
Reducing Data Dimension

Machine Learning 10-701
November 14, 2006

Tom M. Mitchell
Machine Learning Department

Carnegie Mellon University

Required reading:  

• “A Tutorial on PCA,’ J. Schlens, copy available on class website

Recommended reading:

• Wall et al., 2003



Outline

• Feature selection
– Single feature scoring criteria
– Search strategies

• Unsupervised dimension reduction using all features
– Principle Components Analysis
– Singular Value Decomposition
– Independent components analysis

• Supervised dimension reduction
– Fisher Linear Discriminant
– Hidden layers of Neural Networks



Dimensionality Reduction

Why?

• Learning a target function from data where some 
features are irrelevant  - reduce variance, improve 
accuracy

• Wish to visualize high dimensional data

• Sometimes have data whose “intrinsic” dimensionality is 
smaller than the number of features used to describe it  -
recover intrinsic dimension



Supervised Feature Selection



Supervised Feature Selection

Problem: Wish to learn f: X Y, where X=<X1, …XN>
But suspect not all Xi are relevant

Approach: Preprocess data to select only a subset of the Xi

• Score each feature, or subsets of features
– How?

• Search for useful subset of features to represent data
– How?



Scoring Individual Features Xi

Common scoring methods:
• Training or cross-validated accuracy of single-feature 

classifiers  fi: Xi Y

• Estimated mutual information between Xi and Y :  

• χ2 statistic to measure independence between Xi and Y

• Domain specific criteria
– Text: Score “stop” words (“the”, “of”, …) as zero
– fMRI: Score voxel by T-test for activation versus rest condition
– …



Choosing Set of Features to learn F: X Y
Common methods:

Forward1: Choose the n features with the highest scores

Forward2:
– Choose single highest scoring feature Xk
– Rescore all features, conditioned on the set of 

already-selected features
• E.g., Score(Xi | Xk) = I(Xi,Y |Xk) 
• E.g, Score(Xi | Xk) = Accuracy(predicting Y from Xi and Xk)

– Repeat, calculating new scores on each iteration, 
conditioning on set of selected features



Choosing Set of Features
Common methods:

Backward1:  Start with all features, delete the n with lowest 
scores

Backward2: Start with all features, score each feature 
conditioned on assumption that all others are included. 
Then:
– Remove feature with the lowest (conditioned) score
– Rescore all features, conditioned on the new, reduced feature set
– Repeat



Feature Selection: Text Classification
[Rogati&Yang, 2002]

IG=information gain, chi= χ2 , DF=doc frequency, 

Approximately 105 words in English



Impact of Feature Selection on Classification of 
fMRI Data [Pereira et al., 2005]

Accuracy classifying 
category of word read 

by subject

Voxels scored by p-value of regression to predict voxel value from the task



Summary: Supervised Feature Selection

Approach: Preprocess data to select only a subset of the Xi

• Score each feature
– Mutual information, prediction accuracy, …

• Find useful subset of features based on their scores
– Greedy addition of features to pool
– Greedy deletion of features from pool
– Considered independently, or in context of other selected features

Always do feature selection using training set only (not test 
set!)
– Often use nested cross-validation loop:

• Outer loop to get unbiased estimate of final classifier accuracy
• Inner loop to get unbiased feature scores for feature selection



Unsupervised Dimensionality Reduction



Unsupervised mapping to lower dimension

Differs from feature selection in two ways:

• Instead of choosing subset of features, create new 
features (dimensions) defined as functions over all 
features  

• Don’t consider class labels, just the data points



Principle Components Analysis

• Idea: 
– Given data points in d-dimensional space, project into lower 

dimensional space while preserving as much information as 
possible

• E.g., find best planar approximation to 3D data
• E.g., find best planar approximation to 104 D data

– In particular, choose projection that minimizes the squared error 
in reconstructing original data



PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector is

We can represent these in terms of any d orthogonal basis vectors

x1

x2

u2
u1PCA: given M<d.  Find 

that minimizes

where 

Mean 



PCA
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Note we get zero error if M=d, so all error is due to missing components.

Therefore, 

PCA: given M<d.  Find 

that minimizes

where 

Covariance matrix:

This minimized when ui
is eigenvector of Σ, the 
covariance matrix of X.  
i.e., minimized when:



PCA
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Minimize

Eigenvector of Σ
Eigenvalue (scalar)

PCA algorithm 1:

1. X Create N x d data matrix, with 
one row vector xn per data point

2. X subtract mean x from each row 
vector xn in X

3. Σ covariance matrix of X

4. Find eigenvectors and eigenvalues
of Σ

5. PC’s the M eigenvectors with 
largest eigenvalues



PCA Example

mean
First 
eigenvector

Second 
eigenvector



PCA Example

mean
First 
eigenvector

Second 
eigenvector

Reconstructed data using 
only first eigenvector (M=1)



Very Nice When Initial Dimension Not Too Big

What if very large dimensional data?

