Machine Learning

$\frac{10-701 / 15-781, \text { Fall } 2006}{\text { Hidden Markov Model }}$

Eric Xing

Lecture 15, November 2, 2006

Reading: Chap. 13, C.B book
Readin: Chap. 13, C.B book

Hidden Markov Models

The underlying source: genomic entities, dice,

The sequence:

Ploy NT,
sequence of rolls,

Example: The Dishonest Casino

A casino has two dice:

- Fair die

$$
P(1)=P(2)=P(3)=P(5)=P(6)=1 / 6
$$

- Loaded die

$$
P(1)=P(2)=P(3)=P(5)=1 / 10
$$

$$
P(6)=1 / 2
$$

Casino player switches back-\&-forth between fair and loaded die once every 20 turns

Game:

1. You bet \$1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins \$2

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player
1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
- This is the EVALUATION problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
- This is the DECODING question in HMMs
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
- This is the LEARNING question in HMMs

A Stochastic Generative Model

- Observed sequence:

A

B

- Hidden sequence (a parse or segmentation):

B \longrightarrow

Probability of a Parse

- Given a sequence $=x_{1} \ldots \ldots x_{T}$ and a parse $\mathbf{y}=y_{1}, \ldots \ldots, y_{T}$,
- To find how likely is the parse:
(given our HMM and the sequence)

$$
\begin{aligned}
p(x, y) & =p\left(x_{1} \ldots \ldots x_{T}, y_{1}, \ldots \ldots, y_{T}\right) \quad \text { (Joint probability) } \\
& =p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(y_{T} \mid y_{T-1}\right) p\left(x_{T} \mid y_{T}\right) \\
& =p\left(y_{1}\right) \mathrm{P}\left(y_{2} \mid y_{1}\right) \ldots p\left(y_{T} \mid y_{T-1}\right) \times p\left(x_{1} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(x_{T} \mid y_{T}\right) \\
& =p\left(y_{1}, \ldots \ldots, y_{T}\right) p\left(x_{1} \ldots \ldots x_{T} \mid y_{1}, \ldots \ldots, y_{T}\right)
\end{aligned}
$$

$$
=\pi_{y_{1}} a_{y_{1}, y_{2}} \cdots a_{y_{T-1}, y_{T}} b_{y_{1}, x_{1}} \cdots b_{y_{T}, x_{T}}
$$

- Marginal probability: $\quad p(\mathbf{x})=\sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})=\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{N}} \pi_{y_{1}} \prod_{t=2}^{T} a_{y_{t+1}, y_{t}} \prod_{t=1}^{T} p\left(x_{+} \mid y_{t}\right)$
- Posterior probability: $p(\mathbf{y} \mid \mathbf{x})=p(\mathbf{x}, \mathbf{y}) / p(\mathbf{x})$

Eric Xing

The Dishonest Casino Model

Example: the Dishonest Casino

- Let the sequence of rolls be:

- Then, what is the likelihood of

- $\boldsymbol{y}=$ Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs $\mathrm{a}_{0 \text { Fair }}=1 / 2, \mathrm{a}_{\text {oLoaded }}=1 / 2$)

$$
P(x|y| p(y)=
$$

\qquad
$1 / 2 \times P(1 \mid$ Fair $) P($ Fair | Fair $) P(2 \mid$ Fair $) P($ Fair | Fair $) \ldots P(4 \mid$ Fair $)=$
$1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=.00000000521158647211=5.21 \times 10^{-9}$

Example: the Dishonest Casino

- So, the likelihood the die is fair in all this run is just 5.21×10^{-9}
- OK, but what is the likelihood of
- $\pi=$ Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,

Loaded, Loaded, Loaded?
$1 / 2 \times \mathrm{P}(1 \mid$ Loaded $) \mathrm{P}($ Loaded | Loaded $) \ldots \mathrm{P}(4 \mid$ Loaded $)=$
$1 / 2 \times(1 / 10)^{8} \times(1 / 2)^{2}(0.95)^{9}=.00000000078781176215=0.79 \times 10^{-9}$

- Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way

Example: the Dishonest Casino

- Let the sequence of rolls be:

$$
\cdot x=4,6,6,5,6,2,6,6,3,6
$$

- Now, what is the likelihood $\pi=\mathrm{F}, \mathrm{F}, \ldots, \mathrm{F}$ F?
- $1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=0.5 \times 10^{-9}$, same as before
- What is the likelihood $\boldsymbol{y}=\mathrm{L}, \mathrm{L}, \ldots, \mathrm{L}$?
$1 / 2 \times(1 / 10)^{4} \times(1 / 2)^{6}(0.95)^{9}=.00000049238235134735=5 \times 10^{-7}$
- So, it is 100 times more likely the die is loaded

Three Main Questions on HMMs

1. Evaluation

GIVEN

FIND Prob ($x \mid$ M)
ALGO. Forward
2. Decoding

GIVEN an HMM \boldsymbol{M}, and a sequence \boldsymbol{x},
FIND the sequence y of states that maximizes, e.g., $P(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{M})$, or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning

GIVEN	an HMM \boldsymbol{M}, with unspecified transition/emission probs.,
and a sequence \boldsymbol{x},	
parameters $\theta=\left(\tau_{\mathrm{i}}, a_{\mathrm{ij}}, \eta_{\mathrm{ik}}\right)$ that maximize $\mathrm{P}(\boldsymbol{x} \mid \theta)$	
FIND	Baum-Welch (EM)

Applications of HMMs

- Some early applications of HMMs
- finance, but we never saw them
- speech recognition
- modelling ion channels
- In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.
- Some current applications of HMMs to biology
- mapping chromosomes
- aligning biological sequences
- predicting sequence structure
- inferring evolutionary relationships
- finding genes in DNA sequence

Typical structure of a gene

GENSCAN (Burge \& Karlin)
 - -9 - 9 -000

The HMM Algorithms

Questions:

- Evaluation: What is the probability of the observed sequence? Forward
- Decoding: What is the probability that the state of the 3rd roll is loaded, given the observed sequence? ForwardBackward
- Decoding: What is the most likely die sequence? Viterbi
- Learning: Under what parameterization are the observed sequences most probable? Baum-Welch (EM)

The Forward Algorithm

- We want to calculate $P(\mathbf{x})$, the likelihood of \mathbf{x}, given the HMM
- Sum over all possible ways of generating \mathbf{x} :

$$
p(\mathbf{x})=\sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})=\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{N}} \pi_{y_{1}} \prod_{t=2}^{T} a_{y_{t-1}, y_{+}} \prod_{t=1}^{T} p\left(x_{t} \mid y_{t}\right)
$$

- To avoid summing over an exponentiat mumber of paths y, define

$$
\alpha\left(y_{t}^{k}=1\right)=\alpha_{t}^{k} \stackrel{\operatorname{def}}{=} P\left(x_{1}, \ldots, x_{t}, y_{t}^{k}=1\right) \quad \text { (the forward probability) }
$$

- The recursion:

$$
\alpha_{t}^{k}=p\left(x_{+} \mid y_{t}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k}
$$

$$
\alpha_{P}(x)=\sum_{k} \alpha_{T}^{k}
$$

The Forward Algorithm derivation

- Compute the forward probability:

$=\sum_{y_{t-1}} P\left(x_{1}, \ldots, x_{t-1}, y_{t-1}\right) P\left(y_{t}^{k}=1 \mid y_{t-1}, x_{1}, \ldots, x_{t-1}\right) P\left(x_{+} \mid y_{t}^{k}=1, x_{1}, \ldots, x_{t-1}, y_{t-1}\right)$
$=\sum_{y_{t-1}} P\left(x_{1}, \ldots, x_{t-1}, y_{t-1}\right) P\left(y_{t}^{k}=1 \mid y_{t-1}\right) P\left(x_{t} \mid y_{t}^{k}=1\right)$
$=P\left(x_{+} \mid y_{t}^{k}=1\right) \sum_{i} P\left(x_{1}, \ldots, x_{t-1}, y_{t-1}^{i}=1\right) P\left(y_{t}^{k}=1 \mid y_{t-1}^{i}=1\right)$
$=P\left(x_{+} \mid y_{+}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k}$

