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What is this?

Classical AI and ML research ignored this phenomena 
The Problem (an example): 

you want to catch a flight at 10:00am from Pitt to SF, can I make it if I leave at 
7am and take a 28X at CMU?

partial observability (road state, other drivers' plans, etc.)
noisy sensors (radio traffic reports)
uncertainty in action outcomes (flat tire, etc.)
immense complexity of modeling and predicting traffic

Reasoning under uncertainty!
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Basic Probability Concepts
A sample space S is the set of all possible outcomes of a 
conceptual or physical, repeatable experiment. (S can be finite 
or infinite.)

E.g., S may be the set of all possible outcomes 
of a dice roll: 

E.g., S may be the set of all possible nucleotides 
of a DNA site: 

E.g., S may be the set of all possible positions time-space positions 
of a aircraft on a radar screen: 

An event A is the any subset S :
Seeing "1" or "6" in a roll; observing a "G" at a site; UA007 in space-time interval X

An event space E is the possible worlds the outcomes can 
happen

All dice-rolls, reading a genome, monitoring the radar signal

{ }GC,T,A,≡S

{ }61,2,3,4,5,≡S
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Visualizing Probability Space
A probability space is a sample space of which, for every 
subset s∈S, there is an assignment P(s)∈S such that:

0≤P(s) ≤1
Σs∈SP(s)=1

P(s) is called the probability (or probability mass) of s

Worlds in 
which A 
is true

Worlds in which A is false

P(a) is the area of the oval

Event space of all 
possible worlds. 

Its area is 1
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Kolmogorov Axioms
All probabilities are between 0 and 1

0 ≤ P(X) ≤ 1

P(true) = 1
regardless of the event, my outcome is true

P(false)=0 
no event makes my outcome true

The probability of a disjunction is given by
P(A ∨B) = P(A) + P(B) − P(A ∧ B)

A

B

A∧B

¬A∧¬B
A∨B ?

Eric Xing, ML/CMU
6

Why use probability?
There have been attempts to develop different methodologies for 
uncertainty:

Fuzzy logic
Qualitative reasoning (Qualitative physics)
…

“Probability theory is nothing but common sense reduced to 
calculation”

— Pierre Laplace, 1812.

In 1931, de Finetti proved that it is irrational to have beliefs that 
violate these axioms, in the following sense:

If you bet in accordance with your beliefs, but your beliefs violate the axioms, then you can be 
guaranteed to lose money to an opponent whose beliefs more accurately reflect the true state 
of the world. (Here, “betting” and “money” are proxies for “decision making” and “utilities”.)

What if you refuse to bet? This is like refusing to allow time to pass: 
every action (including inaction) is a bet



4

Eric Xing, ML/CMU
7

Random Variable
A random variable is a function that associates a unique 
numerical value (a token) with every outcome of an 
experiment. (The value of the r.v. will vary from trial to trial as 
the experiment is repeated) 

Discrete r.v.:
The outcome of a dice-roll
The outcome of reading a nt at site i: 

Binary event and indicator variable:
Seeing an "A" at a site ⇒ X=1, o/w X=0. 
This describes the true or false outcome a random event.
Can we describe richer outcomes in the same way? (i.e., X=1, 2, 3, 4, for being A, C, G, 
T) --- think about what would happen if we take average of X.

Unit-Base Random vector
Xi=[Xi A, Xi T, Xi G, Xi C]', Xi=[0,0,1,0]'  ⇒ seeing a "G" at site i 

Continuous r.v.:
The outcome of recording the true location of an aircraft: 
The outcome of observing the measured location of an aircraft

ωω

SS X(ω)

iX

trueX
obsX

X
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Discrete Prob. Distribution
(In the discrete case), a probability distribution P on S (and 
hence on the domain of X ) is an assignment of a non-negative 
real number P(s) to each s∈S (or each valid value of x) such that 
Σs∈SP(s)=1. (0≤P(s) ≤1)

intuitively, P(s) corresponds to the frequency (or the likelihood) of getting s in the 
experiments, if repeated many times
call θs= P(s) the parameters in a discrete probability distribution

A probability distribution on a sample space is sometimes called
a probability model, in particular if several different distributions 
are under consideration

write models as M1, M2, probabilities as P(X|M1), P(X|M2)
e.g., M1 may be the appropriate prob. dist. if X is from "fair dice", M2 is for the 
"loaded dice". 
M is usually a two-tuple of {dist. family, dist. parameters}
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Bernoulli distribution: Ber(p)

Multinomial distribution: Mult(1,θ)

Multinomial (indicator) variable:
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Multinomial distribution: Mult(n,θ)

Count variable:

Discrete Distributions
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Continuous Prob. Distribution
A continuous random variable X can assume any value in an 
interval on the real line or in a region in a high dimensional 
space

X usually corresponds to a real-valued measurements of some property, e.g., 
length, position, …
It is not possible to talk about the probability of the random variable assuming a 
particular value --- P(x) = 0
Instead, we talk about the probability of the random variable assuming a value within 
a given interval, or half interval

Arbitrary Boolean combination of basic propositions 

[ ]( ) , , 21 xxXP ∈

( ) [ ]( )xXPxXP ,∞−∈=<
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Continuous Prob. Distribution
The probability of the random variable assuming a value within 
some given interval from x1 to x2 is defined to be the area under 
the graph of the probability density function between x1 and x2.

Probability mass:                                             

note that 

Cumulative distribution function (CDF):

Probability density function (PDF): 
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What is the intuitive meaning of 
p(x)

If 

p(x1) = a and p(x2) = b, 

then when a value X is sampled from the distribution with density p(x), you are 
a/b times as likely to find that X is “very close to” x1 than that X is “very close to”
x2.

That is:
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Uniform Probability Density Function

Normal (Gaussian) Probability Density Function

The distribution is symmetric, and is often illustrated 
as a bell-shaped curve. 
Two parameters, µ (mean) and σ (standard deviation), determine the location and shape of the distribution.
The highest point on the normal curve is at the mean, which is also the median and mode.
The mean can be any numerical value: negative, zero, or positive.

Exponential Probability Distribution

Continuous Distributions
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Expectation: the centre of mass, mean value, first moment):

Sample mean:

Variance: the spreadness:

Sample variance
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Gaussian (Normal) density in 1D
If X ~ N(µ, σ2), the probability density function (pdf) of X is 
defined as

We will often use the precision λ = 1/σ2 instead of the variance σ2.
Here is how we plot the pdf in matlab
xs=-3:0.01:3; 
plot(xs,normpdf(xs,mu,sigma))

Note that a density evaluated at a point can be bigger than 1!

22 2

2
1 σµ

σπ
/)()( −−= xexp
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Gaussian CDF
If Z ~ N(0, 1), the cumulative density function is defined as 

This has no closed form expression, but is built in to most 
software packages (eg. normcdf in matlab stats toolbox).
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Use of the cdf
If X~N(µ, σ2), then Z = (X − µ)/σ ~ N(0, 1).

How much mass is contained inside the [-1.98σ,1.98σ] 
interval?

Since 
p(Z ≤ −1.96) = normcdf(−1.96) = 0.025

we have 
P(−2σ < X−µ < 2σ) ≈ 1 − 2 × 0.025 = 0.95

)()()()( σ
µ

σ
µ

σ
µ

σ
µ −−−− −=<<=<< abba ΦΦZPbXaP
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Central limit theorem
If (X1 ,X2, … Xn) are i.i.d. (we will come back to this point 
shortly) continuous random variables
Then define

As n infinity, 
Gaussian with mean E[Xi] and variance Var[Xi]

Somewhat of a justification for assuming Gaussian noise is 
common
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Elementary manipulations of 
probabilities

Set probability of multi-valued r.v.

P({x=Odd}) = P(1)+P(3)+P(5) = 1/6+1/6+1/6 = ½

Multi-variant distribution:

Joint probability:

Marginal Probability:
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Conditional Probability 
P(X|Y) = Fraction of worlds in which X is true that also have Y 
true

H = "having a headache"
F = "coming down with Flu"

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(H|F) = fraction of flu-inflicted worlds in which you have a headache
= P(H∧F)/P(F)

Definition:

Corollary: The Chain Rule
X

Y

X∧Y)(
)()|(

YP
YXPYXP ∧
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Probabilistic Inference 
H = "having a Headache"
F = "coming down with Flu"

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

One day you wake up with a headache. You come with the 
following reasoning: "since 50% of flues are associated with 
headaches, so I must have a 50-50 chance of coming down 
with flu”

Is this reasoning correct?
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Probabilistic Inference 
H = "having a Headache"
F = "coming down with Flu"

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

The Problem:

P(F|H) = ?

