Practical Issues in Learning
-- Overfitting and Model Selection

Eric Xing

Lecture 7, October 3, 2006

Reading: Chap. 1 & 2, CB & Chap 5, 6, TM

Outline

- Overfitting
 - Instance-based learning
 - Regression

- Bias-variance decomposition

- The battle against overfitting:
 each learning algorithm has some "free knobs" that one can "tune"
 (i.e., heck) to make the algorithm generalizes better to test data.

 But is there a more principled way?
 - Cross validation
 - Regularization
 - Model selection --- Occam's razor
 - Model averaging
 - The Bayesian-frequentist debate
 - Bayesian learning (weight models by their posterior probabilities)
Recall: Vector Space Representation

- Each document is a vector, one component for each term (= word).

<table>
<thead>
<tr>
<th></th>
<th>Doc 1</th>
<th>Doc 2</th>
<th>Doc 3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word 1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>Word 2</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Word 3</td>
<td>12</td>
<td>1</td>
<td>10</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

- Normalize to unit length.
- High-dimensional vector space:
 - Terms are axes, 10,000+ dimensions, or even 100,000+
 - Docs are vectors in this space

Classes in a Vector Space

- Sports
- Science
- Arts
Test Document = ?

K-Nearest Neighbor (kNN) classifier
kNN is an instance of Instance-Based Learning

- What makes an Instance-Based Learner?
 - A distance metric
 - How many nearby neighbors to look at?
 - A weighting function (optional)
 - How to relate to the local points?

Euclidean Distance Metric

\[D(x, x') = \sqrt{\sum_i \sigma_i^2 (x_i - x'_i)^2} \]

- Or equivalently,
 \[D(x, x') = \sqrt{(x - x')^T \Sigma (x - x')} \]

- Other metrics:
 - L1 norm: |x-x'|
 - L∞ norm: max |x-x'| (elementwise …)
 - Mahalanobis: where \(\Sigma \) is full, and symmetric
 - Correlation
 - Angle
 - Hamming distance, Manhattan distance
 - …
1-Nearest Neighbor (kNN) classifier

2-Nearest Neighbor (kNN) classifier
3-Nearest Neighbor (kNN) classifier

5-Nearest Neighbor (kNN) classifier
Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.

- Testing instance x:
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D.

- Does not explicitly compute a generalization or category prototypes.

- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning

kNN Is Close to Optimal

- Cover and Hart 1967

- Asymptotically, the error rate of 1-nearest-neighbor classification is less than twice the Bayes rate [error rate of classifier knowing model that generated data]

- In particular, asymptotic error rate is 0 if Bayes rate is 0.

- Decision boundary:
Overfitting

Another example:

- Regression
Overfitting, con'd

- The models:

- Test errors:

Bias-variance decomposition

- Now let's look more closely into two sources of errors in an functional approximator:

- In the following we show the Bias-variance decomposition using LR as an example.
Loss functions for regression

- Let t be the true (target) output and $y(x)$ be our estimate. The expected squared loss is
 \[E(L) = \int \int L(t, y(x)) p(x,t) dx dt \]
 \[= \int \int (t - y(x))^2 p(x,t) dx dt \]

- Our goal is to choose $y(x)$ that minimize $E(L)$:
 - Calculus of variations:
 \[
 \frac{\partial E(L)}{\partial y(x)} = 2 \int (t - y(x)) p(x,t) dt = 0
 \]
 \[y(x)p(x,t) dt = \int tp(x,t) dt \]
 \[y^*(x) = \frac{\int p(x,t) dt}{p(x)} \] is the optimal predictor, and $y(x)$ our actual predictor, which will incur the following expected loss

Expected loss

- Let $h(x) = E[t|x]$ be the optimal predictor, and $y(x)$ our actual predictor, which will incur the following expected loss
 \[E(y(x) - t)^2 = \int (y(x) - h(x))^2 |x| dx dt \]
 \[= \int (y(x) - h(x))^2 + 2(y(x) - h(x))h(x) + h(x)^2 |x| dx dt \]
 \[= \int (y(x) - h(x))^2 |x| dx + \int (h(x) - t)^2 p(x,t) dx dt \]
 There is an error on pp47

- $\int (h(x) - t)^2 p(x,t) dx dt$ is a noisy term, and we can do no better than this. Thus it is a lower bound of the expected loss.
- The other part of the error comes from $\int (y(x) - h(x))^2 p(x,t) dx$, and let's take a close look of it.
- We will assume $y(x) = y(x|w)$ is a parametric model and the parameters w are fit to a training set D. (thus we write $y(x;D)$)
Bias-variance decomposition

