Machine Learning

10-701/15-781, Fall 2006
Practical Issues in Learning
$=-$ Overfitting and Model Selection

Eric Xing

Lecture 7, October 3, 2006

Outline

- Overfitting
- Instance-based learning
- Regression
- Bias-variance decomposition
- The battle against overfitting:
each learning algorithm has some "free knobs" that one can "tune" (i.e., heck) to make the algorithm generalizes better to test data.

But is there a more principled way?

- Cross validation
- Regularization
- Model selection --- Occam's razor
- Model averaging
- The Bayesian-frequentist debate
- Bayesian learning (weight models by their posterior probabilities)

Recall: Vector Space Representation

- Each document is a vector, one component for each term (= word).

	Doc 1	Doc 2	Doc 3	\ldots
Word 1	3	0	0	\ldots
Word 2	0	8	1	\ldots
Word 3	12	1	10	\ldots
	0	1	3	\ldots
	0	0	0	\ldots

- Normalize to unit length.
- High-dimensional vector space:
- Terms are axes, 10,000+ dimensions, or even 100,000+
- Docs are vectors in this space

Classes in a Vector Space

kNN is an instance of Instance-Based Learning

- What makes an Instance-Based Learner?
- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to relate to the local points?

Euclidean Distance Metric

$$
D\left(x, x^{\prime}\right)=\sqrt{\sum_{i} \sigma_{i}^{2}\left(x_{i}-x_{i}^{\prime}\right)^{2}}
$$

- Or equivalently,

$$
D\left(x, x^{\prime}\right)=\sqrt{\left(x-x^{\prime}\right)^{T} \Sigma\left(x-x^{\prime}\right)}
$$

- Other metrics:
- L_{1} norm: $\left|x-x^{\prime}\right|$
- L_{∞} norm: $\max \left|\mathrm{x}-\mathrm{x}^{\prime}\right|$ (elementwise ...)
- Mahalanobis: where Σ is full, and symmetric
- Correlation
a AaAA
- Angle

ATAAA

- Hamming distance, Manhattan distance
-

Nearest-Neighbor Learning
 Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance x :
- Compute similarity between x and all examples in D.
- Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
- Case-based learning
- Memory-based learning
- Lazy learning

kNN Is Close to Optimal

- Cover and Hart 1967
- Asymptotically, the error rate of 1-nearest-neighbor classification is less than twice the Bayes rate [error rate of classifier knowing model that generated data]
- In particular, asymptotic error rate is 0 if Bayes rate is 0 .
- Decision boundary:

Another example:

- 9
 - 090
 - 000
 - 0
 - 000
 000

- Regression

Overfitting, con'd

- The models:

- Test errors:

Bias-variance decomposition

- Now let's look more closely into two sources of errors in an functional approximator:

- In the following we show the Bias-variance decomposition using $L R$ as an example.

Loss functions for regression

- Let t be the true (target) output and $(y(x)$ be our estimate. The expected squared loss is

$$
\begin{aligned}
E(L) & =\iint L(t, y(x)) p(x, t) d x d t \\
& =\iint(t-y(x))^{2} p(x, t) d x d t
\end{aligned}
$$

- Out goal is to choose $y(x)$ that minimize $E(L)$:
- Calculus of variations:

Expected loss

- Let $h(x)=E[t \mid x]$ be the optimal predictor, and $y(x)$ our actual predictor, which will incur the following expected loss

There is an error on pp47

- $\int_{\text {Thus it is a lower bound of the expected loss. }}\left(h(x)-t\right.$. ${ }^{2} p(x, t)$ no better than this. Thus it is a lower bound of the expected loss.
- The other part of the error come from $\int(y(x)-h(x))^{2} p(x) d x$, and let's take a close look of it.
- We will assume $y(x)=y(x \mid w)$ is a parametric model and the parameters w are fit to a training set D. (thus we write $y(x ; D)$)

Bias-variance decomposition

- For one data set D and one test point x
- since the predictor y depend on the data training data D, write $E_{D}[y(x, D)]$ for the expected predictor over the ensemble of datasets, then (using the same trick) we have:

$$
\begin{aligned}
(y(x ; D)-h(x))^{2}= & \left.\left(y(x ; D)-E_{D}[y(x ; D) D)-E_{D}[y(x ; D)]\right) h(x)\right)^{2} \\
= & \left(y(x ; D)-E_{D}[y(x ; D)]\right)^{2}+\left(E_{D}[y(x ; D)]-h(x)\right)^{2} \\
& +2\left(y(x ; D)-E_{D}[y(x ; D)]\right)\left(E_{D}[y(x ; D)]-h(x)\right)
\end{aligned}
$$

