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Machine LearningMachine Learning

1010--701/15701/15--781, Fall 2006781, Fall 2006

Introduction to RegressionIntroduction to Regression

Eric XingEric Xing

Lecture 3, September 19, 2006

Reading: Chap. 3, CB

Machine learning for apartment 
hunting 

Now you've moved to 
Pittsburgh!! 
And you want to find the most 
reasonably priced apartment 
satisfying your needs:

square-ft., # of bedroom, distance to 
campus …

?1.5270

…
?1150

5001109
11002433
10002506
6001230

Rent ($)# bedroomLiving area (ft2)
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The learning problem

Features: 
Living area, distance to campus, # 
bedroom …
Denote as x=[x1, x2, … xk]

Target: 
Rent
Denoted as y

Training set:
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Linear Regression
Assume that Y (target) is a linear function of X (features):

e.g.:

let's assume a vacuous "feature" X0=1 (this is the intercept term, why?), and 
define the feature vector to be:

then we have the following general representation of the linear function:

Our goal is to pick the optimal       . How!
We seek      that minimize the following cost function:
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The Least-Mean-Square (LMS) 
method

The Cost Function:

Consider a gradient descent algorithm:

∑
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The Least-Mean-Square (LMS) 
method

Now we have the following descent rule: 

For a single training point, we have: 

This is known as the LMS update rule, or the Widrow-Hoff learning rule
This is actually a "stochastic", "coordinate" descent algorithm
This can be used as an on-line algorithm
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The Least-Mean-Square (LMS) 
method

Steepest descent
Note that:

This is as a batch gradient descent algorithm
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Some matrix derivatives
For                       , define:

Trace:

Some fact of matrix derivatives (without proof)
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The normal equations
Write the cost function in matrix form:

To minimize J(θ), take derivative and set to zero:
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The normal equations
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A recap:
LMS update rule

Pros: on-line, low per-step cost
Cons: coordinate, maybe slow-converging

Steepest descent

Pros: fast-converging, easy to implement
Cons: a batch, 

Normal equations

Pros: a single-shot algorithm! Easiest to implement.
Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues 
(e.g., matrix is singular ..)
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Geometric Interpretation of LMS
The predictions on the training data are:

Note that

and 

is the orthogonal projection of
into the space spanned by the columns 
of X
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Probabilistic Interpretation of 
LMS

Let us assume that the target variable and the inputs are 
related by the equation:

where ε is an error term of unmodeled effects or random noise

Now assume that ε follows a Gaussian N(0,σ), then we have:

By independence assumption:
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Probabilistic Interpretation of 
LMS, cont.

Hence the log-likelihood is:

Do you recognize the last term?

Yes it is: 

Thus under independence assumption, LMS is equivalent to 
MLE of θ !
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Beyond basic LR
LR with non-linear basis functions

Locally weighted linear regression

Regression trees and Multilinear Interpolation
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LR with non-linear basis 
functions

LR does not mean we can only deal with linear relationships

We are free to design (non-linear) features under LR

where the φj(x) are fixed basis functions (and we define φ0(x) = 1).

Example: polynomial regression:

We will be concerned with estimating (distributions over) the 
weights θ and choosing the model order M.
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Basis functions
There are many basis functions, e.g.:

Polynomial

Radial basis functions

Sigmoidal

Splines, Fourier, Wavelets, etc
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1D and 2D RBFs
1D RBF

After fit:

Good and Bad RBFs
A good 2D RBF

Two bad 2D RBFs
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Locally weighted linear 
regression

Overfitting and underfitting

xy 10 θθ += 2
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Locally weighted linear 
regression

The algorithm:
Instead of minimizing

now we fit θ to minimize

Where do wi's come from?                                              

where x is the query point for which we'd like to know its corresponding y

Essentially we put higher weights on (errors on) training 
examples that are close to the query point (than those that are 
further away from the query)

Do we also have a probabilistic interpretation here (as we did for LR)?
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Parametric vs. non-parametric
Locally weighted linear regression is the first example we are 
running into of a non-parametric algorithm.

The (unweighted) linear regression algorithm that we saw 
earlier is known as a parametric learning algorithm 

because it has a fixed, finite number of parameters (the θ), which are fit to the 
data;
Once we've fit the θ and stored them away, we no longer need to keep the 
training data around to make future predictions.

In contrast, to make predictions using locally weighted linear 
regression, we need to keep the entire training set around. 

The term "non-parametric" (roughly) refers to the fact that the 
amount of stuff we need to keep in order to represent the 
hypothesis grows linearly with the size of the training set.

Robust Regression

The best fit from a quadratic 
regression

But this is probably better …

How can we do this?
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LOESS-based Robust Regression
Remember what we do in "locally weighted linear regression"?

we "score" each point for its “impotence”

Now we score each point according to its "fitness"

(Courtesy to Andrew Moor) 

Robust regression
For k = 1 to R…

Let (xk ,yk) be the kth datapoint
Let yest

k be predicted value of yk

Let wk be a weight for data point k that is large if 
the data point fits well and small if it fits badly:

Then redo the regression using weighted data points.

Repeat whole thing until converged!
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Robust regression—probabilistic 
interpretation

What regular regression does:

Assume yk was originally generated using the following recipe:

Computational task is to find the Maximum Likelihood 
estimation of θ
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Robust regression—probabilistic 
interpretation

What LOESS robust regression does:

Assume yk was originally generated using the following recipe:

with probability p:

but otherwise

Computational task is to find the Maximum Likelihood 
estimates of θ, p, µ and σhuge. 

The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an 
instance of the famous E.M. algorithm
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Regression Tree
Decision tree for regression

:::::

7201YesM

2520NoM

3852NoF

Age# travel 
per yr.

Num. 
Children

Rich?Gender
Gender?

Predicted age=39 Predicted age=36

Female Male

A conceptual picture
Assuming regular regression trees, can you sketch a graph of 
the fitted function y*(x) over this diagram?
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How about this one?
Multilinear Interpolation

We wanted to create a continuous and piecewise linear fit to 
the data

Take home message
Gradient descent

On-line
Batch

Normal equations
Equivalence of LMS and MLE
LR does not mean fitting linear relations, but linear 
combination or basis functions (that can be non-linear)
Weighting points by importance versus by fitness


