Machine Learning

10-701/15-781, Fall 2006

Tutorial on Basic Probability

Reading: Chap. 1&2, CB & Chap 5,6, T1M

Eric Xing, ML/CMU

What is this?

e w Figasns

e Classical Al and ML research ignored this phenomena

e The Problem (an example):

e you want to catch a flight at 10:00am from Pitt to SF, can | make it if | leave at
7am and take a 28X at CMU?

partial observability (road state, other drivers' plans, etc.)
noisy sensors (radio traffic reports)

uncertainty in action outcomes (flat tire, etc.)

immense complexity of modeling and predicting traffic

e Reasoning under uncertainty!
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Basic Probability Concepts

\
e A sample space S is the set of all possible outcomes of a

conceptual or physical, repeatable experiment. (S can be finite

or infinite.)
e E.g., Smay be the set of all possible outcomes Y
3 Ol
of a dice roll: 5 ={1,2,3,4,5,6} )

e E.g., Smay be the set of all possible nucleotides
of a DNA site: 5 = {A,T,C,G}
e E.g., Smay be the set of all possible positions time-space positions
of a aircraft on a radar screen: S ={0,R,,,.}>x{0,360°}x{0,+x}
e Anevent A is the any subset S':

e Seeing "1" or "6" in a roll; observing a "G" at a site; UAOO7 in space-time interval X

e An event space E is the possible worlds the outcomes can
happen

e All dice-rolls, reading a genome, monitoring the radar signal
Eric Xing, ML/CMU

Visualizing Probability Space

e A probability space is a sample space of which, for every
subset se S, there is an assignment A(s)e S such that:
o 0<P(s) <1
© Io P91

e P(s)is called the probability (or probability mass) of s

Event space of all

possible worlds. Worlds in

. which A
Its area is 1

is true

P(a) is the area of the oval
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Kolmogorov Axioms 5
e All probabilities are between 0 and 1
o 0<PX)<1
o P(true) =1
e regardless of the event, my outcome is true
e P(false)=0
e no event makes my outcome true
e The probability of a disjunction is given by
o P(AvB)=P(A)+ P(B) - P(A A B)
AVB ?
[ X X ]
0000
[ X LX)
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Why use probability? :

e There have been attempts to develop different methodologies for
uncertainty:
e  Fuzzy logic
e Qualitative reasoning (Qualitative physics)

e “Probability theory is nothing but common sense reduced to
calculation”
e — Pierre Laplace, 1812.

e In 1931, de Finetti proved that it is irrational to have beliefs that
violate these axioms, in the following sense:

e If you bet in accordance with your beliefs, but your beliefs violate the axioms, then you can be
guaranteed to lose money to an opponent whose beliefs more accurately reflect the true state
of the world. (Here, “betting” and “money” are proxies for “decision making” and “utilities”.)

e What if you refuse to bet? This is like refusing to allow time to pass:

every action (including inaction) is a bet
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Random Variable

\
e A random variable is a function that associates a unique

numerical value (a token) with every outcome of an
experiment. (The value of the r.v. will vary from trial to trial as
the experiment is repeated) Xo)
e Discreter.v.:

The outcome of a dice-roll X

The outcome of reading a nt at site i x.
e Binary event and indicator variable:

Seeing an "A" at a site = X=1, o/lw X=0.

This describes the true or false outcome a random event.

Can we describe richer outcomes in the same way? (i.e., X=1, 2, 3, 4, for being A, C, G,
T) --- think about what would happen if we take average of X

e Unit-Base Random vector
X=[Xop, Xivs Xigo X, XF[0,0,1,0]' = seeing a "G" at site /

e Continuous r.v.:
The outcome of recording the true location of an aircraft:

The outcome of observing the measured location of an aircraft ~ Xx,.
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Discrete Prob. Distribution

e (In the discrete case), a probability distribution P on S (and
hence on the domain of X') is an assignment of a non-negative
real number P(s) to each se 5 (or each valid value of x) such that
.. sP(5)=1. (0<P(s) <1)

e intuitively, P(s) corresponds to the frequency (or the likelihood) of getting s'in the
experiments, if repeated many times
e call 6= P(s) the parameters in a discrete probability distribution

e A probability distribution on a sample space is sometimes called
a probability model, in particular if several different distributions
are under consideration
e write models as M;, M,, probabilities as P(X|M,), P(XIM,)

e e.g., M, may be the appropriate prob. dist. if X is from "fair dice", M, is for the
"loaded dice".

