Machine Learning

Inference with the Joint

- Compute Conditionals

$P($ Flu \mid Headhead $)=\frac{P(\text { Flu } \wedge \text { Headhead })}{P(\text { Headhead })}$

$\neg \mathrm{F}$	$\neg \mathrm{B}$	$\neg \mathrm{H}$	0.4		
$\neg \mathrm{~F}$	$\neg \mathrm{~B}$	H	0.1		
$\neg \mathrm{~F}$	B	$\neg \mathrm{H}$	0.17		
$\neg \mathrm{~F}$	B	H	0.2		
F	$\neg \mathrm{~B}$	$\neg \mathrm{H}$	0.05		
F	$\neg \mathrm{~B}$	H	0.05		
F	B	$\neg \mathrm{H}$	0.015		
F	B	H	0.015		

- General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Conditional independence

- Write out full joint distribution using chain rule:

P(Headache;Flu;Virus;DrinkBeer)
$=P($ Headache \mid Flu;Virus;DrinkBeer $) P($ Flu;Virus;DrinkBeer
$=\frac{P(\text { Headache | Flu; Virus;DinkBeer) } P(\text { Flu|virus;DrाnkBeer }) P(\text { Virus } \mid \text { DrinkBeer })}{P(\text { DrinkBeer })}$
Assume independence and conditional independence
$=$ (Headache)

- In mosteases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Rules of Independence --- by examples

- $P($ Virus | DrinkBeer $)=P($ Virus $)$ iff Virus Is independent of DrinkBeer
- $P($ Flu | Virus; prinkBeet $))=P($ Flul (irus)
iff Flu is independent of DrinkBeer, given Virus

- $(P$ (Headache | Flu;Virus;DrinkBe $)=P$ (Headache|Flu;DrinkBeer)
iff Headache is independent of Virus, given Flu and DrinkBeer

Marginal and Conditional Independence

- Recall that for events E (i.e. $X=x$) and H (say, $Y=y$), the conditional probability of E given H, written as $P(E \mid H)$, is

$$
P(E \text { and } H) / P(H)
$$

(= the probability of both E and H are true, given H is true)

- E and H are (statistically) independent if

$$
P(E)=P(E \mid H)
$$

(i.e., prob. E is true doesn't depend on whether H is true); or equivalently

$$
P(E \text { and } H)=P(E) P(H) \text {. }
$$

- $\quad E$ and F are conditionally independent given H if

$$
P(E \mid H, F)=P(E \mid H)
$$

or equivalently

$$
P(E, F \mid H)=P(E \mid H) P(F \mid H)
$$

Why knowledge of Independence is useful

- Lower complexity (tim

- Motivates efficient inference for all kinds of queries Stay tuned !!
- Structured knowledge about the domain
- easy to learning (both from expert and from data)
- easy to grow

Where do probability distributions come from?

- Idea One: Human, Domain Experts
- Idea Two: Simpler probability facts and some algebra e.g., $\quad P(F)$

P(B)
$P(H \mid \neg F, B)$
$P(H \mid F, \neg B)$

$\neg \mathrm{F}$	$\neg \mathrm{B}$	$\neg \mathrm{H}$	0.4		
$\neg \mathrm{~F}$	$\neg \mathrm{~B}$	H	0.1		
$\neg \mathrm{~F}$	B	$\neg \mathrm{H}$	0.17		
$\neg \mathrm{~F}$	B	H	0.2		
F	$\neg \mathrm{~B}$	$\neg \mathrm{H}$	0.05		
F	$\neg \mathrm{~B}$	H	0.05		
F	B	$\neg \mathrm{H}$	0.015		
F	B	H	0.015		

- Idea Three: Learn them from data!
- A good chunk of this course is essentially about various ways of learning various forms of them!

Density Estimation

- A Density Estimator learns a mapping from a set of attributes to a Probabilitv

- Often known as parameter estimation if the distribution form is specified
- Binomial, Gaussian ...
- Three important issues:
- Nature of the data (iid, correlated, ...)
- Objective function (MLE, MAP, ...)
- Algorithm (simple algebra, gradient methods, EM, ...)
- Evaluation scheme (likelihood on test data, predictability, consistency, ...)

