Machine Learning

10-701/15-781, Fall 2006

Support Vector Machines

Eric Xing

Lecture 8, October 5, 2006

Reading: Chap. 6&7, C.B book

Outline

- Maximum margin classification
- Constrained optimization
- Lagrangian duality
- Kernel trick
- Non-separable cases
What is a good Decision Boundary?

- Consider a binary classification task with \(y = \pm 1 \) labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly.
- Many decision boundaries!
 - Generative classifiers
 - Logistic regressions ...
- Are all decision boundaries equally good?

Examples of Bad Decision Boundaries

- Why we may have such boundaries?
 - Irregular distribution
 - Imbalanced training sizes
 - Outliners
Classification and Margin

- Parameterizing decision boundary
 - Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:

$$w^T x + b = 0$$

- Margin
 - $w^T x + b > 0$ for all x in class 2
 - $w^T x + b < 0$ for all x in class 1
 - Or more compactly:
 $$\left(w^T x + b \right)_i > 0$$

- The margin between two points
 - $m = (w^T x_i + b) - (w^T x_j + b) = w^T (x_i - x_j)$

Maximum Margin Classification

- The margin is:
 $$m = w^T (x_i - x_j)$$

- It make sense to set constrains on W:

- Here is our Maximum Margin Classification problem:

$$\max_{w, b} \quad m$$

s.t

$$y_i (w^T x_i + b) \geq m, \quad \forall i$$
$$\|w\| = 1$$

- Equivalently, we can instead work on this:

$$\max_{w, b} \quad \frac{m}{\|w\|}$$

s.t

$$y_i (w^T x_i + b) \geq m, \quad \forall i$$
Maximum Margin Classification, con'd.

- The optimization problem:
 \[
 \max_{w,b} \quad \frac{m}{\|w\|} \\
 \text{s.t} \quad y_i(w^T x_i + b) \geq m, \quad \forall i
 \]
 - But note that the magnitude of \(m\) merely scales \(w\) and \(b\), and does not change the classification boundary at all!
 - So we instead work on this cleaner problem:
 \[
 \max_{w,b} \quad \frac{1}{\|w\|} \\
 \text{s.t} \quad y_i(w^T x_i + b) \geq 1, \quad \forall i
 \]
 - The solution to this leads to the famous **Support Vector Machines** — believed by many to be the best "off-the-shelf" supervised learning algorithm

Support vector machine

- A convex quadratic programming problem with linear constrains:
 \[
 \max_{w,b} \quad \frac{1}{\|w\|} \\
 \text{s.t} \quad y_i(w^T x_i + b) \geq 1, \quad \forall i
 \]
 - The attained margin is now given by \(\frac{1}{\|w\|}\)
 - Only a few of the classification constraints are relevant \(\Rightarrow\) **support vectors**

- Constrained optimization
 - We can directly solve this using commercial quadratic programming (QP) code
 - But we want to take a more careful investigation of Lagrange duality, and the solution of the above is its dual form.
 \(\Rightarrow\) deeper insight: support vectors, kernels …
 \(\Rightarrow\) more efficient algorithm
Lagrangian Duality

- The Primal Problem
 \[
 \min_w \ f(w) \\
 \text{s.t.} \ g_i(w) \leq 0, \ i = 1, \ldots, k \quad \text{and} \quad h_i(w) = 0, \ i = 1, \ldots, l
 \]

 The generalized Lagrangian:
 \[
 \mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)
 \]

 The \(\alpha \)'s (\(\alpha \geq 0 \)) and \(\beta \)'s are called the Lagrangian multipliers.

 Lemma:
 \[
 \max_{\alpha, \beta, \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{o/w} \end{cases}
 \]

 A re-written Primal:
 \[
 \min_w \max_{\alpha, \beta, \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta)
 \]

Lagrangian Duality, cont.

