Computational Learning Theory

Reading:

• Mitchell chapter 7

Suggested exercises:

• 7.1, 7.2, 7.5, 7.7

Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

October 12, 2006

Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target function is approximated
- Manner in which training examples presented

Sample Complexity

How many training examples are sufficient to learn the target concept?

- 1. If learner proposes instances, as queries to teacher
 - Learner proposes instance x, teacher provides c(x)
- 2. If teacher (who knows c) provides training examples
 - teacher provides sequence of examples of form $\langle x, c(x) \rangle$
- 3. If some random process (e.g., nature) proposes instances
 - instance x generated randomly, teacher provides c(x)

Instances, Hypotheses, and More-General-Than

$$x_1$$
= x_2 =

$$h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$$

 $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$
 $h_3 = \langle Sunny, ?, ?, ?, Cool, ? \rangle$

Sample Complexity: 3

Given:

- set of instances X
- \bullet set of hypotheses H
- set of possible target concepts C
- \bullet training instances generated by a fixed, unknown probability distribution \mathcal{D} over X

Learner observes a sequence D of training examples of form $\langle x, c(x) \rangle$, for some target concept $c \in C$

- instances x are drawn from distribution \mathcal{D}
- teacher provides target value c(x) for each

Learner must output a hypothesis h estimating c

• h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Note: randomly drawn instances, noise-free classifications

Probably Approximatel Correct

True Error of a Hypothesis

Definition: The **true error** (denoted $error_{\mathcal{D}}(h)$) of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

$$error_{\mathsf{D}}(h) \equiv \Pr_{x \in \mathsf{D}}[c(x) \neq h(x)] \equiv \frac{\sum_{x \in \mathsf{D}} \delta(c(x) \neq h(x))}{|\mathsf{D}|}$$

True error of hypothesis h with respect to c

Set of training examples

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Probability distribution P(x)

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

Can we bound $error_{\mathcal{D}}(h)$ in terms of $error_{\mathcal{D}}(h)$

$$error_{\mathsf{D}}(h) \equiv \Pr_{x \in \mathsf{D}}[c(x) \neq h(x)] \equiv \frac{\sum_{x \in \mathsf{D}} \delta(c(x) \neq h(x))}{|\mathsf{D}|}$$

True error of hypothesis h with respect to c

Set of training examples

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Probability distribution P(x)

Version Spaces

Target concept is the boolean fn to be learned

c: $X \to \{0,1\}$

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

$$Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

Exhausting the Version Space

Hypothesis space H

(r = training error, error = true error)

Definition: The version space $VS_{H,D}$ is said to be ϵ -exhausted with respect to c and \mathcal{D} , if every hypothesis h in $VS_{H,D}$ has true error less than ϵ with respect to c and \mathcal{D} .

$$(\forall h \in VS_{H,D}) \ error_{\mathcal{D}}(h) < \epsilon$$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

$$|H|e^{-\epsilon m}$$

Interesting! This bounds the probability that <u>any</u> consistent learner will output a hypothesis h with $error(h) \ge \epsilon$

If we want to this probability to be below δ

$$|H|e^{-\epsilon m} \le \delta$$

then

$$m \geq \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Any(!) learner that outputs a hypothesis consistent with all training examples (i.e., an h contained in VS_{HD})

hyp space H. Let h, 1/2, ... h, be the hyps in H tarset for C. With true error > E Prob that one of these hi, will be consistent w/ one training examp Prob that one $(1-\epsilon)^{m}$ $<(1-\epsilon)^{m}$ w/ m tr examps? Prob at least one of the K"bad" hyps cons. with mex? $< k(1-\epsilon)^{m}$ $< k(1-\epsilon)^{m}$ $< |H|(1-\epsilon)^{m}$ true > O < e < 1 then (1-e) < e < < IHI e-EM

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after m training examples is at most $|H|e^{-\epsilon m}$

$$\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)] \le |H|e^{-\epsilon m}$$

1

Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \ge \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least (1- δ):

$$error_{true}(h) \le \frac{1}{m}(\ln|H| + \ln(1/\delta))$$

Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least $(1 - \delta)$ that

every h in $VS_{H,D}$ satisfies $error_{\mathcal{D}}(h) \leq \epsilon$

Use our theorem:

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Suppose H contains conjunctions of constraints on up to n boolean attributes (i.e., n boolean literals).

Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least $(1 - \delta)$ that

every h in $VS_{H,D}$ satisfies $error_{\mathcal{D}}(h) \leq \epsilon$

Use our theorem:

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Suppose H contains conjunctions of constraints on up to n boolean attributes (i.e., n boolean literals). Then $|H| = 3^n$, and

$$m \ge \frac{1}{\epsilon} (\ln 3^n + \ln(1/\delta))$$

or

$$m \ge \frac{1}{\epsilon} (n \ln 3 + \ln(1/\delta))$$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Sufficient condition:

Holds if L requires only a polynomial number of training examples, and processing per example is polynomial

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

$$m \ge \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$$

derived from Hoeffding bounds:

$$Pr[error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h) + \epsilon] \leq e^{-2m\epsilon^2}$$
 true error training error degree of overfitting

Additive Hoeffding Bounds – Agnostic Learning

• Given m independent coin flips of coin with $Pr(heads) = \theta$ bound the error in the estimate $\hat{\theta}$

$$\Pr[\theta > \widehat{\theta} + \epsilon] \le e^{-2m\epsilon^2}$$

Relevance to agnostic learning: for any <u>single</u> hypothesis h

$$\Pr[error_{true}(h) > error_{train}(h) + \epsilon] \le e^{-2m\epsilon^2}$$

But we must consider all hypotheses in H

$$\Pr[(\exists h \in H)error_{true}(h) > error_{train}(h) + \epsilon] \le |H|e^{-2m\epsilon^2}$$

• So, with probability at least $(1-\delta)$ every h satisfies

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

General Hoeffding Bounds

• When estimating parameter $\theta \in [a,b]$ from m examples

$$P(|\widehat{\theta} - E[\widehat{\theta}]| > \epsilon) \le 2e^{\frac{-2m\epsilon^2}{(b-a)^2}}$$

• When estimating a probability $\theta \in [0,1]$, so

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \le 2e^{-2m\epsilon^2}$$

• And if we're interested in only one-sided error, then

$$P((E[\widehat{\theta}] - \widehat{\theta}) > \epsilon) \le e^{-2m\epsilon^2}$$