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Support Vector Machines

Reading: Chap. 6&7, C.B book
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Maximum margin classification

Constrained optimization

Lagrangian duality
Kernel trick

Non-separable cases




What is a good Decision
Boundary?

e Consider a binary classification
task with y = +1 labels (not 0/1 as
before).

e When the training examples are
linearly separable, we can set the
parameters of a linear classifier
so that all the training examples
are classified correctly

e Many decision boundaries!

e Generative classifiers

e Logistic regressions ...

e Are all decision boundaries
equally good?
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e Why we may e such boundaries?
e Irregular distribution
e Imbalanced training sizes
e outliners




Classification and Margin

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decisi undary as:

e Margin

wix+b >0 for all x in class 2
wix+b <0 for all x in class 1

Or more compactly:

(W'x+b)y; >0

The margin between two points
m=(wx,+b)-(wix;+b)=w'(x-x,)

Maximum Margin Classification

e The margin is: n
m=w (X,_* —ij)

e It make sense to set constrains on W
e Here is our Maximum Margin Classification problem:
max, , m
st y.(wW'x, +b)>m, Vi
=1
e Equivalently, we can instead work on this:
m
I ]

y.(W'x, +b)>m, Vi




Maximum Margin Classification,
con'd.

e The optimization problem:

y.(W'x, +b)>m, Vi
e But note that the magnitude of m merely scales w and b, and does
not change the classification boundary at all!
e So we instead work on this cleaner problem:

y.(wW'x +b)>1, Vi
e The solution to this leads to the famous -

-- believed by many to be the best "off-the-shelf" supervised learning
algorithm
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Support vector machine o
e A convex quadratic programming problem H1 '.
with linear constrains: \ ¥
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y.(wW'x +b)>1, Vi P . Vox-buo
e The attained margin is now given by vlv ":." el

e Only a few of the classification constraints are relevant = support vectors

e Constrained optimization
e We can directly solve this using commercial quadratic programming (QP) code

e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above is its dual form.

=> deeper insight: support vectors, kernels ...
= more efficient algorithm
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Lagrangian Duality :
e The Primal Problem
_ min @
Primal: st wi _ k
h(w)=0, i=
The generalized Lagrangian:
k
Lo f)=if o, (w}+ Bh,(w)
the o's (¢20) and f's are called the Lagarangian multlpllers
Lemma: o) if isfi imal .
max, . o L’(w,a,ﬁ)_{/(w if wsatisfies primal constraints
0 o/w
A re-written Primal:
min, max, ;..o £(w.a,p)
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Lagrangian Duality, cont. o

e Recall the Primal Problem:

min,, max, ;..o £(w.a,p)

e The Dual Problem:
MaX, 4.0 min  £L(w,a, f3)

e Theorem (weak duality):

d"=max, ,,omin, L(w,a f) < min max,,, .o £(wa,p)=p

e Theorem (strong duality):
Iff there exist a saddle point of .£(w,«, ), we have

d =p




A sketch of strong and weak
duality

e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d" =max, omin, f(w)+a’g(w) < min, max, o f(w)+a’g(w)=p
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The KKT conditions

e If there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)
conditions:

iL’(w,oz,ﬂ):o, i=1..n
ow,

aaﬂl’(w,a,ﬂ)zo, i=1...,1

i

a[gi(w)zoy izl,...,
gm <0, i=1..k
a,>0, i=1..k

e Theorem: If w*, & and g satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.
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Solving optimal margin classifier |2
\
e Recall our opt problem:
max,, , i
oI
y.(wWx +b)>1, Vi
e This is equivalent to
. 1,
min,, —w'w
o2 (*)
s.t T .
1-y(wx,+b)<0, Vi
e Write the Lagrangian:
L(w,b,a) = ;wrw— Zai [yi (W'x, +b) - 1]
i=1
e Recall that (*) can be reformulated as min,,, max, ., £(w,b, @)
Now we solve its dual problem: max, ., min, , £(w,b,a)
[ X X ]
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The Dual Problem o
max,, .o min,, , £(w,b, )
e We minimize .£ with respect to w and b first:
vV, L(wb,a)= w—ia,y,x,. =0, (*)
i=1
Vb,é’(w,b,a):Za,.y, =0, (%*%)
i=1
Note that (*) implies: w= i“:‘yr’xr (F**%)
i=1

e Plus (***) back to .£ , and using (**), we have:

m 1 m
L(w,b,a) = ;ai 2 Dy, (X))

ij=1
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The Dual problem, cont. :
e Now we have the following dual opt problem:
m 1 m
max, j(a) = Zl‘,a[ _E Zlaia/yiy/(xfrx/.)
i= i,j=
st. 20, i=1..,k
Z aiyi = O
i=1
e Thisis, (again,) a quadratic programming problem.

e A global maximum of g, can always be found.

e But what's the big deal??

e Note two things: .

1. wcanberecoveredby = zaiyl_xl. See next ...

i=1

2. The "kernel" XZX, More later ...
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Support vectors °

¢ Note the KKT condition --- only a few ¢;'s can be nonzero!!

ag(w)=0, i=1..k

Class 2 Call the training data points
45=0.6 @916=0 whose ¢/'s are nonzero the
@) / support vectors (SV)
Q= _
bs=0 = Cﬁxz_o
= @,=0.8
o,=0 5]
0 g wix+b=1
5=0 o3=0 wix+b=
Class 1 3




Support vector machines

e Once we have the Lagrange multipliers {¢;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

w= zaiyixi

ieSV

e For testing with a new data z

e Compute o .
wiz+b= Zaiyl.(xfz)+b

ieSV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly

Interpretation of support vector
machines o

e The optimal W is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of KNN classifier

e To compute the weights {¢,}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples X,.ij

e We make decisions by comparing each new example 7 with
only the support vectors:

y*= sign( Z ay, (X,.Tz)+ bj

ieSV




Non-linearly Separable Problems

&j ©
/ Q Class 2
X
w e
m X.i )
= @ §
= ¢ wlx +b=1
T _

Class 1 wix+b=0

wlx +b=-1

o We allow “error” &; in classification; it is based on the output of
the discriminant function w’x-+b

e &, approximates the number of misclassified samples

Soft Margin Hyperplane

e Now we have a slightly different opt problem:

m

min,, ;wrw+ CcY &
i1

y,(W'x, +b)21-¢, Vi
&20, Vi

s.t

e & are “slack variables” in optimization

Note that =0 if there is no error for x;

&; is an upper bound of the number of errors
e C : tradeoff parameter between error and margin
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The Optimization Problem 5
\
e The dual of this new constrained optimization problem is
m 1 m r
max,, ](a):Zai_izaia/yiy_/(xixj)
i=1 i,j=1
st. 0<¢, <C, i=1,...k
iaiyi =0.
i=1
e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o;
now
e Once again, a QP solver can be used to find o
. . . . [ X X ]
Extension to Non-linear Decision sece
Boundary o

e So far, we have only considered large-margin classifier with a
linear decision boundary

e How to generalize it to become nonlinear?

e Key idea: transform x; to a higher dimensional space to “make
life easier”
e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

e Why transform?
e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)
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Transforming the Data

Input space Feature space

e Computation in the feature space can be costly because it is high
dimensional
e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue

The Kernel Trick

e Recall the SVM optimization problem
max, JZ(a)=) a —; > aa;y,y;(Xx;)
i=1 1‘_/:1

st. 0<e,<C, i=1...k
Zaiyizo'
i1

e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(x,,x;)=¢(x,)" ¢(x,)

12



An Example for feature mapping
and kernels

e Consider an input x=[x,x,]
e Suppose #.) is given as follows

¢ﬂxl J =1,32x,,+2x,, 52, x2 N 2x,x,

e Aninner product in the feature space is

M)

e So, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x,X') = (1+ xTx')2

[ X X ]
More examples of kernel sess
functions o

e Linear kernel (we've seen it)
K(x,x')=x"x'
e Polynomial kernel (we just saw an example)
K(x,x") = (1 + x"x')"

where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

e Radial basis kernel
K(x,X') :exp(—;x—x'zj

In this case the feature space consists of functions and results in a non-
parametric classifier.
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Kernelized SVM se
e Training:
max,, j(a)Zia’i—%iaia./.yiyl_[{(x“x/_)
st. 0<e,<C, i=1..k
ia,.y,:o.
e Using:
y*=sign| > a,y,K(x,, z)+b
000
it
(XL
SVM examples $S
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Examples for Non Linear SVMs —
Gaussian Kernel

Gaussian

Cross-validation error

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

# support vectors
# of training examples

Leave-one-out CV error =
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