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- Reading: Chap. 8, C.B book
: : I
What is a graphical model? seco
--- example from medical diagnostics H

e A possible world for a patient with lung problem:

Visit to Asia X, X,

Tuberculosis
x6
or Cancer

XRay Result | X, Xg
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Recap of Basic Prob. Concepts

|
e Representation: what is the joint probability dist. on multiple

variables?
P(X,, X,, X3, X4, X5, Xg, X5, Xs,)

e How many state configurations in total? --- 28
e Are they all needed to be represented?
e Do we get any scientific/medical insight?

e Learning: where do we get all this probabilities?

e Maximal-likelihood estimation? but how many data do we need?

e Where do we put domain knowledge in terms of plausible relationships between variables, and
plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute
the conditional distribution of latent variables given evidence?
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Dependencies among variables
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Diagnostic Tests
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Probabilistic Graphical Models

e Represent dependency structure with a graph
e Node <-> random variable

e Edges encode dependencies
Absence of edge -> conditional independence
e Directed and undirected versions

O+—0—0

e Why is this useful?
e Alanguage for communication
e Alanguage for computation
e Alanguage for development

e Origins:
o Wright 1920's

e Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in
computer science in the late 1980’s

Probabilistic Graphical Models,
con'd '

—
>0
@

o If X{'s are conditionally independent (as described by a PGM),
joint can be factored to a product of simpler terms, e.g.,

P(Xy, Xy, X0 Xy Xe, Xg X5, Xg)
= P(X,) P(X,) P(X,| X,) P(X,| X,) P(Xq| X,)
P(Xg| Xq X,) PO Xg) P(Xgl Xs, Xo)

(Frubercutosis] x, ((ung Cancer x, ((Bronchitis ) x,

o Why we may favor a PGM?
= Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

= Algorithms for systematic and efficient inference/learning computation
« Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics
= Incorporation of domain knowledge and causal (logical) structures
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Two types of GMs

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

e Undirected edges simply give (physical or symmetric)
correlations between variables (Markov Random Field or
Undirected Graphical model):
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Bayesian Network: Factorization Theorem

=P
] P(Xy, Xy, X0 Xy Xe, Xg X5, Xg)

(Faberais] % (Cmgower x,  (eonm %
= P(Xy) P(Xp) P(X3| Xp) P(X,| X;) P(Xg] X;)
P(Xgl X3, X,) P(X;| Xg) P(Xg| X5, X5)

e Theorem:

Given a DAG, The most general form of the probability
distribution that is consistent with the graph factors according
to “node given its parents”:

P(X)=HP(Xi | Xz)

where X _ is the set of parents of x;, d is the number of nodes
(variables) in the graph.
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Bayesian Network: Conditional
Independence Semantics

Structure: DAG

* Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov
blanket

* Local conditional distributions
(CPD) and the DAG
completely determine the
joint dist.

» Give causality relationships,
and facilitate a generative

process
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00
Local Structures & sels
Independencies o
e Common parent B

e Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent” @

e Cascade

e Knowing B decouples A and C ®—>®—>@

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

e \/-structure ¢. Q

e Knowing C couples A and B
because A can "explain away" B w.r.t. C CC O
"If A correlates to C, then chance for B to also correlate to B will decrease"

e The language is compact, the concepts are rich!
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A simple justification

da > &
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Graph separation criterion

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally
independent) given z if they are separated in the moralized
ancestral graph

e Example:

L e L Ce,

original graph ancestral moral ancestral
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Global Markov properties of
DAGs

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary

conditions):
- = .« Defn: I(6)=all independence
“ & properties that correspond to d-
® ) separation:
o T 1(G) = {X L Z|Y :dsepq, (X;Z]Y)|
- * D-separation is sound and complete
U “.r
Eric pus al o 13
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Example: g
X e Complete the I(G) of this
4 graph:
X1
X3
X2
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Towards quantitative specification of
probability distribution

\
e Separation properties in the graph imply independence

properties about the associated variables

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem
For a graph G,
Let 9, denote the family of all distributions that satisfy 1(G),
Let 9, denote the family of all distributions that factor according to G,

Then 9,=9,.
[ X X ]
0000
[ X XX
[ X0
Example '

