Mey M[Wj)/’/n —> U/’T
‘//)}//MA// DW/\/Z
+ ol*
/(*/\C f;&‘\
- 44
Solving optimal margin classifier e

e Recall our opt problem:
1

max,, , M

y.(W'x, +b) =21, Vi

e This is equivalent to
1

min,, —w'w

2 (*)
1-y.(W'x, +b) <0, Vi

e Write the Lagrangian:

s.t

L(w,b,a)= ; wiw— iai [y,. (w'x, +b) —1]
i=1

e Recall that (*) can be reformulated as min, , max, ., £(w,b,a)
Now we solve its dual problem: max, ., min,, £(w,b,a)

[X X]
0000
0000
82
The Dual Problem 5
max, .o min, (L(w,b,a)
e We minimize .£ with respect to w and b fikst:
. V\‘,L’(w,b,a):w—ia,yixi:O (*)
i=1
vV, L(wb,a)= ia/)’/ =0, (*%)
i=1
Note that (*) implies: (***)
e Plus (***) back to .£2 , and using (**), we have:
£L(w,b,a) = iai _; iaiajyiy/(x:-x/)
i=1 i,j=1
[X X]
0000
[X XX
s
The Dual problem, cont. &

e Now we have the following dual opt problem:

m 1 m
maxaj(a):Zai—ZZa,a,y,y \
|

st. «,>20, i=1..k
'/

m

\ Z‘aij/" =0.

e This s, (again,) a quadratic programming problem.
A global maximum of «; can always be found.
But what's the big deal??

Note two things: ,”
w can be recovered by [w= Zaly,X, See next ...
i=1

T
2. The "kernel" X; X; More later ...

[X X]
0000
0000
8
Support vectors o
\
¢ Note the KKT condition --- only a few ¢;'s can be nonzero!!
s Call the training data points
c;s=0-6 @100 whose ¢/'s are nonzero the
o support vectors (SV
* / By pp (SV)
0.5:0 (] \ @ Cj’-zzo
B %%=0s
o,=0 @
m - og=1.4 wa +bh=1
0y=0 T
Class 1 03=0 wx+b=20
wix+b=-1
[X X]
0000
0000
- s
Support vector machines o

e Once we have the Lagrange multipliers {«;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

e For testing with a new data z

e Compute T T
wz+b= Za[yl.(xi Z)+b

ieSV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly

Interpretation of support vector
machines

e The optimal W is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of kNN classifier

e To compute the weights {«;}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples X; X,

e We make decisions by comparing each new example z with
only the support vectors:

y*= sign(> ay, (X,.TZ)+ bj
ieSV

Non-linearly Separable Problems

™ AN

Class 2

wix+b=1

'x+b=0
w"'-x—l—b: -1

Class 1

o We allow “error” & in classification; it is based on the output of
the discriminant function w’x-+b

e ¢ approximates the number of misclassified samples

e0o
o000
e000
eo00
; o0
Soft Margin Hyperplane 5
e Now we have a slightly different opt problem:
minwb @ CZ§I
"2 i1
ot y(wW'x, +b)21-¢, Vi
©£20, Vi
e ¢ are “slack variables” in optimization
e Note that =0 if there is no error for x;
e & is an upper bound of the number of errors
e C: tradeoff parameter between error and margin
e0o
o000
e000
e00
o0
[J

The Optimization Problem

e The dual of this new constrained optimization problem is

m 1 m
max, Jf(a)= Zai 2 Zafa/yfy/'(xfrx/')
i=1

i,j=1

st. 0<e,<C, i=1...k

i ay, = 0.
i=1

e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o;
now

e Once again, a QP solver can be used to find o

Extension to Non-linear Decision
Boundary

\
e So far, we have only considered large-margin classifier with a

linear decision boundary
e How to generalize it to become nonlinear?

o Key idea: transform x; to a higher dimensional space to “make
life easier”
e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

e Why transform?

e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation.

Transforming the Data

Input space Feature space

e Computation in the feature space can be costly because it is high
dimensional

e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue

The Kernel Trick

e Recall the SVM optimization problem

m m

max, J(a)=2. e _; Dy y((xix)
i=1

i,j=1

st. 0<¢, <C, i=1,...k

m

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(x,,x;)=¢(x,)" ¢(x,)

An Example for feature mapping
and kernels o

Consider an input x=[x,,x,]

Suppose ¢.) is given as follows

ﬂf j{l@ Vax of o s,)