- Surely this error term depends on the training data, so we take an expectation over them:
$E_{D}\left[(y(x ; D)-h(x))^{2}\right]=\left(E_{D}[y(x ; D)]-h(x)\right)^{2}+E_{D}\left[\left(y(x ; D)-E_{D}[y(x ; D)]\right)^{2}\right]$
- Putting things together:
expected loss $=(\text { bias })^{2}+$ variance + noise

$$
J(6, x, y)=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-y_{1} x_{x_{0}}\right)^{2}
$$

$$
+\frac{1}{2} \lambda\|\theta\| .
$$

\qquad

Bias-variance tradeoff

- λ is a "regularization" terms in LR, the smaller the λ, is more complex the model (why?)
- Simple (highly regularized) models have low variance but high bias.
- Complex models have low bias but high variance.
- You are inspecting an empirical average over 100 training set.
- The actual E_{D} can not be computed

Bias2+variance vs regularizer

- Bias $^{2}+$ variance predicts (shape of) test error quite well.
- However, bias and variance cannot be computed since it relies on knowing the true distribution of x and t (and hence $h(x)=E[t \mid x])$.

The battle against overfitting

Model Selection

- Suppose we are trying select among several different models for a learning problem.
- Examples:

1. polynomial regression

$$
h(x ; \theta)=g\left(\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\ldots+\theta_{k} x^{k}\right)
$$

- Model selection: we wish to automatically and objectively decide if k should be, say, 0, $1, \ldots$, or 10.

2. locally weighted regression,

- Model selection: we want to automatically choose the bandwidth parameter

3. Mixture models and hidden Markov model,

- Model selection: we want to decide the number of hidden states
- The Problem:
- Given model family $\mathscr{F}=\left\{M_{1}, M_{2}, \ldots, M_{I}\right\}$, find $M_{i} \in \mathscr{F}$ s.t.

$$
M_{i}=\arg \max _{M \in \mathcal{F}} J(D, M)
$$

Cross Validation

- We are given training data D and test data $D_{\text {test }}$, and we would like to fit this data with a model $p_{i}(x ; \theta)$ from the family \mathscr{F} (e.g, an LR), which is indexed by i and parameterized by θ.
- K-fold cross-validation (CV)
- Set aside αN samples of D (where $N=|D|$). This is known as the held-out data and will be used to evaluate different values of i.
- For each candidate model i, fit the optimal hypothesis $p_{i}\left(x ; \theta^{*}\right)$ to the remaining $(1-\alpha) N$ samples in D (i.e., hold i fixed and find the best θ).
- Evaluate each model $p_{i}(x \mid \theta *)$ on the held-out data using some pre-specified risk function.
- Repeat the above K times, choosing a different held-out data set each time, and the scores are averaged for each model $p_{i}($.$) over all held-out data set. This gives$ an estimate of the risk curve of models over different i.
- For the model with the lowest rish, say $p_{i^{*}(.)}$, we use all of D to find the parameter values for $p_{i^{*}}\left(\mathrm{x} ; \theta^{*}\right)$.

Example:

- When $\alpha=1$, the algorithm is known as Leave-One-Out-Cross-Validation (LOOCV)

Practical issues for CV

- How to decide the values for K and α
- Commonly used $K=10$ and $\alpha=0.1$.
- when data sets are small relative to the number of models that are being evaluated, we need to decrease α and increase K
- K needs to be large for the variance to be small enough, but this makes it timeconsuming.
- Bias-variance trade-off
- Small α usually lead to low bias. In principle, LOOCV provides an almost unbiased estimate of the generalization ability of a classifier, especially when the number of the available training samples is severely limited; but it can also have high variance
- Large α can reduce variance, but will lead to under-use of data, and causing highbias.
- One important point is that the test data $D_{\text {test }}$ is never used in CV, because doing so would result in overly (indeed dishonest) optimistic accuracy rates during the testing phase.

Regularization

- Maximum-likelihood estimates are not always the best (James and Stein showed a counter example in the early 60's)
- Alternative: we "regularize" the likelihood objective (also known as penalized likelihood, shrinkage, smoothing, etc.), by adding to it a penalty term:

$$
\hat{\theta}_{\text {shrinkage }}=\arg \max _{\theta}[l(\theta ; D)+\lambda\|\theta\|] \quad L_{i}=\sum_{i}\left(\vartheta_{i}\right)
$$

where $\lambda>0$ and $\|\theta\|$ might be the L_{1} or L_{2} norm.

