Machine Learning
10-701/15-781, Fall 2006

Introduction to Regression

Eric Xing
Lecture 3, September 19, 2006
Reading: Chap. 3, CB

Machine learning for apartment hunting

- Now you’ve moved to Pittsburgh!!
And you want to find the most reasonably priced apartment satisfying your needs:
 square-ft., # of bedroom, distance to campus …

<table>
<thead>
<tr>
<th>Living area (ft²)</th>
<th># bedroom</th>
<th>Rent ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>506</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>433</td>
<td>2</td>
<td>1100</td>
</tr>
<tr>
<td>109</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>270</td>
<td>1.5</td>
<td>?</td>
</tr>
</tbody>
</table>
The learning problem

- **Features:**
 - Living area, distance to campus, # bedroom ...
 - Denote as \(x = [x_1, x_2, \ldots, x_k] \)

- **Target:**
 - Rent
 - Denoted as \(y \)

- **Training set:**

```
<table>
<thead>
<tr>
<th>Rent</th>
<th>Living area</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>1000</td>
</tr>
<tr>
<td>July</td>
<td>1200</td>
</tr>
<tr>
<td>Aug</td>
<td>1500</td>
</tr>
<tr>
<td>Sept</td>
<td>2000</td>
</tr>
</tbody>
</table>
```

\[x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}, \quad \text{or} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \]

\[X = \begin{bmatrix} 1 & x_1 & \cdots & x_n \\ 1 & x_{12} & \cdots & x_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nn} \end{bmatrix} \]

\[y = \begin{bmatrix} y_1 \\ y_{12} \\ \vdots \\ y_{nn} \end{bmatrix} \]

\[\text{Our goal:} \quad \hat{y} = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 \]

\[\hat{y} = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 \]

- **Linear Regression**

- **Assume that \(Y \) (target) is a linear function of \(X \) (features):**
 - **e.g.:**
 \[\hat{y} = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 \]
 - Let's assume a vacuous "feature" \(X_0 = 1 \) (this is the intercept term, why?), and define the feature vector to be:

 \[\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \]

 - Then we have the following general representation of the linear function:

 \[y = X \Theta \]

- **Our goal is to pick the optimal \(\Theta \).** How!
 - We seek \(\Theta \) that minimize the following cost function:

 \[J(\Theta) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}(x_i) - y_i)^2 \]
The Least-Mean-Square (LMS) method

- The Cost Function:
 \[J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (x_i^T \theta - y_i)^2 \]

- Consider a gradient descent algorithm:
 \[\theta_{j+1}^{t} = \theta_j^t - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \]

Now we have the following descent rule:

\[\theta_{j+1}^{t} = \theta_j^t + \alpha \sum_{i=1}^{n} (y_i - x_i^T \theta_j)x_{i,j} \]

- For a single training point, we have:
 - This is known as the LMS update rule, or the Widrow-Hoff learning rule
 - This is actually a "stochastic", "coordinate" descent algorithm
 - This can be used as an on-line algorithm
The Least-Mean-Square (LMS) method

- Steepest descent
 - Note that:
 \[
 \nabla_{\theta} J = \left[\frac{\partial}{\partial \theta_1} J, \ldots, \frac{\partial}{\partial \theta_k} J \right]^T = -\sum_{i=1}^{n} (y_i - x_i^T \theta) x_i
 \]

 \[
 \theta^{t+1} = \theta^{t} + \alpha \sum_{i=1}^{n} (y_i - x_i^T \theta^{t}) x_i
 \]

 - This is as a **batch** gradient descent algorithm

Some matrix derivatives

- For \(f : \mathbb{R}^{m\times n} \rightarrow \mathbb{R} \), define:

 \[
 \nabla_{A} f(A) = \left[\frac{\partial}{\partial A_{11}} f, \ldots, \frac{\partial}{\partial A_{1n}} f \right]
 \]

- Trace:

 \[
 \text{tr} A = \sum_{i=1}^{n} A_{ii}, \quad \text{tr} a = a, \quad \text{tr} ABC = \text{tr} CAB = \text{tr} BCA
 \]

- Some fact of matrix derivatives (without proof)

 \[
 \nabla_{A} \text{tr} AB = B^T, \quad \nabla_{A} \text{tr} ABA^T C = CAB + C^T AB^T, \quad \nabla_{A} |A| = |A| (A^{-1})^T
 \]
The normal equations