e M is usually a two-tuple of {dist. family, dist. parameters}

Eric Xing, ML/CMU
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Discrete Distributions o
\
e Bernoulli distribution: Ber(p) —_—
_J1-p forx=0 . » ‘
P(X)—{p for x -1 =  Px)=p*l-p) ‘
e Multinomial distribution: Mult(1, &) |
e Multinomial (indicator) variable:
Xl
X, X;=[01], and Y X;=1
X Jel1,...8] £y
X = Xj where o & ::
X, X;=1w.p. 6, lezfl' \._../-, 4=
X b

6

p(x(j)) = P{X, =1, where j index the dice - face})
=0,= 0, %0, x 0, x0," = Hé’kxk =0"
k
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Discrete Distributions

e Multinomial distribution: Mult(#, 6)

e Count variable:

X1
X=|:1, WhereZXJ:n
J
XK
n! n!
pX)=———— 00,0 =————— 0
PAP AP PAP AR
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Continuous Prob. Distribution

e A continuous random variable X can assume any value in an
interval on the real line or in a region in a high dimensional
space

e X usually corresponds to a real-valued measurements of some property, e.g.,
length, position, ...

e Itis not possible to talk about the probability of the random variable assuming a
particular value --- P(x) = 0

e Instead, we talk about the probability of the random variable assuming a value within
a given interval, or half interval

P(X e[x, X)),

P(X <x)=P(X e[-0,x])

Arbitrary Boolean combination of basic propositions

o000

cose

. . . . [ X X )
Continuous Prob. Distribution B

e The probability of the random variable assuming a value within
some given interval from x; to x, is defined to be the area under
the graph of the probability density function between x; and x..

e Probability mass: A(X e[x,, x,])= _[:2 p(x)dx,

100

note that j.v:p(x)dx =1. Ao ““e"“'i }n
75th percentile
e Cumulative distribution function (CDF): o j
Median
P(x) :P(X<X):'[X, p(xadx' a0
e Probability density function (PDF): =
ok By

d
(%)== P(x)
P ax ( : !
Car flow on Liberty Bridge (cooked up!)

J ’p(X)dX:lJ p(x)>0,vx 12
Eric Xing, ML/CMU _




What is the intuitive meaning of

p(x)

o If
P(x;) = aand p(x;) = b,
then when a value X is sampled from the distribution with density p(x), you are
a/b times as likely to find that X is “very close to” x, than that X is “very close to”
e Thatis:

x+h
im/’(xﬁh<X<X1+/7):L,hp(x)d)(:p(»q)x%:f/
0 P(x,—h< X < x,+h) J.XZ‘:/J(X)C/X plxy)x2h /b

|
h
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Continuous Distributions :
e Uniform Probability Density Function
p(x)=1l(b-a) fora<x<b
=0 elsewhere
e Normal (Gaussian) Probability Density Function
1 2125°
(X) _ e*()(*}l) o
P \Jero
. The distribution is symmetric, and is often illustrated
as a bell-shaped curve. “
e  Two parameters, « (mean) and o (standard deviation), determine the location and shape of the distribution.
. The highest point on the normal curve is at the mean, which is also the median and mode.
. The mean can be any numerical value: negative, zero, or positive.
e Exponential Probability Distribution fi)
; P(x<2)=area= 4866
1 o
. xlu ~ 1] B
density: p(x)=—e™"“,  CDF: P(x <x,)=1-e " . .
M 123456782910

Time Between Successive Arrivals (njns)
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Statistical Characterizations

e Expectation: the centre of mass, mean value, first moment):

> xp(x)  discrete
ieS

E(X)=1«
jxp(x)dx continuous

—0

e Sample mean: il
h=5 X
i=1
e Variance: the spreadness:

D% —E(X)F p(x) discrete

Var(X) = st
j[x— E(X)J p(x)dx continuous

e Sample variance 1 N
2 2
T —
N_1 7;:§ 1( i — )

15
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Gaussian (Normal) density in 1D

o If X ~ N(u, 02), the probability density function (pdf) of X is
defined as

—(x-p)?120°

()=
P ore

e We will often use the precision A = 1/02 instead of the variance 2.
e Here is how we plot the pdf in matlab

xs=-3:0.01:3;

plot(xs,normpdf(xs,mu,sigma))

ool

e Note that a density evaluated at a point can be bigger than 1!
16
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Gaussian CDF

\
e If Z~N(O, 1), the cumulative density function is defined as

P(x)= J: p(z)dz

—zZ/ZC,/‘z

_ ! [e
e This has no closed form expression, but is built in to most
software packages (eg. normcdf in matlab stats toolbox).