- The choice of norm has an effect
- using the L_{2} norm pulls directly towards the origin,
- while using the L1 norm pulls towards the coordinate axes, i.e it tries to set some of the coordinates to 0 .
- This second approach can be useful in a feature-selection setting.

Bayesian and Frequentist

- Frequentist interpretation of probability
- Probabilities are objective properties of the real world, and refer to limiting relative frequencies (e.g., number of times I have observed heads). Hence one cannot write $P($ Katrina could have been prevented|D), since the event will never repeat.
- Parameters of models are fixed, unknown constants. Hence one cannot write $P(\theta \mid D)$ since θ does not have a probability distribution. Instead one can only write $P(D \mid \theta)$.
- One computes point estimates of parameters using various estimators, $\theta^{*}=f(D)$, which are designed to have various desirable qualities when averaged over future data D (assumed to be drawn from the "true" distribution).
- Bayesian interpretation of probability
- Probability describes degrees of belief, not limiting frequencies.
- Parameters of models are hidden variables, so one can compute $P(\theta \mid D)$ or $P(f(\theta) \mid D)$ for some function f.
- One estimates parameters by computing $P(\theta \mid D)$ using Bayes rule:

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)}
$$

Bayesian interpretation of regulation

- Regularized Linear Regression
- Recall that using squared error as the cost function results in the LMS estimate
- And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ

$$
l(\theta)=n \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{\sigma^{2}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Now assume that vector θ follows a normal prior with 0-mean and a diagonal covariance matrix

$$
\theta \sim N\left(0, \tau^{2} I\right)
$$

- What is the posterior distribution of θ ?

$$
p(\theta \mid D) \propto p(D, \theta)
$$

$$
=p(D \mid \theta) p(\theta)=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{n}-\theta^{T} x_{i}\right)^{2}\right\} \times C \exp \left\{-\left(\theta^{T} \theta / 2 \tau^{2}\right\}\right.
$$

Bayesian interpretation of regulation, con'd

- The posterior distribution of θ

$$
p(\theta \mid D) \propto \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{n}-\theta^{T} x_{i}\right)^{2}\right\} \times \exp \left\{-\theta^{T} \theta / 2 \tau^{2}\right\}
$$

- This leads to a now objective

$$
\begin{aligned}
l_{M A P}(\theta ; D) & =-\frac{1}{2 \sigma^{2}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}-\frac{1}{\tau^{2}} \frac{1}{2} \sum_{k=1}^{K} \theta_{k}^{2} \\
& =l(\theta ; D)+\lambda\|\theta\|
\end{aligned}
$$

- This is L_{2} regularized LR! --- a MAP estimation of θ
- What about L_{1} regularized LR! (homework)
- How to choose λ.
- cross-validation!

Feature Selection

- Imagine that you have a supervised learning problem where the number of features n is very large (perhaps n >>\#samples), but you suspect that there is only a small number of features that are "relevant" to the learning task.
- Later lecture on VC-theory will tell you that this scenario is likely to lead to high generalization error - the learned model will potentially overfit unless the training set is fairly large.
- So lets get rid of useless parameters!

How to score features

- How do you know which features can be pruned?
- Given labeled data, we can compute some simple score $S(i)$ that measures how informative each feature x_{i} is about the class labels y.
- Ranking criteria:
- Mutual Information: score each feature by its mutual information with respect to the class labels

$$
\begin{aligned}
& \text { labels } \\
& M I\left(x_{i}, y\right)=\sum_{x_{i} \in\{0,1\}} \sum_{y \in\{0,1\}} p\left(x_{i}, y\right) \log \frac{p\left(x_{i}, y\right)}{p\left(x_{i}\right) p(y)}
\end{aligned}
$$

- Bayes error:

- Redundancy (Markov-blank score) .
- We need estimate the relevant $p($ ()'s from data, e.g., using MLE

Feature Ranking

- Bayes error of each gene

- information gain for each genes with respect to the given partition

- KL of each removal gene w.r.t. to its MB

Feature selection schemes

- Given n features, there are 2^{n} possible feature subsets (why?)
- Thus feature selection can be posed as a model selection problem over 2^{n} possible models.
- For large values of n, it's usually too expensive to explicitly enumerate over and compare all 2^{n} models. Some heuristic search procedure is used to find a good feature subset.
- Three general approaches:
- Filter: i.e., direct feature ranking, but taking no consideration of the subsequent learning algorithm
- add (from empty set) or remove (from the full set) features one by one based on $S(i)$
- Cheap, but is subject to local optimality and may be unrobust under different classifiers
- Wrapper: determine the (inclusion or removal of) features based on performance under the learning algorithms to be used. See next slide
- Simultaneous learning and feature selection.
- E.x. L_{1} regularized LR, Bayesian feature selection (will not cover in this class), etc.