- Recall the Primal Problem:
 \[
 \min_w \max_{\alpha, \beta, \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta)
 \]

- The Dual Problem:
 \[
 \max_{\alpha, \beta, \alpha_i \geq 0} \min_w \mathcal{L}(w, \alpha, \beta)
 \]

- Theorem (weak duality):
 \[
 d^* = \max_{\alpha, \beta, \alpha_i \geq 0} \min_w \mathcal{L}(w, \alpha, \beta) \leq \min_w \max_{\alpha, \beta, \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta) = p^*
 \]

- Theorem (strong duality):
 If there exist a saddle point of \(\mathcal{L}(w, \alpha, \beta) \), we have
 \[
 d^* = p^*
 \]
A sketch of strong and weak duality

- Now, ignoring \(h(x) \) for simplicity, let's look at what's happening graphically in the duality theorems.

\[
d^* = \max_{w \geq 0} \min_w f(w) + \alpha^T g(w) \leq \min_{w} \max_{\alpha \geq 0} f(w) + \alpha^T g(w) = \rho^*
\]

The KKT conditions

- If there exists some saddle point of \(\mathcal{L} \), then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

\[
\frac{\partial}{\partial w_i} \mathcal{L}(w, \alpha, \beta) = 0, \quad i = 1, \ldots, n
\]

\[
\frac{\partial}{\partial \beta_i} \mathcal{L}(w, \alpha, \beta) = 0, \quad i = 1, \ldots, l
\]

\[
\alpha_i g_i(w) = 0, \quad i = 1, \ldots, k
\]

\[
g_i(w) \leq 0, \quad i = 1, \ldots, k
\]

\[
\alpha_i \geq 0, \quad i = 1, \ldots, k
\]

- **Theorem**: If \(w^*, \alpha^* \) and \(\beta^* \) satisfy the KKT condition, then it is also a solution to the primal and the dual problems.
Solving optimal margin classifier

- Recall our opt problem:
 \[
 \begin{align*}
 \max_{w,b} & \quad \frac{1}{2} \|w\|^2 \\
 \text{s.t.} & \quad y_i (w^T x_i + b) \geq 1, \quad \forall i
 \end{align*}
 \]

- This is equivalent to
 \[
 \begin{align*}
 \min_{w,b} & \quad \frac{1}{2} w^T w \\
 \text{s.t.} & \quad 1 - y_i (w^T x_i + b) \leq 0, \quad \forall i
 \end{align*} \tag{*}
 \]

- Write the Lagrangian:
 \[
 \mathcal{L}(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^{m} \alpha_i [y_i (w^T x_i + b) - 1]
 \]
 - Recall that (*) can be reformulated as \(\min_{w,b} \max_{\alpha \geq 0} \mathcal{L}(w, b, \alpha) \)
 - Now we solve its dual problem: \(\max_{\alpha \geq 0} \min_{w,b} \mathcal{L}(w, b, \alpha) \)

The Dual Problem

\[
\max_{\alpha \geq 0} \min_{w,b} \mathcal{L}(w, b, \alpha)
\]

- We minimize \(\mathcal{L} \) with respect to \(w \) and \(b \) first:
 \[
 \begin{align*}
 \nabla_w \mathcal{L}(w, b, \alpha) &= w - \sum_{i=1}^{m} \alpha_i y_i x_i = 0, \tag{*} \\
 \nabla_b \mathcal{L}(w, b, \alpha) &= \sum_{i=1}^{m} \alpha_i y_i = 0, \tag{**}
 \end{align*}
 \]

 Note that (*) implies:
 \[
 w = \sum_{i=1}^{m} \alpha_i y_i x_i \tag{***}
 \]

- Plus (*** back to \(\mathcal{L} \), and using (**), we have:
 \[
 \mathcal{L}(w, b, \alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
 \]
The Dual problem, cont.

- Now we have the following dual opt problem:
 \[
 \max_{\alpha} J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
 \]
 s.t. \(\alpha_i \geq 0, \quad i = 1, \ldots, k \)
 \[
 \sum_{i=1}^{m} \alpha_i y_i = 0.
 \]

- This is, (again,) a quadratic programming problem.
 - A global maximum of \(\alpha_i \) can always be found.
 - But what’s the big deal??
 - Note two things:
 1. \(w \) can be recovered by \(w = \sum_{i=1}^{m} \alpha_i y_i x_i \)
 2. The "kernel" \(x_i^T x_j \)

Support vectors

- Note the KKT condition --- only a few \(\alpha_i \)’s can be nonzero!!
 \[
 \alpha_i g_i(w) = 0, \quad i = 1, \ldots, k
 \]

Call the training data points whose \(\alpha_i \)'s are nonzero the support vectors (SV)
Support vector machines

- Once we have the Lagrange multipliers \(\{\alpha_i\} \), we can reconstruct the parameter vector \(w \) as a weighted combination of the training examples:

\[
w = \sum_{i \in SV} \alpha_i y_i x_i
\]

- For testing with a new data \(z \)
 - Compute
 \[
 w^T z + b = \sum_{i \in SV} \alpha_i y_i (x_i^T z) + b
 \]
 and classify \(z \) as class 1 if the sum is positive, and class 2 otherwise
 - Note: \(w \) need not be formed explicitly

Interpretation of support vector machines

- The optimal \(w \) is a linear combination of a small number of data points. This “sparse” representation can be viewed as data compression as in the construction of kNN classifier

- To compute the weights \(\{\alpha_i\} \), and to use support vector machines we need to specify only the inner products (or kernel) between the examples \(x_i^T x_j \)

- We make decisions by comparing each new example \(z \) with only the support vectors:

\[
y^* = \text{sign} \left(\sum_{i \in SV} \alpha_i y_i (x_i^T z) + b \right)
\]
Non-linearly Separable Problems

- We allow “error” ξ_i in classification; it is based on the output of the discriminant function $w^T x + b$
- ξ_i approximates the number of misclassified samples

Soft Margin Hyperplane

- Now we have a slightly different optimization problem:

$$\min_{w,b} \frac{1}{2} w^T w + C \sum_{i=1}^{m} \xi_i$$

s.t. $y_i(w^T x_i + b) \geq 1 - \xi_i$, $\forall i$

- $\xi_i \geq 0$, $\forall i$

- ξ_i are “slack variables” in optimization
- Note that $\xi_i=0$ if there is no error for x_i
- ξ_i is an upper bound of the number of errors
- C: tradeoff parameter between error and margin
The Optimization Problem

- The dual of this new constrained optimization problem is

\[
\max_{\alpha} \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \\
\text{s.t.} \quad 0 \leq \alpha_i \leq C, \quad i = 1, \ldots, k \\
\sum_{i=1}^{m} \alpha_i y_i = 0.
\]

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound \(C \) on \(\alpha_i \) now.
- Once again, a QP solver can be used to find \(\alpha_i \)

Extension to Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary.
- How to generalize it to become nonlinear?
- Key idea: transform \(x_i \) to a higher dimensional space to “make life easier”
 - Input space: the space the point \(x_i \) are located
 - Feature space: the space of \(\phi(x_i) \) after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to non-linear operation in input space
 - Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of \(x_1x_2 \) make the problem linearly separable (homework)
Transforming the Data

- Computation in the feature space can be costly because it is high dimensional
 - The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

The Kernel Trick

- Recall the SVM optimization problem
 \[
 \max_{\alpha} \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
 \]
 s.t. \quad 0 \leq \alpha_i \leq C, \quad i = 1, \ldots, k
 \quad \sum_{i=1}^{m} \alpha_i y_i = 0.
- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function \(K \) by \(K(x_i, x_j) = \phi(x_i)^T \phi(x_j) \)
An Example for feature mapping and kernels

- Consider an input $x = [x_1, x_2]$
- Suppose $\phi(.)$ is given as follows
 $$\phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = 1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2$$
- An inner product in the feature space is
 $$\left\langle \phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right), \phi\left(\begin{bmatrix} x_1' \\ x_2' \end{bmatrix}\right)\right\rangle = \left(1 + x_1^T x_1'
ight)^2$$
- So, if we define the kernel function as follows, there is no need to carry out $\phi(.)$ explicitly
 $$K(x, x') = \left(1 + x^T x'\right)^2$$

More examples of kernel functions

- Linear kernel (we’ve seen it)
 $$K(x, x') = x^T x'$$
- Polynomial kernel (we just saw an example)
 $$K(x, x') = \left(1 + x^T x'\right)^p$$
 where $p = 2, 3, \ldots$ To get the feature vectors we concatenate all pth order polynomial terms of the components of x (weighted appropriately)
- Radial basis kernel
 $$K(x, x') = \exp\left(-\frac{1}{2} \|x - x'\|^2\right)$$
 In this case the feature space consists of functions and results in a non-parametric classifier.
Kernelized SVM

• Training:

\[
\max_{\alpha} \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j K(x_i, x_j)
\]

s.t. \(0 \leq \alpha_i \leq C, \quad i = 1, \ldots, k\)

\[
\sum_{i=1}^{m} \alpha_i y_i = 0.
\]

• Using:

\[
y^* = \text{sign} \left(\sum_{i \in \mathcal{S}_F} \alpha_i y_i K(x_i, z) + b \right)
\]
Examples for Non Linear SVMs – Gaussian Kernel

Cross-validation error

- The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the number of support vectors!

Leave-one-out CV error = \frac{\text{# support vectors}}{\text{# of training examples}}