- For one data set D and one test point x
 - since the predictor y depend on the data training data D, write $E_D[y(x,D)]$ for the expected predictor over the ensemble of datasets, then (using the same trick) we have:
 \[(y(x;D) - h(x))^2 = (y(x;D) - E_D[y(x;D)])^2 + h(x)^2 \]
 \[= (y(x;D) - E_D[y(x;D)])^2 + [E_D[y(x;D)] - h(x)]^2 \]
 \[+ 2(y(x;D) - E_D[y(x;D)][E_D[y(x;D)] - h(x)] \]
 - Surely this error term depends on the training data, so we take an expectation over them:
 \[E_D[(y(x;D) - h(x))^2] = (E_D[y(x;D)] - h(x))^2 + E_D[y(x;D) - E_D[y(x;D)]^2 \]
 - Putting things together:
 \[\text{expected loss} = (\text{bias})^2 + \text{variance} + \text{noise} \]

Regularized Regression

\[J(\theta, x, y) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2 + \frac{1}{2} \lambda \| \theta \| \]
Bias-variance tradeoff

- λ is a "regularization" terms in LR, the smaller the λ, is more complex the model (why?)
 - Simple (highly regularized) models have low variance but high bias.
 - Complex models have low bias but high variance.

- You are inspecting an empirical average over 100 training set.
- The actual E_D can not be computed.

Bias2+variance vs regularizer

- Bias2+variance predicts (shape of) test error quite well.
- However, bias and variance cannot be computed since it relies on knowing the true distribution of x and t (and hence $h(x) = E[t|x]$).
The battle against overfitting

Model Selection

- Suppose we are trying to select among several different models for a learning problem.
- Examples:
 1. Polynomial regression
 \[h(x; \theta) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_k x^k) \]
 - Model selection: we wish to automatically and objectively decide if \(k \) should be, say, 0, 1, \ldots, or 10.
 2. Locally weighted regression,
 - Model selection: we want to automatically choose the bandwidth parameter \(\tau \).
 3. Mixture models and hidden Markov model,
 - Model selection: we want to decide the number of hidden states
- The Problem:
 - Given model family \(\mathcal{F} = \{M_1, M_2, \ldots, M_k\} \), find \(M_i \in \mathcal{F} \) s.t. \(M_i = \arg \max_{M \in \mathcal{F}} J(D, M) \)
Cross Validation

- We are given training data D and test data D_{test}, and we would like to fit this data with a model $p_{i}(x; \theta)$ from the family \mathcal{F} (e.g., an LR), which is indexed by i and parameterized by θ.

- K-fold cross-validation (CV)
 - Set aside αN samples of D (where $N = |D|$). This is known as the held-out data and will be used to evaluate different values of i.
 - For each candidate model i, fit the optimal hypothesis $p_{i}(x; \theta^*)$ to the remaining $(1-\alpha)N$ samples in D (i.e., hold i fixed and find the best θ).
 - Evaluate each model $p_{i}(x; \theta^*)$ on the held-out data using some pre-specified risk function.
 - Repeat the above K times, choosing a different held-out data set each time, and the scores are averaged for each model $p_{i}(.)$ over all held-out data set. This gives an estimate of the risk curve of models over different i.
 - For the model with the lowest risk, say $p_{i^*}(.)$, we use all of D to find the parameter values for $p_{i^*}(x; \theta^*)$.

Example:

- When $\alpha = 1/N$, the algorithm is known as Leave-One-Out-Cross-Validation (LOOCV)

\[\text{MSE}_{\text{LOOCV}}(M_2) = 0.962 \]
\[\text{MSE}_{\text{LOOCV}}(M_1) = 2.12 \]
Practical issues for CV

- How to decide the values for K and α
 - Commonly used $K = 10$ and $\alpha = 0.1$.
 - When data sets are small relative to the number of models that are being evaluated, we need to decrease α and increase K.
 - K needs to be large for the variance to be small enough, but this makes it time-consuming.

- Bias-variance trade-off
 - Small α usually lead to low bias. In principle, LOOCV provides an almost unbiased estimate of the generalization ability of a classifier, especially when the number of the available training samples is severely limited; but it can also have high variance.
 - Large α can reduce variance, but will lead to under-use of data, and causing high-bias.

