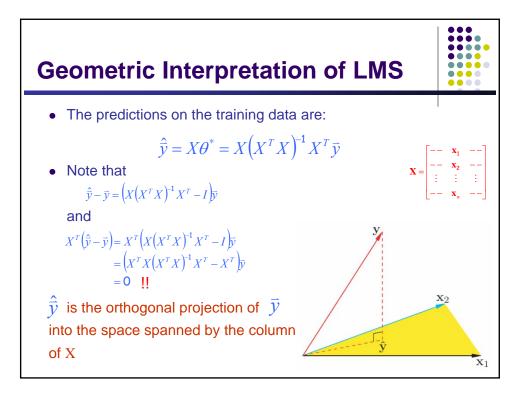
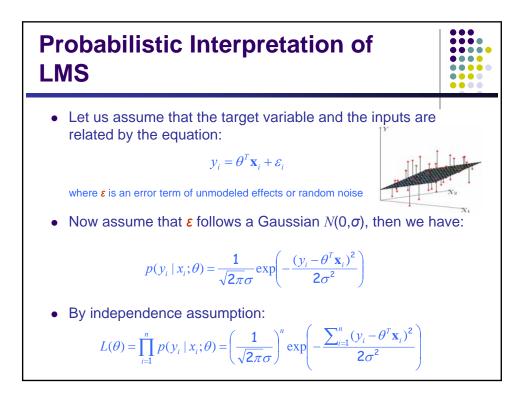
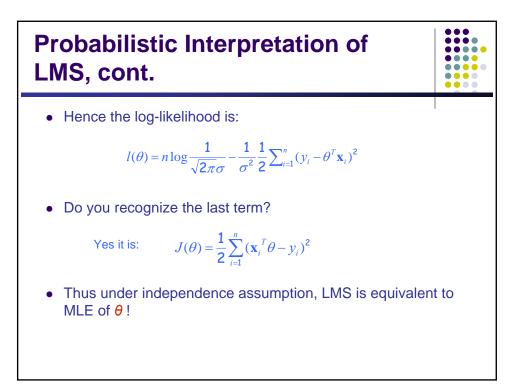
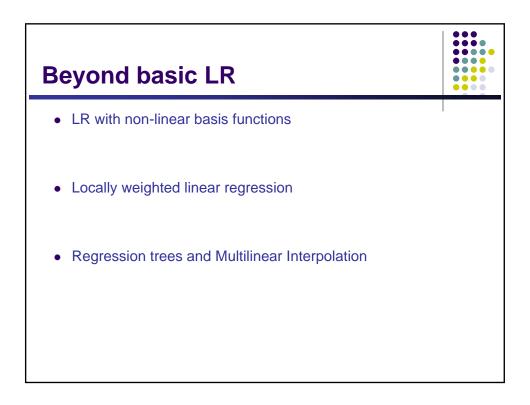


A recap:	
LMS update rule	
$\theta_j^{t+1} = \theta_j^t + \alpha(y_i - \mathbf{x}_i^T \theta^t) x_{i,j}$	
Pros: on-line, low per-step costCons: coordinate, maybe slow-converging	
Steepest descent	
$\theta^{t+1} = \theta^t + \alpha \sum_{i=1}^n (y_i - \mathbf{x}_i^T \theta^t) \mathbf{x}_i$	
Pros: fast-converging, easy to implement	
• Cons: a batch,	
• Normal equations $\theta^* = (X^T X)^{-1} X^T \overline{y}$	
Pros: a single-shot algorithm! Easiest to implement.	
 Cons: need to compute pseudo-inverse (X^TX)⁻¹, expensive, numerical issu (e.g., matrix is singular) 	Ies









LR with non-linear basis functions

- LR does not mean we can only deal with linear relationships
- We are free to design (non-linear) features under LR

$$y = \theta_0 + \sum_{j=1}^m \theta_j \phi(x) = \theta^T \phi(x)$$

where the $\phi_i(x)$ are fixed basis functions (and we define $\phi_0(x) = 1$).

• Example: polynomial regression:

 $\phi(x) \coloneqq \left[\mathbf{1}, x, x^2, x^3\right]$

• We will be concerned with estimating (distributions over) the weights θ and choosing the model order *M*.