. stanzar Hommal , GaUssan oF

LH
[H
o7,

£ oz zos

03

o1
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Use of the cdf :
o If X~N(u, 02), then Z = (X — u)/o ~ N(O, 1).
e How much mass is contained inside the [-1.980,1.980]
interval?
Pla<X <b)=P(t < Z <2ty =P(2t) - H(“)
e Since ;’ﬂi 3 -
p(Z < -1.96) = normcdf(-1.96) = 0.025 * £\ f /

e nve Y/ N\ i/

P(-20 < X-p <20) =1 -2 x0.025 = 0.95

Eric Xing, ML/CMU




Central limit theorem

\
o If (X, ,X,, ... X,)arei.i.d. (we will come back to this point

shortly) continuous random variables
e Then define
X = F (X Xy X) == 3 X,
e As n - infinity, =
p(f) - Gaussian with mean E[X] and variance Var[X]

3 3 3
M =1 M=2 “|M =10
2 2 )
1 1 1
] 0

0
0 0.5 1 0 0.5 1 0 0ns 1

e Somewhat of a justification for assuming Gaussian noise is
common

Eric Xing, ML/CMU
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Elementary manipulations of
probabilities

e Set probability of multi-valued r.v.

o P({x=0dd}) = P(1)+P(3)+P(5) = 1/6+1/6+1/6 = %

e Multi-variant distribution:

e Joint probability: P(X =true Y =true)

P A X =xv X =0 v X =)= PY A X =) u
=i

e Marginal Probability: A(Y)=> PV A X =x))
jes

Eric Xing, ML/CMU




Conditional Probability

\
e P(X]Y) = Fraction of worlds in which X is true that also have Y

true
e H="having a headache"
e F ="coming down with Flu"
P(H)=1/10
P(F)=1/40
P(HIF)=1/2
e P(H|F) = fraction of flu-inflicted worlds in which you have a headache
= P(HAF)/P(F)

e Definition:

P(le):%

e Corollary: The Chain Rule u

PXAY)=PX|YV)PY)

. P(lexz‘ ----- XN):P(Xlelvxz ----- XN 1)P(XN 1|X1vxz‘ ----- XN 2)“‘P(X2‘X1)P(X1) 21
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Probabilistic Inference

e H="having a Headache"

e F ="coming down with Flu"
P(H)=1/10
P(F)=1/40
P(H|F)=1/2

e One day you wake up with a headache. You come with the
following reasoning: "since 50% of flues are associated with
headaches, so | must have a 50-50 chance of coming down
with flu”

Is this reasoning correct?

22
Eric Xing, ML/CMU
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Probabilistic Inference

e H ="having a Headache"

e F ="coming down with Flu"
P(H)=1/10
P(F)=1/40
P(H|F)=1/2

e The Problem:

P(FIH) = 7

23
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The Bayes Rule

e What we have just did leads to the following general
expression:

PX1Y)pY)

PV X)= POX)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

24
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[ X X ]
More General Forms of Bayes e,
Rule eset
PXIV)PWY)
*  PYIX)=
VI B X ey + PXT V)P )
PX1Y)PWY)
PY =y, | X)=
S S Xy =y =)
[ ]
PXIYAZ)pY AZ) PX|YANZ)p(Y NZ)
PYIXAZ)= PXAZ) CPXTYAZ)P(YAZ)+PX[ Y AZ)p(Y A Z)
e P(Flu| Headhead A DrankBeer)
[ X X ]
0000
L X X R
Prior Distribution ess

e Support that our propositions about the possible has a "causal
flow"

o ) (®)

e Prior or unconditional probabilities of propositions
e.g., P(Flu =true) = 0.025 and P(DrinkBeer =true) = 0.2

correspond to belief prior to arrival of any (new) evidence

e A probability distribution gives values for all possible
assignments:
e P(DrinkBeer) =[0.01,0.09, 0.1, 0.8]
e (normalized, i.e., sums to 1)

2
Eric Xing, ML/CMU 6
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Joint Probability

e A joint probability distribution for a set of RVs gives the
probability of every atomic event (sample point)

e P(Flu,DrinkBeer) = a 2 x 2 matrix of values:

B B
F 0.005 |0.02
-F 0.195 [0.78

e P(Flu,DrinkBeer, Headache) = ?

e Every question about a domain can be answered by the joint distribution,
as we will see later.