- One important point is that the test data D_{test} is never used in CV, because doing so would result in overly (indeed dishonest) optimistic accuracy rates during the testing phase.
Regularization

- Maximum-likelihood estimates are not always the best (James and Stein showed a counter example in the early 60’s)
- Alternative: we "regularize" the likelihood objective (also known as penalized likelihood, shrinkage, smoothing, etc.), by adding to it a penalty term:

\[
\hat{\theta}_{\text{shrinkage}} = \arg \max_{\theta} \left[l(\theta; D) + \lambda \| \theta \| \right]
\]

where \(\lambda > 0 \) and \(\| \theta \| \) might be the \(L_1 \) or \(L_2 \) norm.

- The choice of norm has an effect
 - using the \(L_2 \) norm pulls directly towards the origin
 - while using the \(L_1 \) norm pulls towards the coordinate axes, i.e. it tries to set some of the coordinates to 0.
 - This second approach can be useful in a feature-selection setting.

Bayesian and Frequentist

- Frequentist interpretation of probability
 - Probabilities are objective properties of the real world, and refer to limiting relative frequencies (e.g., number of times I have observed heads). Hence one cannot write \(P(\text{Katrina could have been prevented}|D) \), since the event will never repeat.
 - Parameters of models are fixed, unknown constants. Hence one cannot write \(P(\theta|D) \) since \(\theta \) does not have a probability distribution. Instead one can only write \(P(D|\theta) \).
 - One computes point estimates of parameters using various estimators, \(\hat{\theta} = f(D) \), which are designed to have various desirable qualities when averaged over future data \(D \) (assumed to be drawn from the “true” distribution).

- Bayesian interpretation of probability
 - Probability describes degrees of belief, not limiting frequencies.
 - Parameters of models are hidden variables, so one can compute \(P(\theta|D) \) or \(P(f(\theta)|D) \) for some function \(f \).
 - One estimates parameters by computing \(P(\theta|D) \) using Bayes rule:

\[
p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}
\]
Bayesian interpretation of regulation

- Regularized Linear Regression
 - Recall that using squared error as the cost function results in the LMS estimate
 - And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ
 \[
 l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2
 \]
 - Now assume that vector θ follows a normal prior with 0-mean and a diagonal covariance matrix
 \[
 \theta - N(0, \tau^2 I)
 \]
 - What is the posterior distribution of θ?
 \[
 p(\theta|D) = \frac{p(D|\theta) p(\theta)}{p(D)} = \frac{p(D|\theta)}{\int p(D|\theta) p(\theta) d\theta} = \frac{(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2\right)}{C \exp\left(-\frac{1}{2\tau^2} \theta^T \theta\right)}
 \]

Bayesian interpretation of regulation, con’d

- The posterior distribution of θ
 \[
 p(\theta|D) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2\right) \times \exp\left(-\frac{1}{2\tau^2} \theta^T \theta\right)
 \]
 - This leads to a now objective
 \[
 l_{MAP}(\theta; D) = -\frac{1}{2\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2 - \frac{1}{2\tau^2} \frac{1}{2} \sum_{i=1}^{k} \theta_i^2
 \]
 \[
 = l(\theta; D) + \lambda \|	heta\|
 \]
 - This is L_2 regularized LR! --- a MAP estimation of θ
 - What about L_1 regularized LR! (homework)
 - How to choose λ.
 - cross-validation!
Feature Selection

- Imagine that you have a supervised learning problem where the number of features \(n \) is very large (perhaps \(n \gg \text{#samples} \)), but you suspect that there is only a small number of features that are "relevant" to the learning task.

- Later lecture on VC-theory will tell you that this scenario is likely to lead to high generalization error – the learned model will potentially overfit unless the training set is fairly large.

- So let's get rid of useless parameters!

How to score features

- How do you know which features can be pruned?
 - Given labeled data, we can compute some simple score \(S(i) \) that measures how informative each feature \(x_i \) is about the class labels \(y \).
 - Ranking criteria:
 - Mutual Information: score each feature by its mutual information with respect to the class labels
 \[
 MI(x_i, y) = \sum_{x_i \in \{0,1\}} \sum_{y \in \{0,1\}} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i)p(y)}
 \]
 - Bayes error:
 - Redundancy (Markov-blank score) …
 - We need estimate the relevant \(p(i) \)'s from data, e.g., using MLE
Feature Ranking

- Bayes error of each gene
- Information gain for each gene with respect to the given partition
- KL of each removal gene w.r.t. to its MB