Parameter Learning from iid data

- Goal: estimate distribution parameters θ from a dataset of N (independent, identically distribyted (iid), fully observed, training cases

- Maximum likelihood estimation (MLE)

1. One of the most common estimators
2. With iid and full-observability assumptions, write $L(\theta)$ as the likelihood of the data:

3. pick the setting of parameters most tikely to have generated the data we saw:

$$
\theta^{*}=\arg \max _{\theta}(\tilde{L}(\theta))=\arg \max _{\theta} \log L(\theta)
$$

Example 1: Bernoulli model

- Data:
- We observed Niid coin tossing: $D=\{1,0,1, \ldots, 0\}$
- Representation:
Binary r.v: $\quad x_{n}=\{0,1\}$
- Model:

$$
P(x)=\left\{\begin{array}{ll}
1-p & \text { for } x=0 \\
p & \text { for } x=1
\end{array} \quad \Rightarrow \quad P(x)=\theta^{x}(1-\theta)^{1-x}\right.
$$

- How to write the likelihood of a single observation x_{i} ?
$P\left(x_{i}\right)=\theta^{x_{i}}(1-\theta)^{1-x_{i}}$
- The likelihood of dataset $D=\left\{x_{1}, \ldots, x_{N}\right\}$:
$P\left(x_{1}, x_{2}, \ldots, x_{N} \mid \theta\right)=\prod_{i=1}^{N} P\left(x_{i} \mid \theta\right) \prod^{N}\left(\theta^{x_{x}^{x}}(1-\theta)^{1-x_{i}}\right)=\theta^{\sum_{i=1}^{N}}(1-\theta)^{\sum_{n-1-x_{i}}^{N}}=\theta^{\text {mpead }}(1-\theta)^{\text {tuals }}$

MLE

- Objective function:
$\left(\ell(\theta ; D)=\log P(D \mid \theta)=\log \theta^{n_{h}}(1-\theta)^{n_{t}} \Rightarrow\left(n_{h}\right] \log \theta\right)+\left(\sqrt{\left.1-n_{h}\right) \log (1-\theta)}\right.$
- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

$$
\left.\frac{\partial \ell}{\partial \theta}=\left|\frac{\left.n_{h}-\frac{N-n_{h}}{\theta} \right\rvert\,}{1-\theta}\right|=0 \quad \hat{\theta}_{M L E}=\frac{n_{n}}{N} \quad \text { or } \hat{\theta}_{M L E}=\frac{1}{N} \sum_{i} x_{i}\right)
$$

- Sufficient statistics
- The counts, n_{h}, where $n_{k}=\sum_{i} x_{i}$, are sufficient statistics of data D

MLE for discrete (joint) distributions

- More generally, it is easy to show that

- This is an important (but sometimes not so effective) learning algorithm!

$\neg F$	$\neg B$	$\neg H$	0.4		
$\neg F$	$\neg B$	H	0.1		
$\neg F$	B	$\neg H$	0.17		
$\neg F$	B	H	0.2		
F	$\neg B$	$\neg H$	0.05		
F	$\neg B$	H	0.05		
F	B	$\neg H$	0.015		
F	B	H	0.015		

Example 2: univariate normal

- Data:
- We observed Niid real samples:
$D=\{-0.1,10,1,-5.2, \ldots, 3\}$
- Model: $\quad P(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\}$
- Log likelihood:

$$
\ell(\theta ; D)=\log P(D \mid \theta)=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \sum_{n=1}^{N} \frac{\left(x_{n}-\mu\right)^{2}}{\sigma^{2}}
$$

- MLE: take derivative and set to zero:

$$
\begin{array}{ll}
\frac{\partial \boldsymbol{\ell}}{\partial \mu}=\left(1 / \sigma^{2}\right) \sum_{n}\left(x_{n}-\mu\right) \\
\frac{\partial \boldsymbol{\ell}}{\partial \sigma^{2}}=-\frac{N}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{n}\left(x_{n}-\mu\right)^{2}
\end{array} \quad \begin{aligned}
& \mu_{M L E}=\frac{1}{N} \sum_{n}\left(x_{n}\right) \\
& \sigma_{M L E}^{2}=\frac{1}{N} \sum_{n}\left(x_{n}-\mu_{M L}\right)^{2}
\end{aligned}
$$

Overfitting

- Recall that for Bernoulli Distribution, we have

$$
\left(\bar{\theta}_{M L}^{\text {head }}=\frac{n^{\text {head }}}{n^{\text {head }}+n^{\text {tail }}}\right.
$$

- What if we tossed too few times so that we saw zero head? We have $\bar{\theta}_{M}^{\text {head }}=0$, and we will predict that the probability of seeing a head next is zero!!!
- The rescue:
- Where n^{\prime} is know as the (oseudo- (imacinary) count

- But can we make this more formal?