ORNO

«— p(AB/C)=
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(X X J
0000
e
Example, con'd o3
|
e Evolution
T years
Tree Model
[ X X ]
esce
[
Example, con'd o2

e Speech recognition

lonepe: 3 wingle word

Hidden Markov Model




Example, con'd

e Genetic Pedigree

Conditional probability tables
(CPTs) o
a® [0.75 b® ]0.33 P(a,b,c.d)=

al {025 b! 067 P(a)P(b)P(cla,b)P(d]c)

afbo a%b’ a'b? a'b’
c0 0.45 1 0.9 0.7
c! 0.55 0 0.1 0.3

c? ¢!
’ d° 0.3 |05

d’ 07 0.5

20

10



.. aype . [ X X ]
Conditional probability density sels
func. (CPDs) '

|

P(a,b,c.d) =

A~N(, ;) B~N(, 5,) P(a)P(b)P(cla,b)P(d|c)

O )

s\‘\‘\“\‘ “ ‘

"'\c""‘l&“&‘%“‘*‘&‘~ﬂ~~‘ M
- s
| S
’ D~N(u,+C, 2,) c

D

P 00
Conditionally Independent sels
Observations oo

Model parameters
®O--®D o~
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“Plate” Notation

. Model parameters

Data = {y,,...y.}

i=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

. Generative model:
\

P(Y45--Yn [ 1, 0) =P p(y; | 1, o)
p(data | parameters)

p(D | 0)
where 0 = {u, ¢}

i=1:n

= Likelihood = p(data | parameters)
=p(D|96)
=L (6)
= Likelihood tells us how likely the observed data are conditioned on a
particular setting of the parameters
= Often easier to work with log L (6)

Eric Xing 24
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. . [ X X ]
Example: Bayesian Gaussian sect

Model &

\
i=1:n
Note: priors and parameters are assumed independent here

[ X X ]
eecs

. [

Markov Random Fields '

Structure: an undirected
graph

* Meaning: a node is
conditionally independent of
every other node in the network
given its Directed neighbors

+ Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

« Give correlations between

variables, but no explicit way to
generate samples

Eric Xing
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Semantics of Undirected Graphs

e Let H be an undirected graph: B
% 77N\

/ _ Y\ [~ \
[ (AL L ) \
[ Ll | | ~T ey 1
.' ' [ 17 ~ |
{ | | hy o8 A

~ | TP

Xe
e B separates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (A;C|B)

e A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates Aand C, A is
independent of C given B: I(H)={A L C|B):sep,, (A C|B)|

Eric Xing 27

Representation

e Defn: an undirected graphical model represents a distribution
P(X,,....X,) defined by an undirected graph H, and a set of
positive potential functions y, associated with cliques of H,

s.t. 1
P(Xl""’xn) :2Hl//c(xc)

ceC
where Z is known as the partition function:

Z=3% [lv.x)
X1,.. Xy CeC
e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.

Eric Xing 28
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Cliques

\
e For G={V,E}, a complete subgraph (clique) is a subgraph

G'={V'iV,E'IE} such that nodes in V' are fully interconnected

e A (maximal) clique is a complete subgraph s.t. any superset
V'"EV'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

(A)
o
e Example: G

e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons

Eric Xing 29

Example UGM — using max §§:
cliques o

1
P(Xy, X2, X3, %4) :El//c (X124) X W (X34)

Z= Z‘//c (X124) ¥ ¥ (X234) '@

X1, X2 ,X3,Xq

e For discrete nodes, we can represent P(X,.,) as two 3D tables
instead of one 4D table

Eric Xing 30
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Example UGM — using subcliques

1 .
P(Xl’X21X3’X4):ZHl//ij(Xij) .\-_-'!'BE]
ij
1
= Wi (X2)W1a (Xea)W 23 (X3 )W 24 (X24 )W 34 (X34)

Z
z= 2 Tlwi0s)

Xq,Xp,X3,Xq ]

e For discrete nodes, we can represent P(X,.,) as 5 2D tables
instead of one 4D table

Interpretation of Clique Potentials s

CO——3

e The model implies X1.Z|Y. This independence statement
implies (by definition) that the joint must factorize as:

px.y.z)=py)px|y)pzly)

e We can write thisas:  PX V. 2)=px)p1y)  put
px.y.z)=pxly)p(z,y)

e cannot have all potentials be marginals
e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as

general "compatibility”, "goodness" or "happiness" functions
over their variables, but not as probability distributions.

