Neural Networks

Required reading:
» Bishop Chapter 5, especially 5.1, 5.2, 5.3, and 5.5 through 5.5.2

Optional reading:

* Neural nets: Mitchell chapter 4
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Artificial Neural Networksto learnf: X 2> Y

« f might be non-linear function
o X (vector of) continuous and/or discrete vars
e Y (vector of) continuous and/or discrete vars

 Represent f by network of threshold units

 Each unitis a logistic function
1

1 4 exp(wo + 3; wiz;)

unit output =

 MLE: train weights of all units to minimize sum of
squared errors of network function



Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10
e Connections per neuron ~ 10*™°
e Scene recognition time ~ .1 second
¢ 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process
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Sigmoid Unit

o(x) is the sigmoid function
1
L+e "

Nice property: %}J =o(z)(1 —o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation



M(C)LE Training for Neural Networks

 Consider regression problem f:X->Y , for scalar Y
y =f(X) + ¢ —— noise N(0,5,), iid

deterministic

e Let's maximize the conditional data likelihood

W — argmax In [1P(YY X!, W)
[

W —argmin Y (y' — f(z"))?
w5 I
Learned
neural network



MAP Training for Neural Networks

 Consider regression problem f:X->Y , for scalar Y
y = f(X) + € «—_noise N(0,c,)

deterministic

iGaussian P(W) = N(O,c])
W «— arg max in P(W) [ PV Xt W)
l

W — argmin S wi| 4+ |3 () - Fah))?

W
]
In P(W) <& ¢ 2 w/?




Gradient Descent
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Error Gradient for a Sigmoid Unit
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Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w]
2. W — ’!?VED[‘EE]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example d in D

1. Compute the gradient V E ]
2.W + W — ??VEd[’lﬁ]

Ep[w] = > ng(td — 0g)
Ed[tﬁ] = %(td — Od)

Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if n
made small enough



Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit £
O Ok(l — Ok)(tk - Ok)
3. For each hidden unit A

ohon(l—on) X wyid
kEoutputs '

4. Update each network weight w; ;
Wij = Wi+ Awi
where

A“ww' = n(?ja:f

X4 = Input
ty = target output

04 = Observed unit
output

w;; = wt from i 10 |



More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum «
Awisj(n) = nd;T; ; + aAw; ; (n —1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast



Learning Hidden Layer Representations

A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??




Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




Training

Sum of squared errors for each output unit

500 1000 1500 2



Training

Hidden unit encoding for input 01000000

e




Training

Weights from inputs to one hidden unit




Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
¢ Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
e Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as
training progresses



Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].



Overfitting in ANNs
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Neural Nets for Face Recognition

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces



Learned Hidden Unit Weights
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http://www.cs.cmu.edu/~tom/faces.html



Alternative Error Functions

Original MLE error fn.

Penalize large weights:

A/

E(w) =

1 2 2
— > Y (tra—o0rd)" X Wi;
2deD ke€outputs 2y

Train on target slopes as well as values:
2
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E(d)

Tie together weights:

e ¢.g., in phoneme recognition network



Artificial neural networks — what you should know

e Highly expressive non-linear functions
« Highly parallel network of logistic function units

e Minimizing sum of squared training errors

— Gives MLE estimates of network weights if we assume zero mean
Gaussian noise on output values

« Minimizing sum of sq errors plus weight squared (regularization)
— MAP estimates assuming weight priors are zero mean Gaussian

« Gradient descent as training procedure
— How to derive your own gradient descent procedure

» Discover useful representations at hidden units
e Local minima is greatest problem
« Overfitting, regularization, early stopping