27
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Posterior conditional probability

e Conditional or posterior (see later) probabilities
e e.g., P(FlulHeadache) = 0.178
- given that Headache is all | know
NOT “if Headache then 17.8% chance of Flu”

Representation of conditional distributions:
e P(Flu|Headache) = 2-element vector of 2-element vectors

e If we know more, e.g., DrinkBeer is also given, then we have
e P(Flu|Headache,DrinkBeer) = 0.070  This effect is known as explain away!
e P(Flu|Headache,Flu) = 1

e Note: the less or more certain belief remains valid after more evidence arrives,
but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
e P(Flu|Headache,StealerWin) = P(Flu|Headache)
e This kind of inference, sanctioned by domain knowledge, is crucial

2
Eric Xing, ML/CMU 8
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Inference by enumeration

e Start with a Joint Distribution

Prob

e Building a Joint Distribution

0.4

0.1

of M=3 variables

0.17

0.2

e Make a truth table listing all

0.05

combinations of values of your

0.05

variables (if there are M Boolean

0.015

e Bl k=R k= =R E=R |

variables then the table will have

ala|lolo|lm|=-|o|lo|lw

slo|a|o|a|o|=|o|x

0.015

2M rows).

e For each combination of values,
say how probable it is.

e Normalized, i.e., sums to 1

Eric Xing, ML/CMU

Inference with the Joint

e Once you have the JD you can

ask for the probability of any

atomic event consistent with you

query

P(E)=> P(row,)

ieE

oo
eeeo
00060060
ev00
0000
(LX)
(X J

-F [-B [-H [o4

-F [-B [H o1

-F [B |[-H o047

-F [B |H o2

F |-B |-H |o005

F [B |H [o005

F |[B |-H [o015

F [B |H [oo015

Eric Xing, ML/CMU
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Inference with the Joint

o Compute Marginals

P(Flu A Headache) =

oo
eeeo
eeson
[ X X X
o000
00
L X J

-F |[B |-H |04

-F |8 |[H o1

-F |[B  [-H o047

-F [B |H o2

F |8 |-H [o005

F |8 |H [o005

F [B |-H o015

F [B |H o015

Eric Xing, ML/CMU
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Inference with the Joint

e Compute Marginals

P(Headache) =

oo
eeeo
00060060
ev00
0000
(LX)
(X J

-F [-B [-H [o4

-F [-B [H o1

-F [B |[-H o047

-F [B |H o2

F |-B |-H |o005

F [B |H [o005

F |[B |-H [o015

F [B |H [oo015

Eric Xing, ML/CMU
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Inference with the Joint

e Compute Conditionals -F [-B [-H |o4
-F -B H 0.1
-F B “H 0.17
P E E -F B H 0.2
A B |-
P(E1|E2)= ( 1 2) F _‘B H |0.05
P(EZ) F B H 0.05
F B “H 0.015
z P(row,) F |8 [n Joots
o ieE;NE,
> P(row,)
ik,

Eric Xing, ML/CMU
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Inference with the Joint

e Compute Conditionals

P(FIu\Headhead) _ P(Flu A Headhead)

P(Headhead)

oo
eeeo
00060060
ev00
0000
(LX)
(X J

-F [-B [-H [o4

-F [-B [H o1

-F [B |[-H o047

-F [B |H o2

F |-B |-H |o005

F [B |H [o005

F |[B |-H [o015

F [B |H [oo015

e General idea: compute distribution on query
variable by fixing evidence variables and
summing over hidden variables

Eric Xing, ML/CMU
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Summary: Inference by sete
o000
H o0
enumeration o
e Let X be all the variables. Typically, we want
e the posterior joint distribution of the query variables Y
e given specific values e for the evidence variables E.
e We write the hidden variables as H = X-Y-E
e Then the required summation of joint entries is done by
summing out the hidden variables:
P(Y|E=e)=aP(Y,E=e)=a},P(Y,E=e, H=h)
e The terms in the summation are joint entries because Y, E,
and H together exhaust the set of random variables
e Obvious problems:
e Worst-case time complexity O(d") where d is the largest arity
e Space complexity O(d") to store the joint distribution
e How to find the numbers for O(d") entries???
Eric Xing, ML/CMU *
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Conditional independence o

e Write out full joint distribution using chain rule:

P(Headache;Flu;Virus;DrinkBeer)
P(Headache | Flu;Virus;DrinkBeer) P(Flu;Virus;DrinkBeer)

= P(Flu | Virus;DrinkBeer) P(Virus | DrinkBeer)
P(DrinkBeer)

Assume independence and conditional independence
= P(Flu|Virus) P(Virus) P(DrinkBeer)

l.e., ? independent parameters

e In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

e Conditional independence is our most basic and robust form of knowledge
about uncertain environments.