An inner product in the fgg%'ure space is

xl *xll _) 9 LAY ~ ~
<¢qx D’¢E X 'D>_]+2X1 X4 2¥ % %Y 4% %
2 L2
T2XX'K Y,

So, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x,x') = (1 + xTx‘)2

[X X]
More examples of kernel 3
o0
: (X
functions °
e Linear kernel (we've seen it
e Polynomial kernel (we j le)
K(x,x') = (1 + XTX')})
where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)
e Radial basis kernel
1
K(x,x') = exp(zxx' ?
In this case the feature space consists of functions and results in a non-
parametric classifier.
[X X]
0000
o000
00
H o0
Kernelized SVM :
e Training:
m l m
max,](a)zzai_gzala/yiy/ (X,‘;Xv
i=1 i,j=1
st. 0<e,<C, i=1.. .k
z ay, = 0.
i=1
e Using:

= sign(2 b]
ieSV

ooo
o000
HE
SVM examples '
linear 274 order polynomial
-
;lmiorider pcglynomial é’;hror;ﬂer pc;lynomial
. YY)
Examples for Non Linear SVMs — | 832¢
Gaussian Kernel o

Gaussian

Cross-validation error

\
e The leave-one-out cross-validation error does not depend on

the dimensionality of the feature space but only on the # of
support vectors!

support vectors
of training examples

Leave-one-out CV error =

Machine Learning

10-701/15-781, Fall 2006

_ (Y X)
Boosting 0000
(X X
o600
o0
o
\"&/ Reading: Chap. 14.3, C.B book

10

. . . [X X]
Rationale: Combination of sels
methods '

\
e There is no algorithm that is always the most accurate
e We can select simple “weak” classification or regression
methods and combine them into a single “strong” method
e Different learners use different
e Algorithms
e Hyperparameters
e Representations (Modalities)
e Training sets
e Subproblems
e The problem: how to combine them
[X X]
0000
[X XX
- a2
Some early algorithms :

e Boosting by filtering (Schapire 1990)
e Run weak learner on differently filtered example sets
e Combine weak hypotheses
e Requires knowledge on the performance of weak learner

e Boosting by majority (Freund 1995)
e Run weak learner on weighted example set
e Combine weak hypotheses linearly
e Requires knowledge on the performance of weak learner

e Bagging (Breiman 1996)
e Run weak learner on bootstrap replicates of the training set

e Average weak hypotheses
e Reduces variance

11

[X X]
0000
0000
. . ‘e b
Combination of classifiers g
e Suppose we have a family of component classifiers
(generating +1 labels) such as decision stumps:
(x;0) = Sign(ka +b
where 6= {k,w,b})
/ \
attention to only a single
component of the _
input vector N o
[X X]
0000
0000
. . ‘e , b
Combination of classifiers con’d |:

e We'd like to combine the simple classifiers additively so that
the final classifier is the sign of

00 =eah (. 0) 3.+ @, Ji(0,))

where the “votes” {¢;} emphasize component classifiers that
make more reliable predictions than others

e Important issues:
e what is the criterion that we are optimizing? (measure of loss)

e we would like to estimate each new component classifier in the same manner
(modularity)

12

[X X]
0000
H
Measurement of error -
e Loss function:
Ay, h(x)) (e.9.1(y = h(x)))
e Generalization error:
L(h) = E[A(y, h(x))]
e Obijective: find h with minimum generalization error
e Main boosting idea: minimize the empirical error:
- 1
L(h) = NZ/l(y,,,h(X,,))
11:1
[X X]
eecs
. [
Exponential Loss HH

e One possible measure of empirical loss is

%exp{_ ihm (Xl) /:;(X) -

i=1

n

- .1exp{ vih, | (Xi)_yiamh(xi;em)}

n

exp{_ yi},l\mfl (Xz)}exp{_ yiamh(xi ’ Hm)}
i=1
= ” VV["FI exp{_ yiamh(xi; gm)}

i=

—_

e The combined classifier based on m - 1 iterations defines a weighted loss
criterion for the next simple classifier to add

e each training sample is weighted by its "classifiability" (or difficulty) seen by the
classifier we have built so far

13

Linearization of loss function

\
e We can simplify a bit the estimation criterion for the new

component classifiers (assuming « is small)

exp{i yiamh(xi ’ 6)} ~ 1 - yiamh(x'; Hm)

m i

e Now our empirical loss criterion reduces to
z exp{_ yihm (Xl)}
i=1

~ Z VVI”F1 (1 - yiamh(xi ’ 9’”))
i=1

VV-{m—l _ a,,,z VVI»”Fly[-/’l(XI- : P2)

m
i=1 i=1

e We could choose a new component classifier to optimize this
weighted agreement

A possible algorithm

e At stage m we find@ﬁat maximize (or at least give a
sufficiently high) weighted agreement:

n

S Wy n(x,;6))

i=1
e each sample is weighted by its "difficulty" under the previously combined m — 1
classifiers,

e more "difficult" samples received heavier attention as they dominates the total
loss

e Then we go back and find the “votes”@associated with the
new classifier by minimizing the original weighted
(exponential) loss

