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What is a graphical model?
--- example from medical diagnostics

A possible world for a patient with lung problem: 
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Representation: what is the joint probability dist. on multiple 
variables?

How many state configurations in total? --- 28

Are they all needed to be represented?
Do we get any scientific/medical insight?

Learning: where do we get all this probabilities? 
Maximal-likelihood estimation? but how many data do we need?
Where do we put domain knowledge in terms of plausible relationships between variables, and 
plausible values of the probabilities?

Inference: If not all variables are observable, how to compute 
the conditional distribution of latent variables given evidence?
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Recap of Basic Prob. Concepts
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Dependencies among variables
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Probabilistic Graphical Models
Represent dependency structure with a graph

Node <-> random variable
Edges encode dependencies

Absence of edge -> conditional independence
Directed and undirected versions

Why is this useful?
A language for communication
A language for computation
A language for development

Origins: 
Wright 1920’s
Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in 
computer science in the late 1980’s
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If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

Why we may favor a PGM?
Representation cost: how many probability statements are needed?

Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics

Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Probabilistic Graphical Models, 
con'd

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 
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Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

Undirected edges simply give (physical or symmetric) 
correlations between variables (Markov Random Field or 
Undirected Graphical model):

Two types of GMs
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Bayesian Network: Factorization Theorem

Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:

where      is the set of parents of xi, d is the number of nodes 
(variables) in the graph.

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional distributions 
(CPD) and the DAG
completely determine the 
joint dist. 

• Give causality relationships, 
and facilitate a generative
process

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent

Child

Bayesian Network: Conditional 
Independence Semantics
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A CB

A

C

B

A

B

C

Local Structures & 
Independencies

Common parent
Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

Cascade
Knowing B decouples A and C
"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

V-structure
Knowing C couples A and B
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the concepts are rich!
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A simple justification

A

B

C
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Graph separation criterion
D-separation criterion for Bayesian networks (D for Directed 
edges):

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

Example:
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Global Markov properties of 
DAGs

X is d-separated (directed-separated) from Z given Y if we can't 
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)=all independence 
properties that correspond to d-
separation:

• D-separation is sound and complete

{ });(dsep:)(I YZXYZXG G⊥=
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Example: 
Complete the I(G) of this 
graph:

x1

x2

x4

x3
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Towards quantitative specification of 
probability distribution

Separation properties in the graph imply independence 
properties about the associated variables
For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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Example

A B

C

p(A,B,C) = 
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ancestor

A C

Qh
Qm

T years

?

AGAGAC

Tree Model

Example, con'd
Evolution
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Example, con'd

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Hidden Markov Model

Speech recognition
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Example, con'd
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Genetic Pedigree

Eric Xing 20

0.25a1
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P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
07

0.3

c0 c1

0.5d1

0.5d0

Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(µa, Σa) B~N(µb, Σb)

C~N(A+B, Σc)

D~N(µa+C, Σa)
D

C
P(

D|
 C

)

Conditional probability density 
func. (CPDs)

Eric Xing 22

Conditionally Independent 
Observations

y1

θ

Data

Model parameters

y2 yn-1 yn
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“Plate” Notation

yi

i=1:n

θ

Data = {y1,…yn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

yi

i=1:n

µ Generative model:   

p(y1,…yn | µ, σ) = P p(yi | µ, σ)

=   p(data | parameters)
=   p(D | θ)     

where θ = {µ, σ}

σ

Likelihood = p(data | parameters) 
= p( D | θ ) 
= L (θ) 

Likelihood tells us how likely the observed data are conditioned on a 
particular setting of the parameters

Often easier to work with log L (θ) 
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Example: Bayesian Gaussian 
Model

yi

i=1:n

µ

Note: priors and parameters are assumed independent here

σα β
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Structure: an undirected 
graph

• Meaning: a node is 
conditionally independent of 
every other node in the network 
given its Directed neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint dist. 

• Give correlations between 
variables, but no explicit way to 
generate samples

X

Y1 Y2

Markov Random Fields
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Semantics of Undirected Graphs
Let H be an undirected graph:

B separates A and C if every path from a node in A to a node 
in C passes through a node in B:
A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:

);(sep BCAH

{ });(sep:))(I BCABCAH H⊥=
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Representation
Defn: an undirected graphical model represents a distribution 
P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions yc associated with cliques of H, 
s.t.

where Z is known as the partition function:

Also known as Markov Random Fields, Markov networks …
The potential function can be understood as an contingency 
function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   
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Cliques
For G={V,E}, a complete subgraph (clique) is a subgraph
G'={V'ÍV,E'ÍE} such that nodes in V' are fully interconnected
A (maximal) clique is a complete subgraph s.t. any superset 

V"ÉV' is not complete.
A sub-clique is a not-necessarily-maximal clique.