Feature selection schemes

- Given n features, there are 2^n possible feature subsets (why?)
- Thus feature selection can be posed as a model selection problem over 2^n possible models.
- For large values of n, it's usually too expensive to explicitly enumerate over and compare all 2^n models. Some heuristic search procedure is used to find a good feature subset.
- Three general approaches:
 - Filter: i.e., direct feature ranking, but taking no consideration of the subsequent learning algorithm
 - add (from empty set) or remove (from the full set) features one by one based on $S(i)$
 - Cheap, but is subject to local optimality and may be unrobust under different classifiers
 - Wrapper: determine the (inclusion or removal of) features based on performance under the learning algorithms to be used. See next slide
 - Simultaneous learning and feature selection.
 - E.g., L1 regularized LR, Bayesian feature selection (will not cover in this class), etc.
Wrapper

- **Forward:**
 1. Initialize $F = \emptyset$
 2. Repeat
 - For $i = 1, \ldots, n$
 - If $i \notin F$, let $F = F \cup \{i\}$, and use some version of cross validation to evaluate features F_i (i.e., train your learning algorithm using only the features in F_i, and estimate its generalization error.)
 - Set F to be the best feature subset found on the last step.
 3. Select and output the best feature subset that was evaluated during the entire search procedure.

- **Backward search**
 1. Initialize $F = \text{full set}$
 2. …

Case study [Xing et al, 2001]

- **The case:**
 - 7130 genes from a microarray dataset
 - 72 samples
 - 47 type I Leukemias (called ALL)
 - 25 type II Leukemias (called AML)

- **Three classifier:**
 - kNN
 - Gaussian classifier
 - Logistic regression
Regularization vs. Feature Selection

- Explicit feature selection often outperform regularization

Model Selection via Information Criteria

- How can we compare the closeness of a learned hypothesis and the true model?
- The relative entropy (also known as the **Kullback-Leibler divergence**) is a measure of how different two probability distributions (over the same event space) are.
 - For 2 pdfs, $p(x)$ and $q(x)$, their KL-divergence is:
 \[
 D(p \parallel q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
 \]
 - The KL divergence between p and q can also be seen as the average number of bits that are wasted by encoding events from a distribution p with a code based on a not-quite-right distribution q.
An information criterion

- Let \(f(x) \) denote the truth, the underlying distribution of the data
- Let \(g(x, \theta) \) denote the model family we are evaluating
 - \(f(x) \) does not necessarily reside in the model family
 - \(\hat{\theta}_M(y) \) denote the MLE of model parameter from data \(y \)
- Among early attempts to move beyond Fisher’s Maximum Likelihood framework, Akaike proposed the following information criterion:
 \[
 E_y [D(f \parallel g(x \mid \hat{\theta}_M(y))]
 \]
 which is, of course, intractable (because \(f(x) \) is unknown)

AIC and TIC

- AIC (\(A \), information criterion, not Akaike information criterion)
 \[
 A = \log g(x \mid \hat{\theta}(y)) - k
 \]
 where \(k \) is the number of parameters in the model

- TIC (Takeuchi information criterion)
 \[
 A = \log g(x \mid \hat{\theta}(y)) - \text{tr}(I(\theta_0)\Sigma)
 \]
 where
 \[
 \theta_0 = \arg \min D(f \parallel g(\cdot \mid \theta)) \quad I(\theta_0) = -E\left[\frac{\partial^2 \log g(x \mid \theta)}{\partial \theta \partial \theta^T}\right]_{\theta = \theta_0} \quad \Sigma = E\left[\hat{\theta}(y) - \theta_0\right]\left[\hat{\theta}(y) - \theta_0\right]^T
 \]
 - We can approximate these terms in various ways (e.g., using the bootstrap)
 - \(\text{tr}(I(\theta_0)\Sigma) \approx k \)
Bayesian Model Selection

- Recall the Bayesian Theory: (e.g., for data D and model M)

\[P(M|D) = \frac{P(D|M)P(M)}{P(D)} \]

- the posterior equals to the likelihood times the prior, up to a constant.

- Assume that $P(M)$ is uniform and notice that $P(D)$ is constant, we have the following criteria:

\[P(D | M) = \int_\theta P(D | \theta, M)P(\theta | M)d\theta \]

- A few steps of approximations (you will see this in advanced ML class in later semesters) give you this:

\[P(D | M) \approx \log P(D | \hat{\theta}_{ML}) - \frac{k}{2} \log N \]

where N is the number of data points in D.