Eric Xing, ML/CMU %
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[ X X ]
Rules of Independence sels
--- by examples o
e P(Virus | DrinkBeer) = P(Virus)
iff Virus is independent of DrinkBeer
e P(Flu | Virus;DrinkBeer) = P(Flu|Virus)
iff Flu is independent of DrinkBeer, given Virus
iff is independent of , given and
. -, . [ X X ]
Marginal and Conditional sels
Independence '

e Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional
probability of E given H, written as P(E|H), is
P(E and H)/P(H)
(= the probability of both E and H are true, given H is true)

e E and H are (statistically) independent if

P(E) = P(E|H)
(i.e., prob. E is true doesn't depend on whether H is true); or equivalently
P(E and H)=P(E)P(H).

e E and F are conditionally independent given H if
P(E|H,F) = P(E|H)
or equivalently
P(E,F|H) = P(E|H)P(F|H)

Eric Xing, ML/CMU %8
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Why knowledge of Independence
Is useful

e Lower complexity (tim ce, se 7..)

-F

-F Bl

-F |[B

-F _|B

F -B

F B

F H | of

F H 0.0

e Motivates efficient inference for all kinds of queries
Stay tuned !!
e Structured knowledge about the domain

e easy to learning (both from expert and from data)

e easy to grow

39
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Where do probability
distributions come from? -

e |dea One: Human, Domain Experts
e Idea Two: Simpler probability facts and some algebra

eg. P(F)
-F [-B [-H Jo4
P(B) + [® [n_|o1
P(HIF ER (R
P(H|F,~B) :> F -8 [-H Joos J
F |8 [H Joos f
F |8 [-H [oots |
F | [n Joois |

e |dea Three: Learn them from data!

e A good chunk of this course is essentially about various ways of learning
various forms of them!

4
Eric Xing, ML/CMU 0
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Density Estimation

\
e A Density Estimator learns a mapping from a set of attributes

to a Probability

Input
Attributes

Density

+ Probabili
Estimator robability

»
»
»
»
»

e Often know as parameter estimation if the distribution form is
specified
e Binomial, Gaussian ...

e Three important issues:

e Nature of the data (iid, correlated, ...)
e Objective function (MLE, MAP, ...)
e Algorithm (simple algebra, gradient methods, EM, ...)

e Evolution scheme (likelihood on test data, predictability, consistency, ...)

41
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Parameter Learning from iid data

e Goal: estimate distribution parameters 6 from a dataset of N
independent, identically distributed (iid), fully observed,
training cases

D={x; ... %}

e Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumptions, write L(6) as the likelihood of the data:

L(0) =P(X; X5,..., Xy 6)
=P(X0)P(X,;0),...,P(Xy:0)

=TT, P(:0)

3. pick the setting of parameters most likely to have generated the data we saw:

0" =argmax L(@) =argmaxlogL(®)
Eric Xing, ML/CMU v v 42
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Example 1: Bernoulli model s
e Data:
e We observed Niid coin tossing: O={1, 0, 1, ..., 0}
e Representation:
Binary r.v: X, ={0,1}
e Model: oy [1-P Torx=0 ) B
(X)—{p forxe1 = PK=61-0)
e How to write the likelihood of a single observation x; ?
P(x)=0"1-0)""
e The likelihood of datasetD={x;, ..., x\}:
P(le X2 _____ XN | 0) — ﬁ[ P(XI |0) :ﬁ (ex, (170)1 x,) _ 0;X‘ (1—9);14‘ _ H#head (l_g)ttails
[ X X ]
0000
[ X XX
[
MLE o

e Objective function:

/(0;D)=logP(D|8)=1logd™(1-6)" =n,logd+ (N —n,)log(l-06)

e \We need to maximize this w.r.t.

e Take derivatives wrt ¢

o _n, N-n, ~ n, -
0 0 16 0 v eMLE:W or Oy =

Frequency as
sample mean

o Sufficient statistics
e Thecounts, n,,wheren, = z X;, are sufficient statistics of data O
I