H

F

F∧H
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The Bayes Rule
What we have just did leads to the following general 
expression:

This is Bayes Rule

)(
)()|(

)|(
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YpYXPXYP =



13

Eric Xing, ML/CMU
25

More General Forms of Bayes
Rule

P(Flu | Headhead ∧ DrankBeer)
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Prior Distribution
Support that our propositions about the possible has a "causal 
flow"

e.g.,

Prior or unconditional probabilities of propositions
e.g., P(Flu =true) = 0.025 and P(DrinkBeer =true) = 0.2

correspond to belief prior to arrival of any (new) evidence
A probability distribution gives values for all possible 
assignments:

P(DrinkBeer) =[0.01,0.09, 0.1, 0.8] 
(normalized, i.e., sums to 1) 

F B

H
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Joint Probability
A joint probability distribution for a set of RVs gives the 
probability of every atomic event (sample point)

P(Flu,DrinkBeer) = a 2 × 2 matrix of values:

P(Flu,DrinkBeer, Headache) = ?  

Every question about a domain can be answered by the joint distribution, 
as we will see later.

0.78
0.02
¬B

0.195¬F
0.005F
B
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Posterior conditional probability
Conditional or posterior (see later) probabilities

e.g., P(Flu|Headache) = 0.178
given that Headache is all I know
NOT “if Headache then 17.8% chance of Flu”

Representation of conditional distributions:
P(Flu|Headache) = 2-element vector of 2-element vectors

If we know more, e.g., DrinkBeer is also given, then we have
P(Flu|Headache,DrinkBeer) = 0.070     This effect is known as explain away!
P(Flu|Headache,Flu) = 1   
Note: the less or more certain belief remains valid after more evidence arrives, 
but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(Flu|Headache,StealerWin) = P(Flu|Headache) 
This kind of inference, sanctioned by domain knowledge, is crucial
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Inference by enumeration
Start with a Joint Distribution 
Building a Joint Distribution 
of M=3 variables

Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

For each combination of values, 
say how probable it is.

Normalized, i.e., sums to 1
H

F
B

0.015111

0.015011

0.05101

0.05001

0.2110

0.17010

0.1100

0.4000

ProbHBF
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Inference with the Joint
Once you have the JD you can
ask for the probability of any
atomic event consistent with you 
query

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

∑
∈

=
Ei

irowPEP )()(

H

F
B
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Inference with the Joint
Compute Marginals

=∧ )HeadacheFlu(P

H

F
B

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F
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Inference with the Joint
Compute Marginals

=)Headache(P

H

F
B

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F
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Inference with the Joint
Compute Conditionals
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Inference with the Joint
Compute Conditionals

General idea: compute distribution on query 
variable by fixing evidence variablesevidence variables and 
summing over hidden variableshidden variables

=

∧
=

)Headhead(
)HeadheadFlu()HeadheadFlu(

P
PP

H

F
B

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F
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Summary: Inference by 
enumeration

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E.
We write the hidden variables as H = X-Y-E 

Then the required summation of joint entries is done by 
summing out the hidden variables:

P(Y|E=e)=αP(Y,E=e)=α∑hP(Y,E=e, H=h)

The terms in the summation are joint entries because Y, E, 
and H together exhaust the set of random variables
Obvious problems:

Worst-case time complexity O(dn) where d is the largest arity
Space complexity O(dn) to store the joint distribution
How to find the numbers for O(dn) entries???
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Conditional independence
Write out full joint distribution using chain rule:
P(Headache;Flu;Virus;DrinkBeer)

= P(Headache | Flu;Virus;DrinkBeer) P(Flu;Virus;DrinkBeer)
= P(Headache | Flu;Virus;DrinkBeer) P(Flu | Virus;DrinkBeer) P(Virus | DrinkBeer)

P(DrinkBeer)

Assume independence and conditional independence

= P(Headache|Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)

I.e.,       ?            independent parameters

In most cases, the use of conditional independence reduces the size of the 
representation of the joint distribution from exponential in n to linear in n.
Conditional independence is our most basic and robust form of knowledge 
about uncertain environments.
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Rules of Independence 
--- by examples

P(Virus | DrinkBeer) = P(Virus)
iff Virus is independent of DrinkBeer

P(Flu | Virus;DrinkBeer) = P(Flu|Virus) 
iff Flu is independent of DrinkBeer, given Virus

P(Headache | Flu;Virus;DrinkBeer) = P(Headache|Flu;DrinkBeer)
iff Headache is independent of Virus, given Flu and DrinkBeer
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Marginal and Conditional 
Independence

Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional 
probability of E given H, written as P(E|H), is

P(E and H)/P(H)
(= the probability of both E and H are true, given H is true)

E and H are (statistically) independent if 

P(E) = P(E|H)
(i.e., prob. E is true doesn't depend on whether H is true); or equivalently

P(E and H)=P(E)P(H). 