• e.g., Images (d ≥ 10^4)

Problem:

• Covariance matrix Σ is size (d x d)

• d=104 | Σ | = 108

Singular Value Decomposition (SVD) to the rescue!

• pretty efficient algs available, including Matlab SVD

• some implementations find just top N eigenvectors



[from Wall et al., 2003]

SVD

Data X, one 
row per data 
point

Rows of VT are unit 
length eigenvectors of 
XTX

If cols of X have zero 
mean, then XTX = c Σ
and eigenvects are the 
Principle Components

S is diagonal, 
Sk > Sk+1,     
Sk

2 is kth
largest 
eigenvalue

US gives 
coordinates 
of rows of X
in the space 
of principle 
components



Singular Value Decomposition

To generate principle components:

• Subtract mean                         from each data point, to 
create zero-centered data

• Create matrix X with one row vector per (zero centered) 
data point

• Solve SVD:  X = USVT

• Output Principle components: columns of V (= rows of VT)
– Eigenvectors in V are sorted from largest to smallest eigenvalues
– S is diagonal, with sk

2 giving eigenvalue for kth eigenvector



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x

If xi is ith row of data matrix X, then 
• (ith row of US) = VT xi

T

• (US)T = VT XT

To project a column vector x to M dim Principle Components 
subspace, take just the first M coordinates of VT x



PCA Example

faces Eigenfaces

Thanks to Christopher DeCoro
see http://www.cs.princeton.edu/~cdecoro/eigenfaces/



Reconstructing a face from 
the first N components 
(eigenfaces)



Independent Components Analysis

• PCA seeks directions <Y1 … YM> in feature space X that 
minimize reconstruction error

• ICA seeks directions <Y1 … YM> that are most statistically 
independent.  I.e., that minimize I(Y), the mutual 
information between the Yj :

Which maximizes their departure from Gaussianity!



Supervised Dimensionality Reduction



1. Fisher Linear Discriminant

• A method for projecting data into lower dimension to 
hopefully improve classification

• We’ll consider 2-class case

Project data onto vector that connects class means?



Fisher Linear Discriminant

Project data onto one dimension, to help classification

Define class means:

Could choose w according to:

Instead, Fisher Linear Discriminant chooses:



Fisher Linear Discriminant

Project data onto one dimension, to help classification

Fisher Linear Discriminant :

is solved by :

Where SW is sum of within-class covariances:



Fisher Linear Discriminant

Fisher Linear Discriminant :

Is equivalent to minimizing sum of squared error if we assume 
target values are not +1 and -1, but instead N/N1 and –N/N2

Where N  is total number of examples, Ni is number in class i

Also generalized to K classes (and projects data to K-1 dimensions)



Summary: Fisher Linear Discriminant

• Choose n-1 dimension projection for n-class 
classification problem

• Use within-class covariances to determine the projection
• Minimizes a different sum of squared error function (the 

projected within-class variances)



2. Hidden Layers in Neural Networks

When # hidden units < # inputs, hidden layer also 
performs dimensionality reduction.

Each synthesized dimension (each hidden unit) is logistic 
function of inputs

Hidden units defined by gradient descent to (locally) 
minimize squared output classification/regression error

Also allow networks with multiple hidden layers
highly nonlinear components (in contrast with linear 

subspace of Fisher LD, PCA)



Training neural network to 
minimize reconstruction error









Semantic Memory Model Based on ANN’s
[McClelland & Rogers, Nature 2003]

No hierarchy given. 

Train with assertions, 
e.g., Can(Canary,Fly)



Humans act as though they have a hierarchical memory 
organization

1. Victims of Semantic Dementia progressively lose knowledge of objects
But they lose specific details first, general properties later, suggesting 
hierarchical memory

Thing

Living

AnimalPlant

NonLiving

BirdFish

Canary

2. Children appear to learn general categories 
and properties first, following the same 
hierarchy, top down*.

* some debate remains on this.

Question: What learning mechanism could produce this 
emergent hierarchy?



Memory deterioration follows semantic hierarchy
[McClelland & Rogers, Nature 2003]





ANN Also Models Progressive Deterioration 
[McClelland & Rogers, Nature 2003]

average effect of noise in inputs to hidden layers



What you should know

• Feature selection
– Single feature scoring criteria
– Search strategies

• Common approaches: Greedy addition of features, or greedy deletion

• Unsupervised dimension reduction using all features
– Principle Components Analysis

• Minimize reconstruction error
– Singular Value Decomposition

• Efficient PCA
– Independent components analysis

• Supervised dimension reduction
– Fisher Linear Discriminant

• Project to n-1 dimensions to discriminate n classes
– Hidden layers of Neural Networks

• Most flexible, local minima issues



Further Readings

• “Singular value decomposition and principal component analysis,” Wall, M.E, 
Rechtsteiner, A., and L. Rocha, in A Practical Approach to Microarray Data Analysis
(D.P. Berrar, W. Dubitzky, M. Granzow, eds.) Kluwer, Norwell, MA, 2003. pp. 91-109. 

LANL LA-UR-02-4001