Example: 
max-cliques = {A,B,D}, {B,C,D}, 
sub-cliques = {A,B}, {C,D}, … all edges and singletons 

A

CC

DD BB
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Example UGM – using max 
cliques 

For discrete nodes, we can represent P(X1:4) as two 3D tables 
instead of one 4D table

A

CC

DD BB

)()(),,,( 2341244321
1 xx ccZ

xxxxP ψψ ×=

∑ ×=
4321

234124
xxxx

ccZ
,,,

)()( xx ψψ
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Example UGM – using subcliques

For discrete nodes, we can represent P(X1:4) as 5 2D tables 
instead of one 4D table

A

CC

DD BB

)()()()()(

)(),,,(

34342424232314141212

4321

1

1

xxxxx

x

ψψψψψ
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Z
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Interpretation of Clique Potentials

The model implies X⊥Z|Y. This independence statement 
implies (by definition) that the joint must factorize as:

We can write this as:                                           , but

cannot have all potentials be marginals
cannot have all potentials be conditionals

The positive clique potentials can only be thought of as 
general "compatibility", "goodness" or "happiness" functions 
over their variables, but not as probability distributions.

)|()|()(),,( yzpyxpypzyxp =

YXX ZZ

),()|(),,(
)|(),(),,(

yzpyxpzyxp
yzpyxpzyxp

=

=
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Exponential Form
Constraining clique potentials to be positive could be inconvenient (e.g., 
the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential ψc(xc)  in an unconstrained 
form using a real-value "energy" function φc(xc):

For convenience, we will call φc(xc) a potential when no confusion arises from the context.

This gives the joint a nice additive strcuture

where the sum in the exponent is called the "free energy":

In physics, this is called the "Boltzmann distribution".
In statistics, this is called a log-linear model.
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Example: Boltzmann machines

A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for                                  ) is called a
Boltzmann machine

Hence the overall energy function has the form:
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Example: Ising (spin-glass) 
models

Nodes are arranged in a regular topology (often a regular 
packing grid) and connected only to their geometric 
neighbors.

Same as sparse Boltzmann machine, where θij≠0 iff i,j are 
neighbors.

e.g., nodes are pixels, potential function encourages nearby pixels to have similar 
intensities.

Potts model: multi-state Ising model.
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Example: Protein-Protein 
interaction networks
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Example: Modeling Go

Eric Xing 38

Density estimation

Regression

Classification

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

Q

X

Q

X

X Y

m,s

X X

GMs are your old friends



20

Eric Xing 39

(Picture by Zoubin
Ghahramani and 
Sam Roweis)

An 
(incomplete) 

genealogy 
of graphical 

models
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Computing statistical queries regarding the network, e.g.:
Is node X independent on node Y given nodes Z,W ?
What is the probability of X=true if (Y=false and Z=true)?
What is the joint distribution of (X,Y) if Z=false?
What is the likelihood of some full assignment?
What is the most likely assignment of values to all or a subset the nodes of the 
network?

General purpose algorithms exist to fully automate such 
computation 

Computational cost depends on the topology of the network
Exact inference: 

The junction tree algorithm

Approximate inference; 
Loopy belief propagation, variational inference, Monte Carlo sampling 

Probabilistic Inference
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The goal:

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)
……..

(B,E,A,C,R)=(F,T,T,T,F)

E

R

B

A

C

0.9 0.1

e

b
e

0.2 0.8

0.01 0.99
0.9 0.1

be
b
b

e

BE P(A | E,B)

E

R

B

A

C

Learning Graphical Models
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E

R

B

A

C

E

R

B

A

C

p(Θ )

• Bayes’ rule: )()|()|( ΘΘ∝Θ ppp AA
posterior likelihood prior

• Bayesian estimation: ΘΘΘ=Θ ∫ dpBayes )|( A

A Bayesian Learning Approach
For model p(A|Q ): 

Treat parameters/model Q as unobserved random variable(s) 
probabilistic statements of Q is conditioned on the values of 
the observed variables Aobs
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Probability theory provides the glue whereby the parts are combined, 
ensuring that the system as a whole is consistent, and providing ways to 
interface models to data. 

The graph theoretic side of graphical models provides both an intuitively 
appealing interface by which humans can model highly-interacting sets of 
variables as well as a data structure that lends itself naturally to the design of 
efficient general-purpose algorithms. 

Many of the classical multivariate probabilistic systems studied in fields 
such as statistics, systems engineering, information theory, pattern 
recognition and statistical mechanics are special cases of the general 
graphical model formalism
• -- examples include mixture models, factor analysis, hidden Markov models, Kalman filters and Ising models. 

The graphical model framework provides a way to view all of these systems 
as instances of a common underlying formalism. 

--- M. Jordan

Why graphical models