The Bayesian Theory

- The Bayesian Theory: (e.g., for date D and model M)

$$
P(M \mid D)=P(D \mid M) P(M) / P(D)
$$

- the posterior equals to the likelihood times the prior, up to a constant.
- This allows us to capture uncertainty about the model in a principled way

Hierarchical Bayesian Models

- θ are the parameters for the likelihood $p(x \mid \theta)$
- α are the parameters for the prior $p(\theta \mid \alpha)$.
- We can have hyper-hyper-parameters, etc.
- We stop when the choice of hyper-parameters makes no difference to the marginal likelihood; typically make hyperparameters constants.
- Where do we get the prior?
- Intelligent guesses
- Empirical Bayes (Type-II maximum likelihood)
\rightarrow computing point estimates of α :

$$
\hat{\bar{\alpha}}_{\text {MLE }}=\arg \max _{\bar{\alpha}}=p(\vec{n} \mid \vec{\alpha})
$$

Bayesian estimation for Bernoulli

- Beta distribution:

$$
P(\theta ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}=B(\alpha, \beta) \theta^{\alpha-1}(1-\theta)^{\beta-1}
$$

- Posterior distribution of θ :

$$
P\left(\theta \mid x_{1}, \ldots, x_{N}\right)=\frac{p\left(x_{1}, \ldots, x_{N} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{N}\right)} \propto \theta^{n_{n}}(1-\theta)^{n_{t}} \times \theta^{\alpha-1}(1-\theta)^{\beta-1}=\theta^{n_{h}+\alpha-1}(1-\theta)^{n_{t}+\beta-1}
$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a conjugate prior

Bayesian estimation for Bernoulli, con'd

- Posterior distribution of θ :

$$
P\left(\theta \mid x_{1}, \ldots, x_{N}\right)=\frac{p\left(x_{1}, \ldots, x_{N} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{N}\right)} \propto \theta^{n_{n}}(1-\theta)^{n_{t}} \times \theta^{\alpha-1}(1-\theta)^{\beta-1}=\theta^{n_{n}+\alpha-1}(1-\theta)^{n_{t}+\beta-1}
$$

- Maximum a posteriori (MAP) estimation:

$$
\theta_{M A P}=\arg \max _{\theta} \log P\left(\theta \mid x_{1}, \ldots, x_{N}\right)
$$

- Posterior mean estimation:

$$
\theta_{\text {Bayes }}=\int \theta p(\theta \mid D) d \theta=C \int \theta \times \theta^{n_{h}+\alpha-1}(1-\theta)^{n_{t}+\beta-1} d \theta=\frac{n_{h}+\alpha}{N+\alpha+\beta}
$$

- Prior strength: $\mathrm{A}=\alpha+\beta$
- A can be interoperated as the size of an imaginary data set from which we obtain the pseudo-counts

Effect of Prior Strength

- Suppose we have a uniform prior ($\alpha=\beta=1 / 2 \times \mathrm{A}$), and we observe $\vec{n}=\left(n_{h}=2, n_{t}=8\right)$
- Weak prior $\mathrm{A}=2$. Posterior prediction:

$$
p\left(x=h \mid n_{h}=2, n_{t}=8, \bar{\alpha}=\bar{\alpha}^{\prime} \times 2\right)=\frac{1+2}{2+10}=0.25
$$

- Strong prior A = 20. Posterior prediction:

$$
p\left(x=h \mid n_{h}=2, n_{t}=8, \bar{\alpha}=\vec{\alpha}^{\prime} \times 20\right)=\frac{10+2}{20+10}=0.40
$$

- However, if we have enough data, it washes away the prior. e.g., $\vec{n}=\left(n_{h}=200, n_{t}=800\right)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2

Bayesian estimation for normal distribution

- Normal Prior:

$$
P(\mu)=\left(2 \pi \tau^{2}\right)^{-1 / 2} \exp \left\{-\left(\mu-\mu_{0}\right)^{2} / 2 \tau^{2}\right\}
$$

- Joint probability:

$$
\begin{aligned}
P(x, \mu)= & \left(2 \pi \sigma^{2}\right)^{-N / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \\
& \times\left(2 \pi \tau^{2}\right)^{-1 / 2} \exp \left\{-\left(\mu-\mu_{0}\right)^{2} / 2 \tau^{2}\right\}
\end{aligned}
$$

- Posterior:

Machine Learning

Machine learning for apartment hunting

- Now you've moved to Pittsburgh!!
And you want to find the most reasonably priced apartment satisfying your needs:

Living area $\left(\mathrm{ft}^{2}\right)$	\# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
\ldots	1	
150	1.5	$?$
270	$?$	

Linear Regression

- Assume that Y (target) is a linear function of X (features):
- eng.:

