} W_i^{m-1} \exp\left\{-y_i \alpha_m h(x_i; \theta_m)\right\}
$$

- The combined classifier based on $m - 1$ iterations defines a weighted loss criterion for the next simple classifier to add
- Each training sample is weighted by its "classifiability" (or difficulty) seen by the classifier we have built so far

Linearization of loss function

- We can simplify a bit the estimation criterion for the new component classifiers (assuming α is small)

$$
\exp\left\{-y_i \alpha_m h(x_i; \theta_m)\right\} \approx 1 - y_i \alpha_m h(x_i; \theta_m)
$$

- Now our empirical loss criterion reduces to

$$
\sum_{i=1}^{n} \exp\left\{-y_i \hat{h}_m(x_i)\right\}
$$

$$
\approx \sum_{i=1}^{n} W_i^{m-1} (1 - y_i \alpha_m h(x_i; \theta_m))
$$

$$
= \sum_{i=1}^{n} W_i^{m-1} - \alpha_m \sum_{i=1}^{n} W_i^{m-1} y_i h(x_i; \theta_m)
$$

- We could choose a new component classifier to optimize this weighted agreement
A possible algorithm

- At stage \(m \) we find \(\theta^* \) that maximize (or at least give a sufficiently high) weighted agreement:

\[
\sum_{i=1}^{n} W_i^{m-1} y_i h(x_i; \theta^*_m)
\]

- each sample is weighted by its "difficulty" under the previously combined \(m - 1 \) classifiers,
- more "difficult" samples received heavier attention as they dominate the total loss

- Then we go back and find the "votes" \(\alpha^*_m \) associated with the new classifier by minimizing the original weighted (exponential) loss

\[
\sum_{i=1}^{n} W_i^{m-1} \exp\left\{-y_i \alpha_m h(x_i; \theta_m)\right\}
\]

Boosting

- We have basically derived a Boosting algorithm that sequentially adds new component classifiers, each trained on reweighted training examples
 - each component classifier is presented with a slightly different problem

- AdaBoost preliminaries:
 - we work with normalized weights \(W_i \) on the training examples, initially uniform \(W_i = 1/n \)
 - the weight reflect the "degree of difficulty" of each datum on the latest classifier
The AdaBoost algorithm

- At the kth iteration we find (any) classifier $h(x; \theta_k^*)$ for which the weighted classification error:
 $$\hat{\epsilon}_k = 0.5 - \frac{1}{2} \left(\sum_{i=1}^{n} W_{i}^{k-1} y_i h(x_i; \theta_k^*) \right)$$
 is better than change.
 - This is meant to be "easy" --- weak classifier
- Determine how many "votes" to assign to the new component classifier:
 $$\alpha_k = 0.5 \log \left((1 - \epsilon_k) / \epsilon_k \right)$$
 - stronger classifier gets more votes
- Update the weights on the training examples:
 $$W_i^k = W_i^{k-1} \exp \left\{ - y_i a_k h(x_i; \theta_k^*) \right\}$$

The AdaBoost algorithm cont’d

- The final classifier after m boosting iterations is given by the sign of
 $$\hat{h}(x) = \frac{\alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)}{\alpha_1 + \ldots + \alpha_m}$$
 - the votes here are normalized for convenience
AdaBoost: summary

- **Input:**
 - N examples $S_N = \{(x_1, y_1), \ldots, (x_N, y_N)\}$
 - a weak base learner $h = h(x, \theta)$
- **Initialize:** equal example weights $w_i = 1/N$ for all $i = 1..N$
- **Iterate for $t = 1\ldots T$:**
 1. train base learner according to weighted example set (w_t, x) and obtain hypothesis $h_t = h(x, \theta_t)$
 2. compute hypothesis error ϵ_t
 3. compute hypothesis weight α_t
 4. update example weights for next iteration w_{t+1}
- **Output:** final hypothesis as a linear combination of h_t

AdaBoost: dataflow diagram
Boosting: examples

Boosting: example cont’d
Boosting: example cont’d

Base Learners

- Weak learners used in practice:
 - Decision stumps (axis parallel splits)
 - Decision trees (e.g. C4.5 by Quinlan 1996)
 - Multi-layer neural networks
 - Radial basis function networks

- Can base learners operate on weighted examples?
 - In many cases they can be modified to accept weights along with the examples
 - In general, we can sample the examples (with replacement) according to the distribution defined by the weights
Boosting performance

- The error rate of component classifier (the decision stumps) does not improve much (if at all) over time
- But both training and testing error improve over time!
- Even after the training error of the combined classifier goes to zero, boosting iterations can still improve the generalization error!!

Why it is working?

- You will need some learning theory (to be covered in the next two lectures) to understand this fully, but for now let’s just go over some high level ideas
- Generalization Error:

 With high probability, Generalization error is less than:

 $\hat{\Pr}[H(x) \neq y] + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)$

 As T goes up, our bound becomes worse, Boosting should overfit!
Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire

Training Margins

- When a vote is taken, the more predictors agreeing, the more confident you are in your prediction.

- Margin for example:

\[
\text{margin}_i(x_i, y_i) = y_i \left[\frac{\alpha_1 h(x_i; \theta_1) + \cdots + \alpha_m h(x_i; \theta_m)}{\alpha_1 + \cdots + \alpha_m} \right]
\]

The margin lies in \([-1, 1]\) and is negative for all misclassified examples.

- Successive boosting iterations improve the majority vote or margin for the training examples
More Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire

A Margin Bound

- For any γ, the generalization error is less than:

$$\Pr(\text{margin}_h(x,y) \leq \gamma) + O\left(\frac{d}{\sqrt{m\gamma^2}}\right)$$

- It does not depend on T!!!
Summary

- Boosting takes a weak learner and converts it to a strong one.
- Works by asymptotically minimizing the empirical error.
- Effectively maximizes the margin of the combined hypothesis.