- Write the cost function in matrix form:

\[J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (x_i^T \theta - y_i)^2 \]

\[= \frac{1}{2} (X \theta - \bar{y})^T (X \theta - \bar{y}) \]

\[= \frac{1}{2} (\theta^T X^T X \theta - \theta^T X^T \bar{y} - \bar{y}^T X \theta + \bar{y}^T \bar{y}) \]

- To minimize \(J(\theta) \), take derivative and set to zero:

\[\nabla_{\theta} J = \frac{1}{2} X^T (X \theta - \bar{y}) = 0 \]

\[\Rightarrow X^T X \theta = X^T \bar{y} \]

\[\theta^* = \left(X^T X \right)^{-1} X^T \bar{y} \]

A recap:

- LMS update rule

\[\theta_j^{t+1} = \theta_j^t + \alpha (y_i - x_i^T \theta^t) x_{i,j} \]

- Pros: on-line, low per-step cost
- Cons: coordinate, maybe slow-converging

- Steepest descent

\[\theta^{t+1} = \theta^t + \alpha \sum_{i=1}^{m} (y_i - x_i^T \theta^t) x_i \]

- Pros: fast-converging, easy to implement
- Cons: a batch

- Normal equations

\[\theta^* = \left(X^T X \right)^{-1} X^T \bar{y} \]

- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute pseudo-inverse \((X^T X)^{-1}\), expensive, numerical issues (e.g., matrix is singular ..)
Geometric Interpretation of LMS

- The predictions on the training data are:

 \[
 \hat{y} = X\hat{\theta} = X \left(X^TX\right)^{-1}X^T\tilde{y}
 \]

- Note that

 \[
 \tilde{y} - \hat{y} = \left(X\left(X^TX\right)^{-1}X^T-I\right)\hat{y}
 \]

 and

 \[
 X^T(\tilde{y} - \hat{y}) = X^T\left(X\left(X^TX\right)^{-1}X^T-I\right)\hat{y}
 \]

 \[
 = \left(X^TX\left(X^TX\right)^{-1}X^T-X^T\right)\hat{y} = 0
 \]

 \[
 \hat{y} \quad \text{is the orthogonal projection of} \quad \tilde{y}
 \]

 into the space spanned by the column of \(X \)

Probabilistic Interpretation of LMS

- Let us assume that the target variable and the inputs are related by the equation:

 \[
 y_i = \theta^T x_i + \epsilon_i
 \]

 where \(\epsilon \) is an error term of unmodeled effects or random noise

- Now assume that \(\epsilon \) follows a Gaussian \(\mathcal{N}(0, \sigma) \), then we have:

 \[
 p(y_i | x_i; \theta) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}\right)
 \]

- By independence assumption:

 \[
 L(\theta) = \prod_{i=1}^{n} p(y_i | x_i; \theta) = \left(\frac{1}{\sqrt{2\pi} \sigma}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T x_i)^2}{2\sigma^2}\right)
 \]
Probabilistic Interpretation of LMS, cont.

- Hence the log-likelihood is:

\[l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \]

- Do you recognize the last term?

Yes it is:

\[J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (x_i^T \theta - y_i)^2 \]

- Thus under independence assumption, LMS is equivalent to MLE of \(\theta \)!

Beyond basic LR

- LR with non-linear basis functions

- Locally weighted linear regression

- Regression trees and Multilinear Interpolation
LR with non-linear basis functions

- LR does not mean we can only deal with linear relationships

- We are free to design (non-linear) features under LR

\[y = \theta_0 + \sum_{j=1}^{\infty} \theta_j \phi_j(x) = \theta^T \phi(x) \]

where the \(\phi_j(x) \) are fixed basis functions (and we define \(\phi_0(x) = 1 \)).

- Example: polynomial regression:

\[\phi(x) := [1, x, x^2, x^3] \]

- We will be concerned with estimating (distributions over) the weights \(\theta \) and choosing the model order \(M \).

