
1

Solving optimal margin classifier
Recall our opt problem:

This is equivalent to

Write the Lagrangian:

Recall that (*) can be reformulated as
Now we solve its dual problem:

ibxwy

w

i
T

i

bw

∀≥+ ,)(
s.t
max ,

1

1

ibxwy

ww

i
T

i

T
bw

∀≤+− ,)(s.t
min ,

01
2
1

[]∑
=

−+−=
m

i
i

T
ii

T bxwywwbw
1

1
2
1)(),,(ααL

*()

),,(maxmin , αα bw
ibw L0≥

),,(minmax , αα bwbwi
L0≥

2

***()

The Dual Problem

We minimize L with respect to w and b first:

Note that (*) implies:

Plus (***) back to L , and using (**), we have:

),,(minmax , αα bwbwi
L0≥

,),,(∑
=

=−=∇
m

i
iiiw xywbw

1
0ααL

,),,(∑
=

==∇
m

i
iib ybw

1
0ααL

∑
=

=
m

i
iii xyw

1
α

*()

∑∑
==

−=
m

ji
j

T
ijiji

m

i
i yybw

11 2
1

,

)(),,(xxααααL

**()

The Dual problem, cont.
Now we have the following dual opt problem:

This is, (again,) a quadratic programming problem.
A global maximum of αi can always be found.
But what's the big deal??
Note two things:

1. w can be recovered by

2. The "kernel"

∑∑
==

−=
m

ji
j

T
ijiji

m

i
i yy

11 2
1

,

)()(max xxααααα J

.

,, , s.t.

∑
=

=

=≥
m

i
ii

i

y

ki

1
0

10

α

α K

∑
=

=
m

i
iii yw

1
xα

j
T
i xx

See next …

More later …

3

Support vectors
Note the KKT condition --- only a few αi's can be nonzero!!

kiwgα ii ,, ,)(K10 ==

α6=1.4

Class 1

Class 2

α1=0.8

α2=0

α3=0

α4=0

α5=0
α7=0

α8=0.6

α9=0

α10=0

Call the training data points
whose αi's are nonzero the
support vectors (SV)

Support vector machines
Once we have the Lagrange multipliers {αi}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

For testing with a new data z
Compute

and classify z as class 1 if the sum is positive, and class 2 otherwise

Note: w need not be formed explicitly

∑
∈

=
SVi

iii yw xα

() bzybzw
SVi

T
iii

T +=+ ∑
∈

xα

4

Interpretation of support vector
machines

The optimal w is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of kNN classifier

To compute the weights {αi}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples

We make decisions by comparing each new example z with
only the support vectors:

j
T
i xx

() ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

∈

bzyy
SVi

T
iii xαsign*

Non-linearly Separable Problems

We allow “error” ξi in classification; it is based on the output of
the discriminant function wTx+b
ξi approximates the number of misclassified samples

Class 1

Class 2

5

Soft Margin Hyperplane
Now we have a slightly different opt problem:

ξi are “slack variables” in optimization
Note that ξi=0 if there is no error for xi

ξi is an upper bound of the number of errors
C : tradeoff parameter between error and margin

 ,
 ,)(

s.t
i

ibxwy

i

ii
T

i

∀≥
∀−≥+

0
1

ξ
ξ

∑
=

+
m

i
i

T
bw Cww

12
1 ξ,min

The Optimization Problem
The dual of this new constrained optimization problem is

This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on αi
now
Once again, a QP solver can be used to find αi

∑∑
==

−=
m

ji
j

T
ijiji

m

i
i yy

11 2
1

,

)()(max xxααααα J

.

,, ,0 s.t.

∑
=

=

=≤≤
m

i
ii

i

y

kiC

1
0

1

α

α K

6

Extension to Non-linear Decision
Boundary

So far, we have only considered large-margin classifier with a
linear decision boundary
How to generalize it to become nonlinear?
Key idea: transform xi to a higher dimensional space to “make
life easier”

Input space: the space the point xi are located
Feature space: the space of φ(xi) after transformation

Why transform?
Linear operation in the feature space is equivalent to non-linear operation in input
space
Classification can become easier with a proper transformation.

Transforming the Data

Computation in the feature space can be costly because it is high
dimensional

The feature space is typically infinite-dimensional!

The kernel trick comes to rescue

φ()

φ()

φ()
φ()φ()

φ()

φ()φ()

φ(.) φ()

φ()

φ()
φ()

φ()

φ()

φ()

φ()
φ() φ()

Feature spaceInput space
Note: feature space is of higher dimension
than the input space in practice

7

The Kernel Trick
Recall the SVM optimization problem

The data points only appear as inner product
As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly
Many common geometric operations (angles, distances) can
be expressed by inner products
Define the kernel function K by

∑∑
==

−=
m

ji
j

T
ijiji

m

i
i yy

11 2
1

,

)()(max xxααααα J

.

,, ,0 s.t.

∑
=

=

=≤≤
m

i
ii

i

y

kiC

1
0

1

α

α K

)()(),(j
T

ijiK xxxx φφ=

An Example for feature mapping
and kernels

Consider an input x=[x1,x2]
Suppose φ(.) is given as follows

An inner product in the feature space is

So, if we define the kernel function as follows, there is no
need to carry out φ(.) explicitly

21
2
2

2
121

2

1 2221 xxxxxx
x
x

,,,,,=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
φ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
'
'

,
2

1

2

1

x
x

x
x

φφ

()21 ')',(xxxx TK +=

8

More examples of kernel
functions

Linear kernel (we've seen it)

Polynomial kernel (we just saw an example)

where p = 2, 3, … To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

Radial basis kernel

In this case the feature space consists of functions and results in a non-
parametric classifier.

')',(xxxx TK =

()pTK ')',(xxxx += 1

⎟
⎠
⎞

⎜
⎝
⎛ −−= 2

2
1 'exp)',(xxxxK

Kernelized SVM
Training:

Using:

∑∑
==

−=
m

ji
jijiji

m

i
i Kyy

1,1

),(
2
1)(max xxααααα J

.

,, ,0 s.t.

∑
=

=

=≤≤
m

i
ii

i

y

kiC

1
0

1

α

α K

() ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

∈

bzKyy
SVi

iii ,sign* xα

9

SVM examples

Examples for Non Linear SVMs –
Gaussian Kernel

10

Cross-validation error
The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

examples trainingof #
ctorssupport ve #error CVout -one-Leave =

Machine LearningMachine Learning

1010--701/15701/15--781, Fall 2006781, Fall 2006

BoostingBoosting

Eric XingEric Xing

Lecture 9, October 10, 2006

Reading: Chap. 14.3, C.B book

11

Rationale: Combination of
methods

There is no algorithm that is always the most accurate

We can select simple “weak” classification or regression
methods and combine them into a single “strong” method

Different learners use different

Algorithms
Hyperparameters
Representations (Modalities)
Training sets
Subproblems

The problem: how to combine them

Some early algorithms
Boosting by filtering (Schapire 1990)

Run weak learner on differently filtered example sets
Combine weak hypotheses
Requires knowledge on the performance of weak learner

Boosting by majority (Freund 1995)
Run weak learner on weighted example set
Combine weak hypotheses linearly
Requires knowledge on the performance of weak learner

Bagging (Breiman 1996)
Run weak learner on bootstrap replicates of the training set
Average weak hypotheses
Reduces variance

12

Combination of classifiers
Suppose we have a family of component classifiers
(generating ±1 labels) such as decision stumps:

where θ = {k,w,b}

Each decision stump pays
attention to only a single
component of the
input vector

()bwxxh k += sign);(θ

Combination of classifiers con’d
We’d like to combine the simple classifiers additively so that
the final classifier is the sign of

where the “votes” {αi} emphasize component classifiers that
make more reliable predictions than others

Important issues:
what is the criterion that we are optimizing? (measure of loss)
we would like to estimate each new component classifier in the same manner
(modularity)

);();()(ˆ mmhhh θαθα xxx ++= K11

13

Measurement of error
Loss function:

Generalization error:

Objective: find h with minimum generalization error

Main boosting idea: minimize the empirical error:

()))((e.g.))(,(xx hyIhy ≠λ

[]))(,()(xhyEhL λ=

∑
=

=
N

n
nn hy

N
hL

1

1))(,()(ˆ xλ

Exponential Loss
One possible measure of empirical loss is

The combined classifier based on m − 1 iterations defines a weighted loss
criterion for the next simple classifier to add
each training sample is weighted by its "classifiability" (or difficulty) seen by the
classifier we have built so far

{ }

{ }

{ } { }

{ });(exp

);(exp)(ˆexp

);()(ˆexp

)(ˆexp

mimi

n

i

m
i

mimi

n

i
imi

n

i
mimiimi

n

i
imi

hayW

hayhy

hayhy

hy

θ

θ

θ

x

xx

xx

x

−=

−−=

−−=

−

∑

∑

∑

∑

=

−

=
−

=
−

=

1

1

1
1

1
1

1

);();()(ˆ mmhhh θαθα xxx ++= K11

14

Linearization of loss function
We can simplify a bit the estimation criterion for the new
component classifiers (assuming α is small)

Now our empirical loss criterion reduces to

We could choose a new component classifier to optimize this
weighted agreement

{ });();(exp mimimimi hayhay θθ xx −≈− 1

{ }

∑∑

∑

∑

=

−

=

−

=

−

=

−=

−≈

−

n

i
mii

m
im

n

i

m
i

mimi

n

i

m
i

n

i
imi

hyWaW

hayW

hy

1

1

1

1

1

1

1

1

);(

));((

)(ˆexp

θ

θ

x

x

x

A possible algorithm
At stage m we find θ* that maximize (or at least give a
sufficiently high) weighted agreement:

each sample is weighted by its "difficulty" under the previously combined m − 1
classifiers,
more "difficult" samples received heavier attention as they dominates the total
loss

Then we go back and find the “votes” αm* associated with the
new classifier by minimizing the original weighted
(exponential) loss

∑
=

−
n

i
mii

m
i hyW

1

1);(*θx

{ });(exp mimi

n

i

m
i hayW θx−∑

=

−

1

1

15

Boosting
We have basically derived a Boosting algorithm that
sequentially adds new component classifiers, each trained on
reweighted training examples

each component classifier is presented with a slightly different problem

AdaBoost preliminaries:
we work with normalized weights Wi on the training examples, initially
uniform (Wi = 1/n)
the weight reflect the "degree of difficulty" of each datum on the latest
classifier

The AdaBoost algorithm
At the kth iteration we find (any) classifier h(x; θk*) for which
the weighted classification error:

is better than change.
This is meant to be "easy" --- weak classifier

Determine how many “votes” to assign to the new component
classifier:

stronger classifier gets more votes

Update the weights on the training examples:

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

−
n

i
kii

k
ik hyW

1

1

2
150);(. *θε x

()kkk εε /)(log. −= 150α

{ });(exp kiki
k

i
k

i hayWW θx−= −1

16

The AdaBoost algorithm cont’d
The final classifier after m boosting iterations is given by the
sign of

the votes here are normalized for convenience

m

mmhhh
αα

θαθα
++
++

=
K

K

1

11);();()(ˆ xxx

AdaBoost: summary
Input:

N examples SN = {(x1,y1),…, (xN,yN)}
a weak base learner h = h(x,θ)

Initialize: equal example weights wi = 1/N for all i = 1..N
Iterate for t = 1…T:

1. train base learner according to weighted example set (wt,x) and obtain hypothesis
ht = h(x,θt)

2. compute hypothesis error εt

3. compute hypothesis weight αt

4. update example weights for next iteration wt+1

Output: final hypothesis as a linear combination of ht

17

AdaBoost: dataflow diagram

w1 w2 wTA(w,S) A(w,S) A(w,S)

Boosting: examples

18

Boosting: example cont’d

Boosting: example cont’d

19

Base Learners
Weak learners used in practice:

Decision stumps (axis parallel splits)
Decision trees (e.g. C4.5 by Quinlan 1996)
Multi-layer neural networks
Radial basis function networks

Can base learners operate on weighted examples?
In many cases they can be modified to accept weights along with the
examples
In general, we can sample the examples (with replacement) according to
the distribution defined by the weights

Boosting performance

The error rate of component
classifier (the decision stumps)
does not improve much (if at
all) over time

But both training and testing
error improve over time!

Even after the training error of
the combined classifier goes
to zero, boosting iterations can
still improve the generalization
error!!

20

Why it is working?
You will need some learning theory (to be covered in the next
two lectures) to understand this fully, but for now let's just go
over some high level ideas
Generalization Error:

With high probability, Generalization error is less than:

As T goes up, our bound becomes worse,
Boosting should overfit!

Training
error

Test
error

The Boosting Approach to Machine Learning, by Robert E. Schapire

Experiments

21

Training Margins
When a vote is taken, the more predictors agreeing, the more
confident you are in your prediction.

Margin for example:

The margin lies in [−1, 1] and is negative for all misclassified examples.

Successive boosting iterations improve the majority vote or
margin for the training examples

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=
m

mimi
iiih

hhy,y
αα

θαθα
K

K

1

11);();()(margin xxx

More Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire

22

A Margin Bound

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting
the margin: A new explanation for the effectiveness of voting methods.

The Annals of Statistics, 26(5):1651-1686, 1998.

For any γ, the generalization error is less than:

It does not depend on T!!!

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≤ 2γ

γ
m

dO,yh)(marginPr x

Summary
Boosting takes a weak learner and converts it to a strong
one

Works by asymptotically minimizing the empirical error

Effectively maximizes the margin of the combined hypothesis