Recall the Elimination and Message Passing Algorithm

- Elimination \equiv message passing on a clique tree
$m_{e}(a, c, d)$
$=\sum_{e} p(e \mid c, d) m_{g}(e) m_{f}(a, e)$

$\alpha_{t}^{k}=p\left(x_{t} \mid y_{t}^{k}=1\right) \sum \alpha_{t-1}^{i} a_{i, k}$

The Forward Algorithm

- We can compute α_{t}^{k} for all k, t, using dynamic programming!

Initialization:

$$
\alpha_{1}^{k}=P\left(x_{1} \mid y_{1}^{k}=1\right) \pi_{k}
$$

Iteration:

$$
\alpha_{t}^{k}=P\left(x_{t} \mid y_{t}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k}
$$

Termination:

$$
P(\mathbf{x})=\sum_{k} \alpha_{T}^{k}
$$

The Backward Algorithm

- We want to compute $P\left(y_{+}^{k}=\lambda \mid \mathbf{x}\right)$, the posterior probability distribution on the $t^{\text {th }}$ position, given \mathbf{x}

- We start by computing

$$
\begin{aligned}
P\left(y_{+}^{k}=1, \mathbf{x}\right) & =P\left(x_{1}, \ldots, x_{+}, y_{+}^{k}=1, x_{t+1}, \ldots, x_{T}\right) \\
& =P\left(x_{1}, \ldots, x_{t}, y_{+}^{k}=1\right) P\left(x_{t+1}, \ldots, x_{T} \mid x_{1}, \ldots, x_{t}, y_{+}^{k}=1\right) \\
& =P\left(x_{1} \ldots x_{t}, y_{+}^{k}=1\right) P\left(x_{t+1} \ldots x_{T} \mid y_{+}^{k}=1\right)
\end{aligned}
$$

Forward, α_{t}^{k}
Backward, $\quad \beta_{+}^{k}=P\left(x_{t+1}, \ldots, x_{T} \mid y_{+}^{k}=1\right)$

- The recursion:

$$
\beta_{t}^{k}=\sum_{i} a_{k, i} P\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i}
$$

The Backward Algorithm derivation

- Define the backward probability:

$$
\begin{aligned}
\beta_{t}^{k} & =P\left(x_{t+1}, \ldots, x_{T} \mid y_{t}^{k}=1\right) \\
& =\sum_{y_{t+1}} P\left(x_{t+1}, \ldots, x_{T}, y_{t+1} \mid y_{t}^{k}=1\right) \\
& =\sum_{i} P\left(y_{t+1}^{\prime}=1 \mid y_{t}^{k}=1\right) p\left(x_{t+1} \mid y_{t+1}^{\prime}=1, y_{t}^{k}=1\right) P\left(x_{t+2}, \ldots, x_{T} \mid x_{t+1}, y_{t+1}^{\prime}=1, y_{t}^{k}=1\right) \\
& =\sum_{i} P\left(y_{t+1}^{i}=1 \mid y_{t}^{k}=1\right) p\left(x_{t+1} \mid y_{t+1}^{\prime}=1\right) P\left(x_{t+2}, \ldots, x_{T} \mid y_{t+1}^{\prime}=1\right) \\
& =\sum_{i} a_{k, i} p\left(x_{t+1} \mid y_{t+1}^{\prime}=1\right) \beta_{t+1}^{+}
\end{aligned}
$$

The Backward Algorithm

- We can compute β_{+}^{k} for all k, t, using dynamic programming!

