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Reading: Chap. 8, C.B book
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What is a graphical model?
--- example from medical diagnostics

A possible world for a patient with lung problem: 
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Representation: what is the joint probability dist. on multiple 
variables?

How many state configurations in total? --- 28

Are they all needed to be represented?
Do we get any scientific/medical insight?

Learning: where do we get all this probabilities? 
Maximal-likelihood estimation? but how many data do we need?
Where do we put domain knowledge in terms of plausible relationships between variables, and 
plausible values of the probabilities?

Inference: If not all variables are observable, how to compute 
the conditional distribution of latent variables given evidence?
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Recap of Basic Prob. Concepts
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Dependencies among variables
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Probabilistic Graphical Models
Represent dependency structure with a graph

Node <-> random variable
Edges encode dependencies

Absence of edge -> conditional independence
Directed and undirected versions

Why is this useful?
A language for communication
A language for computation
A language for development

Origins: 
Wright 1920’s
Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in 
computer science in the late 1980’s
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If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

Why we may favor a PGM?
Representation cost: how many probability statements are needed?

Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Probabilistic Graphical Models, 
con'd

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 
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Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

Undirected edges simply give (physical or symmetric) 
correlations between variables (Markov Random Field or 
Undirected Graphical model):

Two types of GMs
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Bayesian Network: Factorization Theorem

Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:

where      is the set of parents of xi, d is the number of nodes 
(variables) in the graph.

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional distributions 
(CPD) and the DAG
completely determine the 
joint dist. 

• Give causality relationships, 
and facilitate a generative
process

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent

Child

Bayesian Network: Conditional 
Independence Semantics
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A CB

A

C

B

A

B

C

Local Structures & 
Independencies

Common parent
Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

Cascade
Knowing B decouples A and C
"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

V-structure
Knowing C couples A and B
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to C will decrease"

The language is compact, the concepts are rich!
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A simple justification

A

B

C
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Graph separation criterion
D-separation criterion for Bayesian networks (D for Directed 
edges):

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

Example:
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Global Markov properties of 
DAGs

X is d-separated (directed-separated) from Z given Y if we can't 
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)=all independence 
properties that correspond to d-
separation:

• D-separation is sound and complete

{ });(dsep:)(I YZXYZXG G⊥=
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Example: 
Complete the I(G) of this 
graph:

x1

x2

x4

x3
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Towards quantitative specification of 
probability distribution

Separation properties in the graph imply independence 
properties about the associated variables
For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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Example

A B

C

p(A,B,C) = 
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ancestor

A C

Qh
Qm

T years

?

AGAGAC

Tree Model

Example, con'd
Evolution
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Example, con'd

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Hidden Markov Model

Speech recognition
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Example, con'd
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Genetic Pedigree
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P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)
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Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(µa, Σa) B~N(µb, Σb)

C~N(A+B, Σc)

D~N(µa+C, Σa)
D

C
P(

D|
 C

)

Conditional probability density 
func. (CPDs)
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Conditionally Independent 
Observations

y1

θ

Data

Model parameters

y2 yn-1 yn
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“Plate” Notation

yi

i=1:n

θ

Data = {y1,…yn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

yi

i=1:n

µ Generative model:   

p(y1,…yn | µ, σ) = P p(yi | µ, σ)

=   p(data | parameters)
=   p(D | θ)     

where θ = {µ, σ}

σ

Likelihood = p(data | parameters) 
= p( D | θ ) 
= L (θ) 

Likelihood tells us how likely the observed data are conditioned on a 
particular setting of the parameters

Often easier to work with log L (θ) 
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Example: Bayesian Gaussian 
Model

yi

i=1:n

µ

Note: priors and parameters are assumed independent here

σα β
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Probability theory provides the glue whereby the parts are combined, 
ensuring that the system as a whole is consistent, and providing ways to 
interface models to data. 

The graph theoretic side of graphical models provides both an intuitively 
appealing interface by which humans can model highly-interacting sets of 
variables as well as a data structure that lends itself naturally to the design of 
efficient general-purpose algorithms. 

Many of the classical multivariate probabilistic systems studied in fields 
such as statistics, systems engineering, information theory, pattern 
recognition and statistical mechanics are special cases of the general 
graphical model formalism
• -- examples include mixture models, factor analysis, hidden Markov models, Kalman filters and Ising models. 

The graphical model framework provides a way to view all of these systems 
as instances of a common underlying formalism. 

--- M. Jordan

Why graphical models