S WL expl- y,a,h(x,:0,)}

i=1

14

Boosting

\
e We have basically derived a Boosting algorithm that

sequentially adds new component classifiers, each trained on
reweighted training examples

e each component classifier is presented with a slightly different problem

e AdaBoost preliminaries:

e we work with normalized weights 7, on the training examples, initially
uniform (W, = 1/n)

e the weight reflect the "degree of difficulty" of each datum on the latest
classifier

The AdaBoost algorithm

e At the kth iteration we find (any) classifier i(xy 6,*) for which
the weighted classification error:

& = 0.5{;L§:Wfﬂy’h(xi;9;i
i=1

is better than change.

e This is meant to be "easy" --- weak classifier

e Determine how many “votes” to assign to the new component
classifier:
a, =05log((1-¢,)/¢,)

e stronger classifier gets more votes

e Update the weights on the training examples:

W= explya,h(x,:6,)}

15

The AdaBoost algorithm cont’d

\
e The final classifier after m boosting iterations is given by the

sign of

fz(x) :@‘h(x; ﬁlﬂ ta, h(x6))

+...+a,

e the votes here are normalized for convenience

AdaBoost: summary

e Input:

e Nexamples Sy ={(Xy1).-.., Xn:Yn)}
e aweak base learner h = h(x,6)
P i

e Initialize: equal example weights w; = 1/N for all i = 1..N
Iterate fort=1...T:

1. train base learner according to weighted example set (w,,x) and obtain hypothesis
h,=h(x,6)

2. compute hypothesis error &
3. compute hypothesis weight ¢
4. update example weights for next iteratioryw,}

e Output: final hypothesis as a linear combination of h,

16

AdaBoost: dataflow diagram o
W W, T
=>] A(W,S) | ==>] A(w,S) e =] AW,S)
Lazhz(yl J
h@ arfr®)
a —bﬁq—__
R 4 \ (x
fr(x)= ; le a I’r(._)
Boosting: examples s

17

Boosting: example cont’d

i D

Boosting: example cont’d

Base Learners

e Weak learners used in practice:
e Decision stumps (axis parallel splits)

e Decision trees (e.g. C4.5 by Quinlan 1996)

e Multi-layer neural networks
e Radial basis function networks

e Can base learners operate on weighted examples?
e In many cases they can be modified to accept weights along with the

examples

e In general, we can sample the examples (with replacement) according to

the distribution defined by the weights

Boosting performance

Fie ESt Vew Fauetss Toss Hep

bk - S - QU B Qe Gifeerte Gt (DB I-E

i

& & & 2l [T Tl < e

o Py T —prprar———

3 ow

© pedkiin i [Toawing ist
 poadchonnis [leat set

e The error rate of component
classifier (the decision stumps)
does not improve much (if at
all) over time

e But both training and testing
error improve over time!

e Even after the training error of
the combined classifier goes
to zero, boosting iterations can
still improve the generalization
error!!

19

Why it is working?

e You will need some learning theory (to be covered in the next
two lectures) to understand this fully, but for now let's just go
over some high level ideas

e Generalization Error:

With high probability, Generalization error is less than:

Pr(H(z) #y]+ O (\/%)

As T goes up, our bound becomes worse,
Boosting should overfit!

(X X]
0000
. s
Experiments :
Test
error —

error

~ //\\

error # rounds

~32
15:/\

The Boosting Approach to Machine Learning, by Robert E. Schapire

20

Training Margins

\
e When a vote is taken, the more predictors agreeing, the more

confident you are in your prediction.

e Margin for example:

ah(X;0)+...+«a
a+..+a,

mh(xi ’ 9111)

margin, (Xi’yi) =D
The margin lies in [-1, 1] and is negative for all misclassified examples.

e Successive boosting iterations improve the maijority vote or
margin for the training examples

More Experiments

1.0-

0.5-

cumulative distribution

margin

The Boosting Approach to Machine Learning, by Robert E. Schapire

(X X
o000
o000
o0

' (X
A Margin Bound 5
e For any y, the generalization error is less than:
. d
Pr(margin, (xy) < 7)+ O .
my
Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting
the margin: A new explanation for the effectiveness of voting methods.
The Annals of Statistics, 26(5):1651-1686, 1998.
e |t does not depend on 1!
(XX
o000
o000
eo00
o0
Summary .

Boosting takes a weak learner and converts it to a strong
e Ohe

Works by asymptotically minimizing the empirical error

Effectively maximizes the margin of the combined hypothesis

22

