Computational Learning Theory Part 2
VC dimension, Sample Complexity, Mistake bounds

Required reading:
• Mitchell chapter 7

Optional advanced reading:
• Kearns & Vazirani, ‘Introduction to Computational Learning Theory’
Last time: PAC Learning

1. Finite H, assume target function \(c \in H \)

\[
\Pr[(\exists h \in H) \text{s.t.} (error_{\text{train}}(h) = 0) \land (error_{\text{true}}(h) > \epsilon)] \leq |H| e^{-\epsilon m}
\]

Suppose we want this to be at most \(\delta \). Then \(m \) examples suffice:

\[
m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))
\]

2. Finite H, agnostic learning: perhaps \(c \) not in H

with probability at least \((1-\delta)\) every \(h \) in \(H \) satisfies

\[
error_{\text{true}}(h) \leq error_{\text{train}}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}
\]
What if H is not finite?

• Can’t use our result for finite H

• Need some other measure of complexity for H
 – Vapnik-Chervonenkis (VC) dimension!
Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.
The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, \(VC(H) \), of hypothesis space \(H \) defined over instance space \(X \) is the size of the largest finite subset of \(X \) shattered by \(H \). If arbitrarily large finite sets of \(X \) can be shattered by \(H \), then \(VC(H) \equiv \infty \).
Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε-exhaust $V_{S_H,D}$ with probability at least $(1-\delta)$?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ε) correct

$$m \geq \frac{1}{\varepsilon} (4 \log_2(2/\delta) + 8 \text{VC}(H) \log_2(13/\varepsilon))$$

Compare to our earlier results based on $|H|$:

$$m \geq \frac{1}{\varepsilon} (\ln(1/\delta) + \ln |H|)$$
VC dimension: examples

Consider \(X = \mathbb{R} \), want to learn \(c : X \rightarrow \{0,1\} \)

What is VC dimension of

- Open intervals:
 \[1 = \text{Vc}(H_1): \text{if } x > a \text{ then } y = 1 \text{ else } y = 0 \]
 \[2 = \text{Vc}(H_2): \text{if } x > a \text{ then } y = 1 \text{ else } y = 0 \]
 or, if \(x > a \) then \(y = 0 \) else \(y = 1 \)

- Closed intervals:
 \[2 = \text{Vc}(H_3): \text{if } a < x < b \text{ then } y = 1 \text{ else } y = 0 \]
 \[H_4: \text{if } a < x < b \text{ then } y = 1 \text{ else } y = 0 \]
 or, if \(a < x < b \) then \(y = 0 \) else \(y = 1 \)
VC dimension: examples

Consider $X = \mathbb{R}$, want to learn $c:X \rightarrow \{0,1\}$

What is VC dimension of

- **Open intervals:**

 H_1: if $x > a$ then $y = 1$ else $y = 0$ \hspace{1cm} \text{VC}(H_1)=1

 H_2: if $x > a$ then $y = 1$ else $y = 0$
 or, if $x > a$ then $y = 0$ else $y = 1$ \hspace{1cm} \text{VC}(H_2)=2

- **Closed intervals:**

 H_3: if $a < x < b$ then $y = 1$ else $y = 0$ \hspace{1cm} \text{VC}(H_3)=2

 H_4: if $a < x < b$ then $y = 1$ else $y = 0$
 or, if $a < x < b$ then $y = 0$ else $y = 1$ \hspace{1cm} \text{VC}(H_4)=3
VC dimension: examples

Consider $X = \mathbb{R}^2$, want to learn $c: X \rightarrow \{0, 1\}$

What is VC dimension of lines in a plane?
- $H = \{ ((wx+b)>0 \rightarrow y=1) \}$

$H =$ linear sep. in n dimensions
$\Rightarrow VC(H) = n+1$
Consider $X = \mathbb{R}^2$, want to learn $c:X \rightarrow \{0,1\}$

What is VC dimension of
- $H = \{ (w \cdot x + b) > 0 \rightarrow y = 1 \}$
 - $VC(H_1) = 3$
 - For linear separating hyperplanes in n dimensions, $VC(H) = n + 1$
For any finite hypothesis space H, give an upper bound on $VC(H)$ in terms of $|H|$.

$VC(H) \leq \log_2 |H|$
More VC Dimension Examples

• Decision trees defined over n boolean features
 \(F: \langle X_1, \ldots, X_n \rangle \rightarrow Y \)

• Decision trees defined over n continuous features
 Where each internal tree node involves a threshold test \((X_i > c)\)

• Decision trees of depth 2 defined over n features

• Logistic regression over n continuous features? Over n boolean features?

• How about 1-nearest neighbor?
Tightness of Bounds on Sample Complexity

How many examples \(m \) suffice to assure that any hypothesis that fits the training data perfectly is probably \((1-\delta)\) approximately \((\varepsilon)\) correct?

\[
m \geq \frac{1}{\varepsilon} \left(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\varepsilon) \right)
\]

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class \(C \) of concepts such that \(VC(C) \geq 2 \), any learner \(L \), any \(0 < \varepsilon < 1/8 \), and any \(0 < \delta < 0.01 \). Then there exists a distribution \(\mathcal{D} \) and target concept in \(C \), such that if \(L \) observes fewer examples than

\[
\max \left[\frac{1}{\varepsilon} \log(1/\delta), \frac{VC(C) - 1}{32\varepsilon} \right]
\]

Then with probability at least \(\delta \), \(L \) outputs a hypothesis with \(\text{error}_\mathcal{D}(h) > \varepsilon \)
Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least \((1-\delta)\) every \(h \in H\) satisfies

\[
error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}
\]

\[
|e_{true}(h) - e_{train}(h)|
\]
Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

- Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

\[
\text{error}_{true}(h) < \text{error}_{train}(h) + \sqrt{\frac{VC(II)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}
\]

* unfortunately a somewhat loose bound...
What You Should Know

• Sample complexity varies with the learning setting
 – Learner actively queries trainer
 – Examples provided at random

• Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 – For ANY consistent learner (case where c \(\notin \) H)
 – For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

• VC dimension as measure of complexity of H

• Quantitative bounds characterizing bias/variance in choice of H
 – but the bounds are quite loose...

• Mistake bounds in learning

• Conference on Learning Theory: http://www.learningtheory.org