Initialization

$$
\beta_{T}^{k}=1, \forall k
$$

Iteration:

$$
\beta_{t}^{k}=\sum_{i} a_{k, i} P\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i}
$$

Termination:

$$
P(\mathbf{x})=\sum_{k} \alpha_{1}^{k} \beta_{1}^{k}
$$

Posterior decoding

- We can now calculate

$$
\frac{P\left(y_{+}^{k}=1 \mid \mathbf{x}\right)}{\text { we can ask }}=\frac{P\left(y_{+}^{k}=1, \mathbf{x}\right)}{P(\mathbf{x})}=\frac{\alpha_{+}^{k}\left(\beta_{+}^{k}\right)}{P(\mathbf{x}))}
$$

- Then, we can ask
- What is the most likely state at position t of sequence \mathbf{x} :

$$
k_{t}^{*}=\arg \max _{k} P\left(y_{t}^{k}=1 \mid \mathbf{x}\right)
$$

- Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
- Posterior Decoding:

$$
\left\{y_{+}^{k_{+}^{*}}=1: t=1 \ldots T\right\}
$$

- This is different from MPA of a whole sequence states
- This can be understood as bit error rate
vs. word error rate

Example: MPA of X ? MPA of (X, Y) ?

Viterbi decoding

- GIVEN $\mathbf{x}=x_{1}, \ldots, x_{T}$, we want to find $\mathbf{y}=y_{1}, \ldots, y_{T}$, such that $P(\mathbf{y} \mid \mathbf{x})$ is maximized:

$$
\mathbf{y}^{*}=\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y} \mid \mathbf{x})=\operatorname{argmax}_{\pi} P(y, \mathbf{x})
$$

- Let

$$
V_{t}^{k}=\max _{\left\{y_{1}, \ldots y_{t-1}\right\}} P\left(x_{1}, \ldots, x_{t-1}, y_{1}, \ldots, y_{t-1}, x_{t,} y_{t}^{k}=1\right)
$$

$$
=\text { Probability of most likely sequence of states ending at state } y_{\mathrm{t}}=k
$$

- The recursion:
$V_{+}^{k}=p\left(x_{+} \mid y_{t}^{k}=1\right) \max _{i} a_{i, k} V_{t-1}^{i}$
- Underflows are a significant problem
 $p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right)=\pi_{y_{1}} a_{y_{1}, y_{2}} \cdots a_{y_{t-1}, y_{t}} b_{y_{1}, x_{1}} \cdots b_{y_{t}, x_{t}}$
- These numbers become extremely small - underflow
- Solution: Take the logs of all values: $V_{t}^{k}=\log p\left(x_{+} \mid y_{+}^{k}=1\right)+\max _{i}\left(\log \left(a_{i, k}\right)+V_{t-1}^{i}\right)$

The Viterbi Algorithm - derivation

- Define the viterbi probability:

$$
\begin{aligned}
V_{t+1}^{k} & =\max _{\left(y_{1}, \ldots, y_{t}\right)} P\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}, x_{t+1}, y_{t+1}^{k}=1\right) \\
& =\max _{\left(y_{1, \ldots}, y_{t+}\right)} P\left(x_{t+1}, y_{t+1}^{k}=1 \mid x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) P\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) \\
& =\max _{\left(y_{1}, \ldots, y_{t+1}\right)} P\left(x_{t+1}, y_{t+1}^{k}=1 \mid y_{t}\right) P\left(x_{1}, \ldots, x_{t-1}, y_{1}, \ldots, y_{t-1}, x_{t}, y_{t}\right) \\
& =\max _{i} P\left(x_{t+1}, y_{t+1}^{k}=1 \mid y_{t}^{\prime}=1\right) \max _{\left(y_{1}, \ldots y_{t-1}\right)} P\left(x_{1}, \ldots, x_{t-1}, y_{1}, \ldots, y_{t-1}, x_{t}, y_{+}^{i}=1\right) \\
& =\max _{i} P\left(x_{t+1,} \mid y_{t+1}^{k}=1\right) a_{i, k} V_{t}^{i} \\
& =P\left(x_{t+1} \mid y_{t+1}^{k}=1\right) \max _{i} a_{i, k} V_{t}^{i}
\end{aligned}
$$