E and F are conditionally independent given H if 
P(E|H,F) = P(E|H)

or equivalently

P(E,F|H) = P(E|H)P(F|H)
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Why knowledge of Independence 
is useful

Lower complexity (time, space, search …)

Motivates efficient inference for all kinds of queries 
Stay tuned !!
Structured knowledge about the domain

easy to learning (both from expert and from data)
easy to grow

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F
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Where do probability 
distributions come from?

Idea One: Human, Domain Experts 
Idea Two: Simpler probability facts and some algebra
e.g., P(F)

P(B)
P(H|¬F,B)
P(H|F,¬B)
…

Idea Three: Learn them from data!

A good chunk of this course is essentially about various ways of learning 
various forms of them! 

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F
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Density Estimation
A Density Estimator learns a mapping from a set of attributes 
to a Probability

Often know as parameter estimation if the distribution form is 
specified

Binomial, Gaussian …

Three important issues:

Nature of the data (iid, correlated, …)
Objective function (MLE, MAP, …)
Algorithm (simple algebra, gradient methods, EM, …)
Evolution scheme (likelihood on test data, predictability, consistency, …)
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Parameter Learning from iid data
Goal: estimate distribution parameters θ from a dataset of N
independent, identically distributed (iid), fully observed, 
training cases

D = {x1, . . . , xN}

Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumptions, write L(θ) as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:
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Example 1: Bernoulli model
Data: 

We observed N iid coin tossing: D={1, 0, 1, …, 0}

Representation:
Binary r.v:

Model: 

How to write the likelihood of a single observation xi ? 

The likelihood of datasetD={x1, …,xN}:
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MLE
Objective function: 

We need to maximize this w.r.t. θ

Take derivatives wrt θ

Sufficient statistics
The counts,                                          are sufficient statistics of data D
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MLE for discrete (joint) 
distributions

More generally, it is easy to show that

This is an important (but sometimes 
not so effective) learning algorithm!  
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Example 2: univariate normal
Data: 

We observed N iid real samples: 
D={-0.1, 10, 1, -5.2, …, 3}

Model: 

Log likelihood:

MLE: take derivative and set to zero:
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Overfitting
Recall that for Bernoulli Distribution, we have

What if we tossed too few times so that we saw zero head?
We have                   and we will predict that the probability of 
seeing a head next is zero!!! 

The rescue: 
Where n' is know as the pseudo- (imaginary) count

But can we make this more formal?

tailhead

head
head
ML nn

n
+

=θ
)

 ,0=head
MLθ
)

'
'

nnn
nn

tailhead

head
head
ML ++

+
=θ

)

Eric Xing, ML/CMU
48

The Bayesian Theory
The Bayesian Theory: (e.g., for date D and model M) 

P(M|D) = P(D|M)P(M)/P(D)

the posterior equals to the likelihood times the prior, up to a constant. 

This allows us to capture uncertainty about the model in a 
principled way
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Hierarchical Bayesian Models
θ are the parameters for the likelihood p(x|θ)
α are the parameters for the prior p(θ|α) .
We can have hyper-hyper-parameters, etc.
We stop when the choice of hyper-parameters makes no 
difference to the marginal likelihood; typically make hyper-
parameters constants.
Where do we get the prior? 

Intelligent guesses
Empirical Bayes (Type-II maximum likelihood) 

computing point estimates of α :

)|(maxarg αα
α
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Bayesian estimation for Bernoulli 
Beta distribution:  

Posterior distribution of θ : 

Notice the isomorphism of the posterior to the prior, 
such a prior is called a conjugate prior
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Bayesian estimation for 
Bernoulli, con'd

Posterior distribution of θ :

Maximum a posteriori (MAP) estimation: 

Posterior mean estimation:

Prior strength: A=α+β
A can be interoperated as the size of an imaginary data set from which we obtain 
the pseudo-counts
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Effect of Prior Strength
Suppose we have a uniform prior (α=β=1/2), 
and we observe
Weak prior A = 2. Posterior prediction:

Strong prior A = 20. Posterior prediction:

However, if we have enough data, it washes away the prior. 
e.g.,                                         .  Then the estimates under 
weak and strong prior are            and            ,  respectively, 
both of which are close to 0.2
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Bayesian estimation for normal 
distribution 

Normal Prior:  

Joint probability: 

Posterior:

Homework!!!
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