Basis functions

- There are many basis functions, e.g.:
 - Polynomial \(\phi_j(x) = x^{j-1} \)
 - Radial basis functions \(\phi_j(x) = \exp \left(-\frac{(x - \mu_j)^2}{2s^2} \right) \)
 - Sigmoidal \(\phi_j(x) = \sigma \left(\frac{x - \mu_j}{s} \right) \)
 - Splines, Fourier, Wavelets, etc
1D and 2D RBFs

- **1D RBF**

 \[y^{\text{fit}} = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_3(x) \]

- **After fit:**

 \[y^{\text{fit}} = 2\phi_1(x) + 0.05\phi_2(x) + 0.5\phi_3(x) \]

Good and Bad RBFs

- **A good 2D RBF**

 ![Good 2D RBF diagram]

- **Two bad 2D RBFs**

 ![Two bad 2D RBF diagrams]
Locally weighted linear regression

- Overfitting and underfitting

\[y = \theta_0 + \theta_1 x \]
\[y = \theta_0 + \theta_1 x + \theta_2 x^2 \]
\[y = \sum_{j=0}^{5} \theta_j x^j \]

The algorithm:

Instead of minimizing

\[J(\theta) = \frac{1}{2} \sum_{i=2}^{k} (x_i^T \theta - y_i)^2 \]

now we fit \(\theta \) to minimize

\[J(\theta) = \frac{1}{2} \sum_{i=1}^{n} w_i (x_i^T \theta - y_i)^2 \]

Where do \(w_i \)'s come from?

\[w_i = \exp \left(-\frac{(x_i - x)}{2\tau^2} \right) \]

- where \(x \) is the query point for which we’d like to know its corresponding \(y \)

→ Essentially we put higher weights on (errors on) training examples that are close to the query point (than those that are further away from the query)

- Do we also have a probabilistic interpretation here (as we did for LR)?
Parametric vs. non-parametric

- Locally weighted linear regression is the first example we are running into of a non-parametric algorithm.

- The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm
 - because it has a fixed, finite number of parameters (the θ), which are fit to the data;
 - Once we've fit the θ and stored them away, we no longer need to keep the training data around to make future predictions.

- In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.

- The term "non-parametric" (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis grows linearly with the size of the training set.

Robust Regression

- The best fit from a quadratic regression
 - But this is probably better …

How can we do this?
LOESS-based Robust Regression

- Remember what we do in "locally weighted linear regression"?
 → we "score" each point for its "impotence"

- Now we score each point according to its "fitness"

Robust regression

- For $k = 1$ to R...
 - Let (x_k, y_k) be the kth datapoint
 - Let y_{est}^k be predicted value of y_k
 - Let w_k be a weight for data point k that is large if the data point fits well and small if it fits badly:
 \[
 w_k = \phi((y_k - y_{\text{est}}^k)^2)
 \]

 - Then redo the regression using weighted data points.

 - Repeat whole thing until converged!
Robust regression—probabilistic interpretation

- What regular regression does:

Assume y_k was originally generated using the following recipe:

$$y_k = \theta^T x_k + \mathcal{N}(0, \sigma^2)$$

Computational task is to find the Maximum Likelihood estimation of θ

Robust regression—probabilistic interpretation

- What LOESS robust regression does:

Assume y_k was originally generated using the following recipe:

with probability p:

$$y_k = \theta^T x_k + \mathcal{N}(0, \sigma^2)$$

but otherwise

$$y_k \sim \mathcal{N}(\mu, \sigma_{huge}^2)$$

Computational task is to find the Maximum Likelihood estimates of θ, p, μ and σ_{huge}.

- The algorithm you saw with iterative reweighting/refitting does this computation for us. Later you will find that it is an instance of the famous E.M. algorithm
Regression Tree

- Decision tree for regression

<table>
<thead>
<tr>
<th>Gender</th>
<th>Rich?</th>
<th>Num. Children</th>
<th># travel per yr.</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>No</td>
<td>2</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>M</td>
<td>No</td>
<td>0</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>M</td>
<td>Yes</td>
<td>1</td>
<td>0</td>
<td>72</td>
</tr>
</tbody>
</table>

A conceptual picture

- Assuming regular regression trees, can you sketch a graph of the fitted function $y^*(x)$ over this diagram?
How about this one?

- Multilinear Interpolation

We wanted to create a continuous and piecewise linear fit to the data

Take home message

- Gradient descent
 - On-line
 - Batch
- Normal equations
- Equivalence of LMS and MLE
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness