Reducing Data Dimension

Required reading:

« “A Tutorial on PCA,’ J. Schlens, copy available on class website
Recommended reading:

* Wall et al., 2003
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Outline

* Feature selection
— Single feature scoring criteria
— Search strategies

e Unsupervised dimension reduction using all features
— Principle Components Analysis
— Singular Value Decomposition
— Independent components analysis

o Supervised dimension reduction
— Fisher Linear Discriminant
— Hidden layers of Neural Networks
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Dimensionality Reduction

Why?

e Learning a target function from data where some
features are irrelevant - reduce variance, improve
accuracy

« Wish to visualize high dimensional data

 Sometimes have data whose “intrinsic” dimensionality is
smaller than the number of features used to describe it -
recover Intrinsic dimension



Supervised Feature Selection



Supervised Feature Selection

Problem: Wish to learn f: X = Y, where X=<X,, ... X
But suspect not all X, are relevant

Approach: Preprocess data to select only a subset of the X,

« Score each feature, or subsets of features
— How?

o Search for useful subset of features to represent data
— How?



Scoring Individual Features X;

Common scoring methods:

e Training or cross-validated accuracy of single-feature
classifiers f: X; 2Y

e Estimated mutual information between X; and Y :

o v v P(X; =k,Y =y)
IXY) =2 2 PG =hY =9)109 55 py = )

e 2 statistic to measure independence between X. and Y

 Domain specific criteria
— Text: Score “stop” words (“the”, “of”, ...) as zero
— fMRI: Score voxel by T-test for activation versus rest condition



Choosing Set of Features to learn F: XY

Common methods:

Forwardl: Choose the n features with the highest scores

Forward?2:
— Choose single highest scoring feature X,

— Rescore all features, conditioned on the set of
already-selected features
e E.g., Score(X| X,) = 1(X,Y [X,)
« E.g, Score(X;| X,) = Accuracy(predicting Y from X; and X,)
— Repeat, calculating new scores on each iteration,
conditioning on set of selected features



Choosing Set of Features

Common methods:

Backwardl: Start with all features, delete the n with lowest
scores

Backward?2: Start with all features, score each feature
conditioned on assumption that all others are included.
Then:

— Remove feature with the lowest (conditioned) score
— Rescore all features, conditioned on the new, reduced feature set
— Repeat



Feature Selection: Text Classification

Approximately 10° words in English
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Figure 2: Top 3 feature selection methods for Reuters-21578 (Macro F1)
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Impact of Feature Selection on Classification of

fMRI Data

[Pereira et al., 2005]

Accuracy classifying
category of word read

by subject
'
#voxels mean | subjects

2338 320B  332B  424B  474B  496B 77B 868

50 0.735 0.783 0.817 0.55 0.783 0.75 0.8 0.65 0.75
100 0.742 0.767 0.8 0.533  0.817 0.85  0.783 0.6 0.783
200 0.737 0.783 0.783 0517 0.817 0.883 0.75 0.583  0.783
300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767
400 0.742 0.8 0.783  0.583 0.85 0.833  0.75  0.583 0.75
800 0.735 0.833 0.817  0.567 0.833  0.833 0.7 0.55 0.75
1600 0.698 0.8 0.817 0.45 0.783  0.833 0.633 0.5 0.75
all (~2500) 0.638 0.767 0.767 0.25 0.75 0.833 0.567 0.433 0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlighted line corresponds to the

best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task



Summary: Supervised Feature Selection

Approach: Preprocess data to select only a subset of the X;

e Score each feature
— Mutual information, prediction accuracy, ...

 Find useful subset of features based on their scores
— Greedy addition of features to pool
— Greedy deletion of features from pool
— Considered independently, or in context of other selected features

Always do feature selection using training set only (not test
set!)

— Often use nested cross-validation loop:
* Quter loop to get unbiased estimate of final classifier accuracy
* Inner loop to get unbiased feature scores for feature selection



Unsupervised Dimensionality Reduction



Unsupervised mapping to lower dimension

Differs from feature selection in two ways:

e Instead of choosing subset of features, create new
features (dimensions) defined as functions over all

features

 Don’t consider class labels, just the data points



Principle Components Analysis

e |dea:

— Given data points in d-dimensional space, project into lower
dimensional space while preserving as much information as
possible

* E.g., find best planar approximation to 3D data
* E.g., find best planar approximation to 104 D data

— In particular, choose projection that minimizes the squared error
In reconstructing original data
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PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector is

x"' = (x7...z5)

We can represent these in terms of any d orthogonal basis vectors

d
n __ Mgy T —_
X = Zziui, uz- uj—5w

=1

Where

PCA: given M<d. Find

(uy
N
that minimizes En = Z
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—1= —
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PCA N
W
PCA: given M<d. Find (u1i...up) Xp| °°
N X
that minimizes Ex = Y. [|x" — X"||? .
Iy n=1 X,
where " = x + Z

Note we get zero error if M=d, so all error is due to missing components.

Therefore, d N _
Ey = % 3wl (x" - %))?

- @zM—i—l n=1"
g /—This minimized when u;
— Z uZTZ w; IS eigenvector of z, the
. covariance matrix of X.
1=M+1 . L _
l.e., minimized when:
. . _ — 2 u; = \u;
Covariance matrix: & = > (x" — %) (x" — x)* v




PCA

p i uz.: oL
. . . X e o
Minimize Eyy = ) uj & uy 2
1=M+1
— Zui = Aiui X1
x_ “Eigenvector of X
Eigenvalue (scalar)
d PCA algorithm 1:
— by = | Z Ai 1. X € Create N x d data matrix, with
i=M+1 one row vector x" per data point

2. X €& subtract mean x from each row
vector x"in X

3. X € covariance matrix of X

4. Find eigenvectors and eigenvalues
of X

5. PC’s € the M eigenvectors with
largest eigenvalues




PCA Example
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PCA Example

M
X"=x4+ ) 2y

Reconstructed data using

=1 only first eigenvector (M=1)
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Very Nice When Initial Dimension Not Too Big

What if very large dimensional data?
e e.g., Images (d > 10M4)

Problem:
e Covariance matrix X is size (d x d)
¢ d=10% - |X| =108

Singular Value Decomposition (SVD) to the rescue!
e pretty efficient algs available, including Matlab SVD

» some Implementations find just top N eigenvectors




m=n

Data X, one
row per data
point

[from Wall et al., 2003]
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Singular Value Decomposition

To generate principle components:

_ 1 X, .
e Subtract mean X=y 2 X from each data point, to

n=1

create zero-centered data

* Create matrix X with one row vector per (zero centered)
data point

e Solve SVD: X =USVT

e OQOutput Principle components: columns of V (= rows of VT)
— Eigenvectors in V are sorted from largest to smallest eigenvalues
— S s diagonal, with s, giving eigenvalue for kth eigenvector



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT X

If x: is it" row of data matrix X, then
« (i row of US) = VT x.T
« (US)T=VTXT

To project a column vector x to M dim Principle Components
subspace, take just the first M coordinates of VT x
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PCA Example

Eigenfaces

faces

Thanks to Christopher DeCoro
see http://www.cs.princeton.edu/~cdecoro/eigenfaces/



Reconstructing a face from
the first N components
(eigenfaces)

In this next image, we show a similar picture, but with each
additional face representing an additional 8 principle components,
You can see that it takes a rather large number of images before
the picture looks totally correct.




Independent Components Analysis

 PCA seeks directions <Y, ... Y,,> In feature space X that
7 minimize reconstruction error

Gadss(qv\

» |CA seeks directions <Y, ... Y,,> that are most statistically
Independent. l.e., that minimize I(Y), the mutual
Information between the Y; :

J
I(Y) = Lz H(Y))
=1

— H(Y)

Which maximizes their departure from Gaussoianity!

o o®
.»EJ\'C, AL o



Supervised Dimensionality Reduction



1. Fisher Linear Discriminant

* A method for projecting data into lower dimension to
hopefully improve classification

e We'll consider 2-class case

Project data onto vector that connects class means?
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Fisher Linear Discriminant

Project data onto one dimension, to help classification

y=w!x

. 1
Define class means: m; = — > x”"
Ni neC;

Could choose w according to: arg mvgx WT(m2 —myq)

2
. . o | (mo —m1)
Instead, Fisher Linear Discriminant chooses: arg max 5 5
W8Tt s5
— 2 2

neC}



Fisher Linear Discriminant

Project data onto one dimension, to help classification

Yy = wlx
. 2
. . o (mo —myq)
Fisher Linear Discriminant : arg max 5 5
ooos1 s

is solved by : W SW_l(mz —myq)

Where S, is sum of within-class covariances:

Sw= Y (x"-m)x"-mp)T+ Y (x"-mg)(x"—my)”’
neCq neCy



Fisher Linear Discriminant

2
| | L (mo —myq)
Fisher Linear Discriminant : afd max 5 5
W
s1+ s5

Is equivalent to minimizing sum of squared error if we assume
target values are not +1 and -1, but instead N/N; and —N/N,

Where N is total number of examples, N; is number in class i

Also generalized to K classes (and projects data to K-1 dimensions)

e — R — I



Summary: Fisher Linear Discriminant

e Choose n-1 dimension projection for n-class
classification problem

e Use within-class covariances to determine the projection

* Minimizes a different sum of squared error function (the
projected within-class variances)




2. Hidden Layers in Neural Networks

When # hidden units < # inputs, hidden layer also
performs dimensionality reduction.