The Viterbi Algorithm

- Input: $\mathbf{x}=x_{1}, \ldots, x_{T}$,

Initialization:

$$
V_{1}^{k}=P\left(x_{1} \mid y_{1}^{k}=1\right) \pi_{k}
$$

Iteration:

$$
\begin{aligned}
& V_{t}^{k}=P\left(x_{t} \mid y_{t}^{k}=1\right) \max _{i} a_{i, k} V_{t-1}^{i} \\
& \operatorname{Ptr}(k, t)=\arg \max _{i} a_{i, k} V_{t-1}^{i}
\end{aligned}
$$

Termination:

$$
P\left(\mathbf{x}, \mathbf{y}^{*}\right)=\max _{k} V_{T}^{k}
$$

TraceBack:

$$
\begin{aligned}
& y_{T}^{*}=\arg \max _{k} V_{T}^{k} \\
& y_{t-1}^{*}=\operatorname{Ptr}\left(y_{t}^{*}, t\right)
\end{aligned}
$$

Computational Complexity and implementation details

- What is the running time, and space required, for Forward, and Backward?

$$
\begin{aligned}
& \alpha_{t}^{k}=p\left(x_{t} \mid y_{t}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k} \\
& \beta_{t}^{k}=\sum_{i} a_{k, i} p\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i} \\
& V_{t}^{k}=p\left(x_{t} \mid y_{t}^{k}=1\right) \max _{i} a_{i, k} V_{t-1}^{i}
\end{aligned}
$$

Time: $O\left(K^{2} N\right)$; Space: $O(K N)$.

- Useful implementation technique to avoid underflows
- Viterbi:
sum of logs
- Forward/Backward: rescaling at each position by multiplying by a constant

Learning HMM: two scenarios
 - 9
 - 0
 000 000

- Supervised learning: estimation when the "right answer" is known
- Examples:

GIVEN: a genomic region $x=x_{1} \ldots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
- Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice

- QUESTION: Update the parameters θ of the model to maximize $P(x \mid \theta)$--- Maximal likelihood (ML) estimation

Recall MLE for observed BN

- Assume each CPD is represented as a table (multinomial) where

$$
\theta_{i j k} \stackrel{\text { def }}{=} p\left(X_{i}=j \mid X_{\pi_{i}}=k\right.
$$

$\mathbf{X}_{\pi i}$

$$
\ell(\theta ; \boldsymbol{D})=\log \prod_{i, j, k} \theta_{i j k}^{n_{j k}}=\sum_{i, j, k} n_{i j k} \log \theta_{i j k}
$$

- Using a Lagrange multiplier to enforce so $\sum_{j} \theta_{i j k}=1$ we get

$$
\theta_{i j k}^{M L}=\frac{n_{i j k}}{\sum_{j^{\prime}} n_{i j^{\prime} k}}
$$

Supervised ML estimation

- Given $x=x_{1} \ldots x_{N}$ for which the true state path $y=y_{1} \ldots y_{N}$ is known,
- Define:

$$
\begin{array}{ll}
A_{i j} & =\# \text { times state transition } i \rightarrow j \text { occurs in } \mathbf{y} \\
B_{i k} & =\# \text { times state } i \text { in } \mathbf{y} \text { emits } k \text { in } \mathbf{x}
\end{array}
$$

- We can show that the maximum likelihood parameters θ are:
$\eta \rightarrow\left(>a_{i j}^{M L}=\frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=-}^{T}\left\langle y_{n, t-1}^{i} y_{n}^{\prime}\right\rangle}{\sum_{n} \sum_{t=2}^{T} y_{n, t-1}^{i}}=\frac{A_{i j}}{\sum_{j^{\prime}} A_{i j^{\prime}}}\right.$
$y, y \rightarrow x$
$b_{i k}^{M L}=\frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=}^{T} / v_{i}\left(\frac{k}{n}, t\right.}{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{i}}=\frac{B_{i k}}{\sum_{k^{\prime}} B_{i k^{\prime}}}$
$P\left(y_{t+1}, y_{t} \mid x\right)$
$(y)(x))$
- What if y is continuous? We can treat $\left\{\left(x_{n, t}, y_{n, t}\right): t=1: T, n=1: N\right\}$ as $N \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Eric King

Supervised ML estimation, etd.

- Intuition:
- When we know the underlying states, the best estimate of θ is the average frequency of transitions \& emissions that occur in the training data
- Drawback:
- Given little data, there may be overfitting
- $P(x \mid \theta)$ is maximized, but θ is unreasonable 0 probabilities - VERY BAD
- Example:
- Given 10 casino rolls, we observe

$$
\begin{aligned}
& \mathbf{x}=\mathbf{2}, \mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{6}, \mathbf{2}, \mathbf{3} \\
& \mathbf{y}=\mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F} \\
& a_{F F}=1 ; \quad a_{F L}=0 \\
& b_{F 1}=b_{F 3}=.2 ; \\
& b_{F 2}=.3 ; b_{F 4}=0 ; b_{F 5}=b_{F 6}=.1
\end{aligned}
$$

- Then:

Pseudocounts

- Solution for small training sets:
- Add pseudocounts
$A_{i j} \quad=$ \# times state transition $i \rightarrow j$ occurs in $\mathbf{y}+R_{i j}$
$B_{i k} \quad=\#$ times state i in \mathbf{y} emits k in $\mathbf{x}+S_{i k}$
- $R_{i j}, S_{i j}$ are pseudocounts representing our prior belief
- Total pseudocounts: $R_{i}=\Sigma_{j} R_{i j}, S_{i}=\Sigma_{k} S_{i k}$,
- --- "strength" of prior belief,
- --- total number of imaginary instances in the prior
- Larger total pseudocounts \Rightarrow strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --smoothing

Unsupervised ML estimation

- Given $x=x_{1} \ldots x_{N}$ for which the true state path $y=y_{1} \ldots y_{N}$ is unknown,
- EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ.
1. Estimate $A_{i j}, B_{i k}$ in the training data

- How? $A_{i j}=\sum_{n, t}\left\langle y_{n, t-1}^{i} y_{n, t}^{j}\right\rangle \quad B_{i k}=\sum_{n, t}\left\langle y_{n, t}^{i}\right\rangle X_{n, t}^{k}, \quad$ How? (homework)

2. Update θ according to $A_{i j}, B_{i k}$

- Now a "supervised learning" problem

3. Repeat $1 \& 2$, until convergence

This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set θ each iteration

The Baum Welch algorithm

- The complete log likelihood

$$
\ell_{c}(\boldsymbol{\theta} ; \mathbf{x}, \mathbf{y})=\log p(\mathbf{x}, \mathbf{y})=\log \prod_{n}\left(p\left(y_{n, 1}\right) \prod_{t=2}^{T} p\left(y_{n, t} \mid y_{n, t-1}\right) \prod_{t=1}^{T} p\left(x_{n, t} \mid x_{n, t}\right)\right)
$$

- The expected complete log likelihood

- EM
- The E step

$$
\begin{aligned}
& \gamma_{n, t}^{i}=\left\langle y_{n, t}^{i}\right\rangle=p\left(y_{n, t}^{i}=1 \mid \mathbf{x}_{n}\right) \\
& \xi_{n, t}^{i, j}=\left\langle y_{n, t-1}^{i} y_{n, t}^{j}\right\rangle=p\left(y_{n, t-1}^{i}=1, y_{n, t}^{j}=1 \mid \mathbf{x}_{n}\right)
\end{aligned}
$$

- The M step ("symbolically" identical to MLE)

$$
\pi_{i}^{M L}=\frac{\sum_{n} \gamma_{n, 1}^{i}}{N} \quad a_{i j}^{M L}=\frac{\sum_{n} \sum_{t=2}^{T} \xi_{n, t}^{i, j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n, t}^{i}} \quad b_{i k}^{M L}=\frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n, t}^{i} x_{n, t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n, t}^{i}}
$$

Eric Xing

The Baum-Welch algorithm -comments

Time Complexity:
$\#$ iterations $\times \mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$

- Guaranteed to increase the log likelihood of the model
- Not guaranteed to find globally best parameters
- Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overt-fitting