Eric Xing, ML/CMU
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. . . [ X X ]
MLE for discrete (joint) sels
distributions &
e More generally, it is easy to show that
#records in which event. is true
P(event;) = '
total number of records
e This is an important (but sometimes S
not so effective) learning algorithm! P
F |- [-H Joos |
F |8 [H Joos fi
o]
[ X X ]
0000
[ X XX
o oee
Example 2: univariate normal o

e Data:
e We observed Niid real samples:
0={-0.1,10,1,-5.2, ..., 3}

e Model: P(X)=(27r02)7“2exp{—(x—y)2/202}
e Log likelihood:
N R
/(9?0)='09P(D|9):—/;’|og(2m?)_iz(xn02ﬂ)
n=1

e MLE: take derivative and set to zero:

ol 1

T =We? (x,-n) e =7 20 (X0)

ou " =) N ="

o N LSy P WA
6027_20'2 20'42” n—H MLE = N Lan M

4
Eric Xing, ML/CMU 6
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Overfitting

e Recall that for Bernoulli Distribution, we have

head
éhead _ n
ML nhead +nra/'/

e \What if we tossed too few times so that we saw zero head?

We have ¢/“ =0, and we will predict that the probability of
seeing a head next is zero!!!

e The rescue:

e Where 7n'is know as the pseudo- (imaginary) count

head '

é head __ n +n
ML T ] 1
nhead +n)‘a// +n

e But can we make this more formal?

[ X X ]
esce
. [ X0
The Bayesian Theory '

e The Bayesian Theory: (e.g., for date D and model M)

P(M|D) = P(D|M)P(M)/P(D)
e the posterior equals to the likelihood times the prior, up to a constant.

e This allows us to capture uncertainty about the model in a
principled way

4
Eric Xing, ML/CMU 8
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Hierarchical Bayesian Models

0 are the parameters for the likelihood p(x]6)

o are the parameters for the prior p(6| @) .

e We can have hyper-hyper-parameters, etc.

e We stop when the choice of hyper-parameters makes no
difference to the marginal likelihood; typically make hyper-
parameters constants.

e Where do we get the prior?
e Intelligent guesses
e Empirical Bayes (Type-ll maximum likelihood)
- computing point estimates of « :

Oy e =argmax = pn|a)

49
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Bayesian estimation for Bernoulli

e Beta distribution:

. _F(a+/3) w101 p\B-1 _ w171 _ oy p-L
P(H,a,ﬁ)fr(a)r(ﬁ)ﬁ 1-0)"" =B(a,p)0* " (1-6)

e Posterior distribution of 4:

e Notice the isomorphism of the posterior to the prior,
e such a prior is called a conjugate prior
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Bayesian estimation for
Bernoulli, con'd

e Posterior distribution of 4:

P(0| Xl ’’’’’ XN ) _ p(xl """ XN | 0) p(0) oc 0”" (1_0)nl ><0a 1(1_0)ﬁ 1 _ On,‘ﬂx—l (l_o)nﬁﬁfl

e Maximum a posteriori (MAP) estimation:

Oupp =19 mglxlog PO Xy Xy )

Bata parameters
can be understood

e Posterior mean estimation: as pseudo-counts

n, o

_ o n+a-1eq n+p-1 __thTo
Osages = | (0] DYdO =C[ 0 0™ (1-0) de_N+a+ﬂ

e Prior strength: A=a+p
e A can be interoperated as the size of an imaginary data set from which we obtain
the pseudo-counts
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Effect of Prior Strength

e Suppose we have a uniform prior (a=p=1/2),
and we observe /1 = (1, =2,n, =8)
e Weak prior A = 2. Posterior prediction:
1+2

px=~hln,=2,n =8a=ax2)= 5110 =0.25
e Strong prior A = 20. Posterior prediction:
_ _10+2
px=h|n,=2,n =8,a=ax20)= 50410 =0.40

e However, if we have enough data, it washes away the prior.
e.g., 1 =(n, =200,n, =800). Then the estimates under
weak and strong prior are 52 and 432%-| respectively,

both of which are close to 0.2

2
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Bayesian estimation for normal
distribution

Normal Prior:

P(u) =272 )" expl (- po)? 127°

e Joint probability:

P(x,u) = (27[02 )7N/2 exp{— 21_2 Zlil:(xn - ,u)z}

x (27[72 )7“2 exp{— (1= 145)? /212}

e Posterior:

Homework!!!
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