- let's assume a vacuous "feature" $X_{0}=1$ (this is the intercept term, why?), and define the feature vector to be:

$$
x=\left[1, x_{1}, x_{2}\right]^{\top}
$$

- then we have the following general representation of the linear function:

$$
\hat{y}^{\hat{y}=x^{\top} \theta}
$$

- Our goal is to pick the optimal θ. How!
- We seek θ that minimize the following cost function:

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(\hat{y}_{i}\left(\vec{x}_{i}\right) y_{i}\right)^{2}
$$

x

The Least－Mean－Square（LMS） method

－The Cost Function：

$$
\left(J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{T} \theta-y_{i}\right)^{2}\right.
$$

－Consider a gradient descent algorithm：

$$
\begin{aligned}
& \theta_{j}^{t+1}=\theta_{j}^{t}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta) \\
& =\theta_{j}^{+}=\alpha \frac{1}{2} \sum_{i=i}^{n} R\left(x_{i}^{i} t-y_{i}\right) \frac{d}{d \theta_{j}}\left(x_{i}^{i} \theta_{i}\right) \\
& =\theta_{j}{ }^{t}{ }^{*} \alpha \sum_{i=1}^{n}\left(x_{i}^{\top} \theta-y_{i}\right)+\frac{x_{i j}}{j}
\end{aligned}
$$

The Least－Mean－Square（LMS） method

 0
－This is known as the LMS update rule，or the Widrow－Hoff learning rule
－This is actually a＂stochastic＂，＂coordinate＂descent algorithm
－This can be used as an on－line alggrithm

The Least-Mean-Square (LMS) method

- Steepest descent

- This is as batch gradent descent algorithm

Some matrix derivatives

- For $f: R^{m \times n} \mapsto R$, define:
- Trace:

$$
\nabla_{A} f(A)=\left[\begin{array}{ccc}
\frac{\partial}{\partial A_{11}} f & \cdots & \frac{\partial}{\partial A_{1 n}} f \\
\vdots & \ddots & \vdots \\
\frac{\partial}{\partial A_{1 m}} f & \cdots & \frac{\partial}{\partial A_{m n}} f
\end{array}\right]
$$

- Some fact of matrix derivatives (without proof)
$\backslash \nabla_{A} \operatorname{tr} A B=B^{T}, \quad \nabla_{A} t \operatorname{trABA^{T}C}=C A B+C^{T} A B^{T}$

The normal equations

- Write the cost function in matrix form:

- To minimize $J(\theta)$, take derivative and set to zero:

A recap:

- LMS update rule

$$
\theta_{j}^{t+1}=\theta_{j}^{t}+\alpha\left(y_{i}-\mathbf{x}_{i}^{T} \theta^{t}\right) x_{i, j}
$$

- Pros: on-line, low per-step cost
- Cons: coordinate, maybe slow-converging
- Steepest descent

$$
\theta^{t+1}=\theta^{t}+\alpha \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{T} \theta^{t}\right) \mathbf{x}_{i}
$$

- Pros: fast-converging, easy to implement
- Cons: a batch,
- Normal equations

$$
\theta^{*}=\left(X^{T} X\right)^{-1} X^{T} \stackrel{\rightharpoonup}{y}
$$

- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute pseudo-inverse $\left(X^{T} X\right)^{-1}$, expensive, numerical issues (e.g., matrix is singular ..)

Geometric Interpretation of LMS

- The predictions on the training data are:
- Note that

$$
\hat{\hat{y}}=X \theta^{*}=X\left(X^{T} X\right)^{-1} X^{T} \stackrel{y}{y}
$$

and
$X^{T}(\hat{\bar{y}}-\bar{y})=X^{T}\left(X\left(X^{T} X\right)^{-1} X^{T}-I\right) \bar{y}$
$=\left(X^{T} X\left(X^{T} X\right)^{-1} X^{T}-X^{T}\right) \bar{y}$
$\hat{\vec{y}}$ is the orthogonal projection of \vec{y} into the space spanned by the column of X

Probabilistic Interpretation of LMS

- Let us assume that the target variable and the inputs are related by the equation:

$$
y_{i}=\theta^{T} \mathbf{x}_{i}+\xi_{i}
$$

where ε is an error term of unmodeled effects or random noise

- Now assume that ε follows a Gaussian $N(0, \sigma)$, then we have:

$$
p\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\frac{\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

- By independence assumptient.

$$
L(\theta)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i} ; \theta\right)\left(=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left(-\frac{\sum_{i=1}^{n}\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)\right)
$$

Probabilistic Interpretation of LMS, cont.

- Hence the log-likelihood is:

$$
l(\theta)=n \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{\sigma^{2}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Do you recognize the last term?

