Neural Networks

Required reading:
» Bishop Chapter 5, especially 5.1, 5.2, 5.3, and 5.5 through 5.5.2

Optional reading:

* Neural nets: Mitchell chapter 4

Machine Learning 10-701

Tom M. Mitchell
Center for Automated Learning and Discovery
Carnegie Mellon University

September 28, 2006

Artificial Neural Networksto learnf: X 2> Y

« f might be non-linear function
o X (vector of) continuous and/or discrete vars
e Y (vector of) continuous and/or discrete vars

 Represent f by network of threshold units

 Each unitis a logistic function
1

1 4 exp(wo + 3; wiz;)

unit output =

 MLE: train weights of all units to minimize sum of
squared errors of network function

Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10
e Connections per neuron ~ 10*™°
e Scene recognition time ~ .1 second
¢ 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process

4000

Multilayer Networks of Sigmoid Units

head hid

2000/,
F2 (Hz)
1000
500

1400

500

F1 (Hz)

ALVINN
" [Pomerleau 1993]

30x32 Sensor
Input Retina

Sigmoid Unit

o(x) is the sigmoid function
1
L+e "

Nice property: %}J =o(z)(1 —o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

M(C)LE Training for Neural Networks

 Consider regression problem f:X->Y , for scalar Y
y =f(X) + ¢ —— noise N(0,5,), iid

deterministic

e Let's maximize the conditional data likelihood

W — argmax In [1P(YY X!, W)
[

W —argmin Y (y' — f(z"))?
w5 I
Learned
neural network

MAP Training for Neural Networks

 Consider regression problem f:X->Y , for scalar Y
y = f(X) + € «—_noise N(0,c,)

deterministic

iGaussian P(W) = N(O,c])
W «— arg max in P(W) [PV Xt W)
l

W — argmin S wi| 4+ |3 () - Fah))?

W
]
In P(W) <& ¢ 2 w/?

Gradient Descent

TS S
S
SO ST

wi wi

Gradient

OF OF Ok

. .

owy’ Ow,’ Ow,

V E[]

Training rule:
AW = —nV E[w]
1.e.,
OF

Error Gradient for a Sigmoid Unit

OF 0 1

= — ta — 04)°
8wi a'.ED(I d)

(ta — 0a)°

0
3?.05
300'_
(td B Od) (_3?.03‘)
B dog Onety
- %(td’ ~ 0d) Onet; Ow;

ij

W
2
d

ow;
% 2(tq — 0q)

(ta — 0a)

al NN Q

But we know:
dog Oo(nety)

Onety Onety
3n6td . 8(?17 ¥ fﬂv)

3103' 3105

= Od(l — Od_)

= T d

So:

o > (t Joa(1 — 04)
= — — 04)04(1 — 04) ;i a
ow; icp U Ea

X4 = Input
ty = target output

04 = Observed unit
output

w; = weight |

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w]
2. W — ’!?VED[‘EE]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example d in D

1. Compute the gradient V E]
2.W + W — ??VEd[’lﬁ]

Ep[w] = > ng(td — 0g)
Ed[tﬁ] = %(td — Od)

Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if n
made small enough

Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit £
O Ok(l — Ok)(tk - Ok)
3. For each hidden unit A

ohon(l—on) X wyid
kEoutputs '

4. Update each network weight w; ;
Wij = Wi+ Awi
where

A“ww' = n(?ja:f

X4 = Input
ty = target output

04 = Observed unit
output

w;; = wt from i 10 |

More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum «
Awisj(n) = nd;T; ; + aAw; ; (n —1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Learning Hidden Layer Representations

A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Training

Sum of squared errors for each output unit

500 1000 1500 2

Training

Hidden unit encoding for input 01000000

e

Training

Weights from inputs to one hidden unit

Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
¢ Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
e Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as
training progresses

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].

Overfitting in ANNs

Error

Error

0.01
0.009
0.003
0.007
0.006
0.005
0.004
0.003
0.002

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Error versus weight updates (example 1)

Training set error » -
Validation set error '

0 5000 10000 15000 20000
Number of weight updates
Error versus weight updates (example 2)
n\ T T T
= .: Training set error . 4
”‘-h,,l . Validation set error +
- ++ -
P

| . ot et M|Mlm _
- - M -
i . et

*
— - =

L4
n “ 1
1 L e
1000 2000 3000 4000 5000 6000

Number of weight updates

Neural Nets for Face Recognition

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights

left strt rght up Learned Weights

ey 30x32

E n
'E_I
" I l

Typical input images

http://www.cs.cmu.edu/~tom/faces.html

Alternative Error Functions

Original MLE error fn.

Penalize large weights:

A/

E(w) =

1 2 2
— > Y (tra—o0rd)" X Wi;
2deD ke€outputs 2y

Train on target slopes as well as values:
2

Otry O00kg
— 3 > thd — Opa)’ + (—
2 i teoTuts | L

E(d)

Tie together weights:

e ¢.g., in phoneme recognition network

Artificial neural networks — what you should know

e Highly expressive non-linear functions
« Highly parallel network of logistic function units

e Minimizing sum of squared training errors

— Gives MLE estimates of network weights if we assume zero mean
Gaussian noise on output values

« Minimizing sum of sq errors plus weight squared (regularization)
— MAP estimates assuming weight priors are zero mean Gaussian

« Gradient descent as training procedure
— How to derive your own gradient descent procedure

» Discover useful representations at hidden units
e Local minima is greatest problem
« Overfitting, regularization, early stopping