Wrapper

- Forward:

1. Initialize $\mathscr{F}=\varnothing$
2. Repeat

- For $i=1, \ldots, n$
if $i \notin \mathscr{F}$, let $\mathscr{F}=\mathscr{F} \cup\{i\}$, and use some version of cross validation to evaluate features \mathscr{F}_{i}. (I.e., train your learning algorithm using only the features in \mathscr{F}_{i}, and estimate its generalization error.)
- Set \mathscr{F} to be the best feature subset found on the last step step.

3. Select and output the best feature subset that was evaluated during the entire search procedure.

- Backward search

1. Initialize $\mathscr{F}=$ full set
2. ...

Case study [Xing et al, 2001]

- The case:
- 7130 genes from a microarray dataset
- 72 samples
- 47 type I Leukemias (called ALL) and 25 type II Leukemias (called AML)
- Three classifier:
- kNN
- Gaussian classifier
- Logistic regression

Regularization vs. Feature Selection

- Explicit feature selection often outperform regularization

Model Selection via Information Criteria

- How can we compare the closeness of a learned hypothesis and the true model?
- The relative entropy (also known as the Kullback-Leibler divergence) is a measure of how different two probability distributions (over the same event space) are.
- For 2 pdfs, $p(x)$ and $q(x)$, their $\underline{K L}$-devergence is:

$$
D(p \| q)=\sum_{x \in \mathrm{X}} p(x) \log \frac{p(x)}{q(x)}
$$

- The KL divergence between p and q can also be seen as the average number of bits that are wasted by encoding events from a distribution p with a code based on a not-quite-right distribution q.

An information criterion

- Let $f(x)$ denote the truth, the underlying distribution of the data
- Let $g(x, \theta)$ denote the model family we are evaluating
- $f(x)$ does not necessarily reside in the model family
- $\theta_{\text {ML }}(y)$ denote the MLE of model parameter from data y
- Among early attempts to move beyond Fisher's Maliximum Likelihood framework, Akaike proposed the following information criterion:

$$
E_{y}\left[D\left(f \| g\left(x \mid \theta_{M L}(y)\right)\right]\right.
$$

which is, of course, intractable (because $f(x)$ is unknown)

AIC and TIC

- AIC (A ${ }_{n}$ information criterion, not Akaike information criterion)

where k is the number of parameters in the model
- TIC (Takeuchi information criterion)

$$
A=\log g(x \mid \hat{\theta}(y))-\operatorname{tr}\left(I\left(\theta_{0}\right) \Sigma\right)
$$

where
$\theta_{0}=\arg \min D(f \| g(\cdot \mid \theta)) \quad I\left(\theta_{0}\right)=-\left.E_{x}\left[\frac{\partial^{2} \log g(x \mid \theta)}{\partial \theta \partial \theta^{T}}\right]\right|_{\theta=\theta_{0}} \quad \Sigma=E_{y}\left(\hat{\theta}(y)-\theta_{0}\right)\left(\hat{\theta}(y)-\theta_{0}\right)^{T}$

- We can approximate these terms in various ways (e.g., using the bootstrap)
- $\operatorname{tr}\left(I\left(\theta_{0}\right) \Sigma\right) \approx k$

Bayesian Model Selection

- Recall the Bayesian Theory: (e.g., for date D and model M)

$$
P(M \mid D)=P(D \mid M) P(M) / P(D)
$$

- the posterior equals to the likelihood times the prior, up to a constant.
- Assume that $P(M)$ is uniform and notice that $P(D)$ is constant, we have the following criteria:

$$
P(D \mid M)=\int_{\theta} P(D \mid \theta, M) P(\theta \mid M) d \theta
$$

- A few steps of approximations (you will see this in advanced ML class in later semesters) give you this:

$$
\left(P(D \mid M) \approx \log P\left(D \mid \hat{\theta}_{M L}\right)-\frac{k}{2} \log N\right)
$$