Yes it is: $\quad J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}{ }^{T} \theta-y_{i}\right)^{2}$

- Thus under independence assumption, LMS is equivalent to MLE of θ !

- LR with non-linear basis functions
- Locally weighted linear regression
- Regression trees and Multilinear Interpolation

LR with non-linear basis functions

- LR does not mean we can only deal with linear relationships
- We are free to design (non-linear) features under LR

$$
y=\theta_{0}+\sum_{j=1}^{m} \theta_{f} \phi(x)=\theta^{T} \phi(x)
$$

where the $\phi_{j}(x)$ are fixed basis functions (and we define $\phi_{0}(x)=1$).

- Example: polynomial regression:

$$
\phi(x):=\left[1, x, x^{2}, x^{3}\right]
$$

- We will be concerned with estimating (distributions over) the weights θ and choosing the model order M.

Basis functions

- There are many basis functions, e.g.:
- Polynomial $\phi_{j}(x)=x^{j-1}$
- Radial basis functions $\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right)$
- Sigmoidal $\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)$
- Splines, Fourier, Wavelets, etc

1D and 2D RBFs

- 1D RBF

$$
y^{\text {est }}=\beta_{1} \phi_{1}(x)+\beta_{2} \phi_{2}(x)+\beta_{3} \phi_{3}(x)
$$

- After fit:

$$
y^{\text {pst }}=2 \phi_{1}(x)+0.05 \phi_{2}(x)+0.5 \phi_{3}(x)
$$

Good and Bad RBFs

- Two bad 2D RBFs

Locally weighted linear regression

- Overfitting and underfitting

$y=\theta_{0}+\theta_{1} x$

$y=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}$

$y=\sum_{j=0}^{5} \theta_{j} x^{j}$

Locally weighted linear regression

- The algorithm:

Instead of minimizing

now we fit θ to minimize $\left.\quad J(\theta)=\frac{1}{2} \sum_{i=1}^{n}(\widetilde{W}) \mathbf{x}_{i}^{T} \theta-y_{i}\right)^{2}$

- where \mathbf{x} is the query point for whicitwednke to know its corresponding \mathbf{y}
\rightarrow Essentially we put higher weights on (errors on) training examples that are close to the query point (than those that are further away from the query)
- Do we also have a probabilistic interpretation here (as we did for LR)?

Parametric vs. non-parametric

- Locally weighted linear regression is the first example we are running into of a non-parametric algorithm.
- The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm
- because it has a fixed, finite number of parameters (the θ), which are fit to the data;
- Once we've fit the θ and stored them away, we no longer need to keep the training data around to make future predictions.
- In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis grows linearly with the size of the training set.

Robust Regression

- The best fit from a quadratic regression

- But this is probably better ...

How can we do this?

LOESS-based Robust Regression

- Remember what we do in "locally weighted linear regression"?
\rightarrow we "score" each point for its"impotence")
- Now we score each point according to its "fitness")

Robust regression

- For $\mathrm{k}=1$ to R...
- Let $\left(x_{k}, y_{k}\right)$ be the kth datapoint
- Let $y^{\text {est }}{ }_{k}$ be predicted value of y_{k}
- Let w_{k} be a weight for data point k that is large if the data point fits well and small if it fits badly:

- Then redo the regression using weighted data points.
- Repeat whole thing until converged!

Robust regression—probabilistic interpretation

- What regular regression does:

Assume y_{k} was originally generated using the following recipe:

$$
y_{k}=\theta^{T} \mathbf{x}_{k}+\mathcal{N}\left(0, \sigma^{2}\right)
$$

Computational task is to find the Maximum Likelihood estimation of θ

Robust regression—probabilistic interpretation

- What LOESS robust regression does:

Assume y_{k} was originally generated using the following recipe:

but otherwise

Computational task is to find the Maximum Likelihood estimates of θ, p, μ and $\sigma_{\text {huge }}$.

- The algorithm you saw with iterative reweighting/refitting does this computation for us. Later you will find that it is an instance of the famous E.M. algorithm

Regression Tree

- Decision tree for regression

Gender	Rich?	Num. Children	\# travel per yr.	Age
F	No	2	5	38
M	No	0	2	25
M	Yes	1	0	72
$:$	$:$	$:$	$:$	$:$

A conceptual picture

- Assuming regular regression trees, can you sketch a graph of the fitted function $\mathrm{y}^{\star}(\mathrm{x})$ over this diagram?

How about this one?

- Multilinear Interpolation

- We wanted to create a continuous and piecewise linear fit to the data

Take home message

- Gradient descent
- On-line
- Batch
- Normal equations
- Equivalence of LMS and MLE
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness

