

10-701/15-781, Fall 2006

Support Vector Machines

Eric Xing

Lecture 8, October 5, 2006

Reading: Chap. 6&7, C.B book

Outline

- Maximum margin classification
- Constrained optimization
- Lagrangian duality
- Kernel trick
- Non-separable cases

What is a good Decision Boundary?

- Consider a binary classification task with y = ±1 labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly
- Many decision boundaries!
 - Generative classifiers
 - Logistic regressions ...

outliners

 Are all decision boundaries equally good?

Examples of Bad Decision Boundaries Why we may have such boundaries? Irregular distribution Imbalanced training sizes

Classification and Margin

- Parameterzing decision boundary
 - Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the <u>decision boundary</u> as:

Margin

 $w^Tx+b>0$ for all x in class 2 $w^Tx+b<0$ for all x in class 1

Or more compactly:

$$(w^Tx_i+b)y_i>0$$

The margin between two points $\mathbf{m} = (w^T x_i + b) - (w^T x_i + b) = w^T (x_i - x_i)$

Maximum Margin Classification

• The margin is:

$$m = w^T \left(x_{i^*} - x_{j^*} \right)$$

- It make sense to set constrains on W:
- Here is our Maximum Margin Classification problem:

$$\max_{w,b} m$$
s.t $y_i(w^T x_i + b) \ge m, \forall i$

$$||w|| = 1$$

• Equivalently, we can instead work on this:

$$\max_{w,b} \quad \frac{m}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge m, \quad \forall i$$

Maximum Margin Classification, con'd.

• The optimization problem:

$$\max_{w,b} \quad \frac{m}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge m, \quad \forall i$$

- But note that the magnitude of m merely scales w and b, and does not change the classification boundary at all!
- So we instead work on this cleaner problem:

$$\max_{w,b} \quad \frac{1}{\|w\|}$$
s.t
$$y_{i}(w^{T}x_{i} + b) \ge 1, \quad \forall i$$

The solution to this leads to the famous **Support Vector Machines** --- believed by many to be the best "off-the-shelf" supervised learning algorithm

Support vector machine

 A convex quadratic programming problem with linear constrains:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge 1, \quad \forall i$$

- The attained margin is now given by $\frac{1}{\|w\|}$
- Only a few of the classification constraints are relevant → support vectors
- Constrained optimization
 - We can directly solve this using commercial quadratic programming (QP) code
 - But we want to take a more careful investigation of Lagrange duality, and the solution of the above is its dual form.
 - → deeper insight: support vectors, kernels ...
 - → more efficient algorithm

Lagrangian Duality

• The Primal Problem

$$\min_{w} \underbrace{f(w)}_{s.t.} \underbrace{g_{i}(w) \leq 0, j_{i} = 1,...,k}_{h_{i}(w) = 0, i = 1,...,l}$$

The generalized Lagrangian:

$$\mathcal{L}(w,\alpha,\beta) = |f(w)| + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

the α 's ($\alpha \ge 0$) and β 's are called the Lagarangian multipliers

Lemma:

Primal:

$$\max_{\alpha,\beta,\alpha_i \ge 0} \mathcal{L}(w,\alpha,\beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{o/w} \end{cases}$$

A re-written Primal:

$$\min_{w} \max_{\alpha,\beta,\alpha_i \geq 0} \mathcal{L}(w,\alpha,\beta)$$

Lagrangian Duality, cont.

• Recall the Primal Problem:

$$\min_{w} \max_{\alpha,\beta,\alpha,\geq 0} \mathcal{L}(w,\alpha,\beta)$$

• The Dual Problem:

$$\max_{\alpha,\beta,\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

• Theorem (weak duality):

$$d^* = \max_{\alpha, \beta, \alpha, \ge 0} \min_{w} \mathcal{L}(w, \alpha, \beta) \le \min_{w} \max_{\alpha, \beta, \alpha, \ge 0} \mathcal{L}(w, \alpha, \beta) = p^*$$

• Theorem (strong duality):

Iff there exist a saddle point of
$$\mathcal{L}(w,\alpha,\beta)$$
, we have
$$d^*=p^*$$

A sketch of strong and weak duality

• Now, ignoring h(x) for simplicity, let's look at what's happening graphically in the duality theorems.

The KKT conditions

 If there exists some saddle point of \(\mathcal{L} \), then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$\frac{\partial}{\partial w_i} \mathcal{L}(w, \alpha, \beta) = 0, \quad i = 1, ..., n$$

$$\frac{\partial}{\partial \beta_i} \mathcal{L}(w, \alpha, \beta) = 0, \quad i = 1, ..., l$$

$$\alpha_i g_i(w) = 0, \quad i = 1, ..., k$$

$$g_i(w) \le 0, \quad i = 1, ..., k$$

$$\alpha_i \ge 0, \quad i = 1, ..., k$$

• **Theorem**: If w^* , α^* and β^* satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

Solving optimal margin classifier

• Recall our opt problem:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge 1, \ \forall i$$

This is equivalent to

$$\min_{w,b} \quad \frac{1}{2} w^{T} w$$
s.t
$$1 - y_{i}(w^{T} x_{i} + b) \leq 0, \quad \forall i$$
(*)

• Write the Lagrangian:

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2} w^T w - \sum_{i=1}^m \alpha_i \left[y_i (w^T x_i + b) - 1 \right]$$

• Recall that (*) can be reformulated as $\min_{w,b} \max_{\alpha_i \geq 0} \mathcal{L}(w,b,\alpha)$ Now we solve its **dual problem**: $\max_{\alpha_i \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$

The Dual Problem

$$\max_{\alpha \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$$

• We minimize \mathcal{L} with respect to w and b first:

$$\nabla_{w} \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} = 0, \qquad (*)$$

$$\nabla_b \mathcal{L}(w, b, \alpha) = \sum_{i=1}^m \alpha_i y_i = \mathbf{0}, \qquad (**)$$

Note that (*) implies:
$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
 (***)

• Plus (***) back to $\mathcal L$, and using (**), we have:

$$\mathcal{L}(w,b,\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

The Dual problem, cont.

Now we have the following dual opt problem:

$$\max_{\alpha} \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

s.t. $\alpha_i \ge 0$, $i = 1, ..., k$

$$\alpha_i \ge 0, \quad i = 1, \dots,$$

$$\sum_{i=1}^{m} \alpha_i y_i = 0.$$

- This is, (again,) a quadratic programming problem.
 - A global maximum of α_i can always be found.
 - But what's the big deal??
 - Note two things:
 - 1. w can be recovered by $w = \sum_{i=1}^{m} \alpha_i y_i \mathbf{X}_i$
- See next ...

- 2. The "kernel"
- $\mathbf{X}_{i}^{T}\mathbf{X}_{i}$
- More later ...

Support vectors

• Note the KKT condition --- only a few α_i 's can be nonzero!!

$$\alpha_i g_i(w) = \mathbf{0}, \quad i = 1, \dots, k$$

Support vector machines

• Once we have the Lagrange multipliers $\{\alpha_i\}$, we can reconstruct the parameter vector w as a weighted combination of the training examples:

$$w = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i$$

- For testing with a new data z
 - Compute

$$w^{T}z + b = \sum_{i \in SV} \alpha_{i} y_{i} (\mathbf{x}_{i}^{T}z) + b$$

and classify z as class 1 if the sum is positive, and class 2 otherwise

• Note: w need not be formed explicitly

Interpretation of support vector machines

- The optimal w is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression as in the construction of kNN classifier
- To compute the weights {α_i}, and to use support vector machines we need to specify only the inner products (or kernel) between the examples x_i^Tx_i
- We make decisions by comparing each new example z with only the support vectors:

$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i (\mathbf{x}_i^T z) + b\right)$$

Non-linearly Separable Problems

- We allow "error" ξ_i in classification; it is based on the output of the discriminant function w^Tx+b
- ξ_i approximates the number of misclassified samples

Soft Margin Hyperplane

• Now we have a slightly different opt problem:

$$\min_{w,b} \quad \frac{1}{2} w^T w + C \sum_{i=1}^m \xi_i$$

s.t
$$y_i(w^T x_i + b) \ge 1 - \xi_i, \forall i$$

 $\xi_i \ge 0, \forall i$

- ξ_i are "slack variables" in optimization
- Note that ξ_i =0 if there is no error for \mathbf{x}_i
- ξ_i is an upper bound of the number of errors
- C: tradeoff parameter between error and margin

The Optimization Problem

• The dual of this new constrained optimization problem is

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C, \quad i = 1, ..., k$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound ${\it C}$ on $\alpha_{\rm i}$ now
- Once again, a QP solver can be used to find α_i

Extension to Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform x_i to a higher dimensional space to "make life easier"
 - Input space: the space the point \mathbf{x}_i are located
 - Feature space: the space of $\phi(\mathbf{x}_i)$ after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to non-linear operation in input space
 - Classification can become easier with a proper transformation. In the XOR
 problem, for example, adding a new feature of x₁x₂ make the problem linearly
 separable (homework)

Transforming the Data

Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
 - The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

The Kernel Trick

• Recall the SVM optimization problem

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C, \quad i = 1, ..., k$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by $K(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$

An Example for feature mapping and kernels

- Consider an input $\mathbf{x} = [x_1, x_2]$
- Suppose $\phi(.)$ is given as follows

$$\phi \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2$$

• An inner product in the feature space is

$$\left\langle \phi \left[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right], \phi \left[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right] \right\rangle =$$

 So, if we define the kernel function as follows, there is no need to carry out φ(.) explicitly

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{1} + \mathbf{x}^T \mathbf{x}')^2$$

More examples of kernel functions

• Linear kernel (we've seen it)

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

• Polynomial kernel (we just saw an example)

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{1} + \mathbf{x}^T \mathbf{x}')^p$$

where p = 2, 3, ... To get the feature vectors we concatenate all pth order polynomial terms of the components of x (weighted appropriately)

Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$$

In this case the feature space consists of functions and results in a non-parametric classifier.

Kernelized SVM

• Training:

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C, \quad i = 1, ..., k$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

• Using:

$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i K(\mathbf{x}_i, z) + b\right)$$