Eric Xing 32
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Exponential Form

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x;) in an unconstrained
form using a real-value "energy" function ¢,(x,):

v (X.) =expl-g,(x.)}
For convenience, we will call ¢,(x.) a potential when no confusion arises from the context.
e This gives the joint a nice additive strcuture
1 1
p(x) = ZEXp{_Z¢° (Xc)} = 26Xp{— H ()}

ceC
where the sum in the exponent is called the "free energy":

H(x) =Y 4.(x.)
ceC
e In physics, this is called the "Boltzmann distribution”.
e [n statistics, this is called a log-linear model.

[ X X ]
eecs
. eoo
Example: Boltzmann machines -

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x, e {~1,+1}or x, € {0,1}) is called a
Boltzmann machine

P(Xy, Xg, X5, X4) = ;exp{Zﬂj (xi_xj)}

;exp{zoijxixj + )@ +C}
ij i
e Hence the overall energy function has the form:

H() =D, (% =)0 (x; = ) = (x= )" O(x ~ )

Eric Xing 34
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Example: Ising (spin-glass)
models

e Nodes are arranged in a regular topology (often a regular

packing grid) and connected only to their geometric
neighbors.

e Same as sparse Boltzmann machine, where 6',]7&0 iff 7/ are

neighbors.
e e.g., nodes are pixels, potential function encourages nearby pixels to have similar
intensities.
e Potts model: multi-state Ising model.
Eric Xing 35
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Example: Protein-Protein
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[ X X J
0000
[ X X X
[ XN
. H [ X J
Example: Modeling Go &
Tfege ol IR
| 1 : 1T 1]
s T SIE15- #"]_l
[ "!-_'_1_____ J _é_‘._ Iﬂl:i:l_“1_w1:|
05 < MiRn s UOUBERE T
’_‘ : :""_: : 'L__
+0- -1 1@ oo
18 Lee
& FLAEE| i‘:_;_l_:' s e
BRI e AR o
;_‘%3;]‘_$: R e
i | i L o g R 1
| ] . 1 e e 13 [y o3
This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection,
Large sguares mean the probability is higher.
Eric Xing 37
[ X X J
[ XX X
[ X XX
[ X0
: [ X J
GMs are your old friends o

Parametric and nonparametric methods

Regression

Density estimation m,s ®
X X

X Y

O—0

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach X

Eric Xing
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[ X X ]
0000
o000
eo00
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Probabilistic Inference &
e Computing statistical queries regarding the network, e.qg.:
e s node X independent on node Y given nodes Z,W ?
e What is the probability of X=true if (Y=false and Z=true)?
e What is the joint distribution of (X,Y) if Z=false?
e What is the likelihood of some full assignment?
e What is the most likely assignment of values to all or a subset the nodes of the
network?
e General purpose algorithms exist to fully automate such
computation
e Computational cost depends on the topology of the network
e Exactinference:
The junction tree algorithm
e Approximate inference;
Loopy belief propagation, variational inference, Monte Carlo sampling
Eric Xing 40
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[ X X ]
0000
0000
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Learning Graphical Models &
The goal:
Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)
) ( R P
D D S GO

©

E— { I
(B,E,A,C,R)=(T,F,F,T,F) o9 o1
(B,E,A,C,R)=(T,F,T,T,F) 02 o8

(B,E,A,C,R)=(F,T,T,T,F) 0.9 o0.1
0.01 0.99
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A Bayesian Learning Approach

For model p(A|Q ):
e Treat parameters/model Q as unobserved random variable(s)
e probabilistic statements of Q is conditioned on the values of

the observed variables Aobs
p(®)

@B @D —~
D O ) B &
D D
Bayes’ rule: p(®|A)x p(A|O)p(B)
posterior likelihood  prior
Bayesian estimation: Opayes = J@p(@ | A)dO

Eric Xing 42
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Why graphical models

e Probability theory provides the glue whereby the parts are combined,
ensuring that the system as a whole is consistent, and providing ways to
interface models to data.

e The graph theoretic side of graphical models provides both an intuitively
appealing interface by which humans can model highly-interacting sets of
variables as well as a data structure that lends itself naturally to the design of
efficient general-purpose algorithms.

e Many of the classical multivariate probabilistic systems studied in fields
such as statistics, systems engineering, information theory, pattern
recognition and statistical mechanics are special cases of the general
graphical model formalism

examples include mixture models, factor analysis, hidden Markov models, Kalman filters and Ising models.

e The graphical model framework provides a way to view all of these systems
as instances of a common underlying formalism.

--- M. Jordan
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