Each synthesized dimension (each hidden unit) is logistic
function of inputs

hi(x) = :

1 4+ exp(wg + Z?LNzl W;T;)

Hidden units defined by gradient descent to (locally)
minimize squared output classification/regression error

N
E=Y Y (™) — yp(z™))?
n=1 k
Also allow networks with multiple hidden layers

=> highly nonlinear components (in contrast with linear
subspace of Fisher LD, PCA)

Inputs

Outputs




Learning Hidden Layer Representations

A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Training neural network to
minimize reconstruction error



Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




Neural Nets for Face Recognition

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces



Learned Hidden Unit Weights

left strt rght up Learned Weights

ey 30x32

E n
'E_I
" I l

Typical input images

http://www.cs.cmu.edu/~tom/faces.html
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Semantic Memory Model Based on ANN'’s
[McClelland & Rogers, Nature 2003]

No hierarchy given.

Train with assertions,
e.g., Can(Canary,Fly)

Fine
Oalk
Rose
Caisy
Rokin
Canary
Sunfish
Salmon

Iltem

Living thing
Flant
Animal
Tree
Flower
Bird
Flower
Fine
Oak
Fose
Daisy
Robkin
Canary

| Ssunfish

Salmon

- )| Pretty

Relation

Tall
Living
Green
Fed
Yellow

Grow
Move
Swim
Fly
Sing

Bark
Petals
Wings
Feathers
Scales
Gills
Foots
Skin

Attribute




Humans act as though they have a hierarchical memory
organization

1. Victims of Semantic Dementia progressively lose knowledge of objects

But they lose specific details first, general properties later, suggesting
hierarchical memory

Thing
NonLiving/\ Living
2. Children appear to learn general categories N Plar(\Animal
and properties first, following the same /\
hierarchy, top down®. Fish Bird
s
Canary

Question: What learning mechanism could produce this
emergent hierarchy?

* some debate remains on this.



Memory deterioration follows semantic hierarchy
[McClelland & Rogers, Nature 2003]

a b

Picture naming responses for JL 1.0
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Figure 4 | The process of differentiation of conceptual representations. The representations are those seen in the feedforeard
network model shown in FIG. 3. a | Acquired patterns of activation that represent the eight objects in the training sst at three pointsin
the leaming process (gpochs 250, 750 and 2,500). Early in lzaming, the pattems are undifferentiated; the first difference to appear is
between plants and animals. Later, the patterns show clear differentiation at both the superordinate (plant—animal) and intermediate
(bird—fishvtree—flower) levels. Finally, the individual concepts are differentiated, but the overall hierarchical organization of the similarity
structure remains. b | A standard hierarchical clustering analysis program has been used to visualize the similarity structure in the



ANN Also Models Progressive Deterioration
[McClelland & Rogers, Nature 2003]

C
u% Canary-CAN-Grow
= Canary-CAN-Move )
© = Canary-CAN-Fly
< 04 - Canary-CAN-Sing @
== Pine-HAS-Leaves
Q
0.2
0.0 4
| | | | | | |
0 1 2 3 4 5 6
Noise

average effect of noise in inputs to hidden layers



What you should know

e Feature selection
— Single feature scoring criteria

— Search strategies
« Common approaches: Greedy addition of features, or greedy deletion

e Unsupervised dimension reduction using all features
— Principle Components Analysis
* Minimize reconstruction error

— Singular Value Decomposition
« Efficient PCA

— Independent components analysis

e Supervised dimension reduction
— Fisher Linear Discriminant
* Project to n-1 dimensions to discriminate n classes

— Hidden layers of Neural Networks
» Most flexible, local minima issues
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Further Readings

“Singular value decomposition and principal component analysis,” Wall, M.E,
Rechtsteiner, A., and L. Rocha, in A Practical Approach to Microarray Data Analysis
(D.P. Berrar, W. Dubitzky, M. Granzow, eds.) Kluwer, Norwell, MA, 2003. pp. 91-109.
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