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ABSTRACT 

In this paper, we present our system called LADS, tailored to 

work on the TREC Entity Track Task of Related Entity Finding. 

The LADS system consists of four key components: document 

retrieval, entity extraction, feature extraction and entity ranking. 

We adopt the open advancement framework for the rapid 

development and use a learning-to-rank approach to rank 

candidate entities. We also experiment with various commercial 

and academic NLP tools. In our final experiments with the TREC 

2010 dataset, our system achieves the fourth rank compared to the 

fifteen teams who participated in TREC 2010.  

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – information filtering retrieval models, search 

process, selection process. 

General Terms 

Algorithms, Design, Experimentation 

Keywords 

Named Entity Recognition, Learning to Rank, Information 

Retrieval 

1. INTRODUCTION 
We focus on the task of related entity finding, as defined by the 

TREC 2011 Entity Track. This is essentially an entity-oriented 

web search task. As input, we are given “topics”, which consist of 

the name of an input entity, the type of the target entity, and a 

narrative describing the nature of the relationship between 

entities. There are four different target entity types: organization, 

location, person, and product. The goal of the task is to find 

homepages, represented by their ClueWeb09 id [2], for target 

entities for a given topic. This is a challenging task due to several 

factors; one being that web search engines are optimized to find 

documents and not entities, and another being that it is harder to 

precisely convey the semantics of a relation to a search engine. 

Our approach to this task is notable for two reasons: Firstly, in 

order to achieve fast iteration and the best possible results, we 

used an open advancement approach and designed a modular 

architecture that allows us to easily plug in different NLP 

components, including off-the-shelf commercial ones. Secondly, 

we made use of a rich feature set to rank candidate entities, and 

experimented with a Learning to Rank (LETOR) approach to 

combine these features in a sophisticated manner. We were able to 

create a system that achieved results close to the best published 

numbers; with the advantage of requiring very little development 

time.  

2. RELATED WORK 
The TREC evaluations have been the pre-eminent venue for 

advancements in the field of information retrieval. The TREC 

Entity track was added a few years ago with the aim of 

encouraging entity oriented research. The Related Entity Finding 

task is currently the main task in this track. The Clueweb 09 

corpus that we used was compiled with the aim of allowing 

researchers to develop and test our system on a complete snapshot 

of the web, as it existed in 2009. There has also been a lot of prior 

work in developing the open advancement software engineering 

approach, particularly in the field of question answering. 

3. DATASET AND EVALUATION 

3.1 Dataset 
We use topics from the 2010 REF data set. This data set consists 

of 50 topics, with a heavy skew towards the “organization” target 

entity type (60%). Of these topics, 47 were ultimately judged, 

with homepages being pooled (depth 20) from all of the 

participants in the 2010 evaluation [8].  

Homepages are retrieved from the Clueweb 09 corpus, and 

acceptable homepages are ranked as either being “primary”, or 

pages that are devoted and in control of the entity (i.e. 

http://www.metallica.com/), and “related”, or pages that are 

devoted but not in control of the entity (i.e. 

http://www.last.fm/music/Metallica). For the 2010 offering of the 

task, Wikipedia pages are disallowed as homepages. An example 

query from the 2010 data set, in XML format is in figure 1: 

Figure 1: Example TREC 2010 Entity Track Topic 

<query> 

    <num>25</num> 

    <entity_name>U.S. Supreme Court</entity_name> 

    <entity_URL>clueweb09-en0012-87-

19363</entity_URL> 

    <target_entity>organization</target_entity> 
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    <narrative> From what schools did the Supreme Court 

justices 

                receive their undergraduate degrees? 

    </narrative> 

</query> 

3.2 Evaluation 
We use NDCG@R as our primary metric to evaluate our results. 

We set the gain to 1 for relevant pages, and 3 for primary pages. 

In addition, we also report the number of primary and relevant 

pages retrieved, and a few other standard information retrieval 

metrics such as R-precision (Rprec), mean average precision 

(MAP), and precision at 10 (P@10).  

4. ARCHITECTURE AND COMPONENTS 

4.1 Architecture 
As mentioned earlier, one of our key objectives in designing our 

system was to have the ability to develop parts independently and 

combine them quickly, and ensure quick experimentation and 

frequent integration of components. To this end, we designed our 

system to consist of interchangeable components with common 

interfaces, and a specific pipeline set dynamically via 

configuration files. Our pipeline contains the following abstract 

base components: 

● Query Analysis: Performs an initial analysis of the input 

topic queries 

● Document Retrieval: Searches for documents based on 

input from the query analysis 

● Entity Extractor: Extracts candidate entities from the 

retrieved document pool 

● Feature Extractor: Extracts features for each candidate 

entity 

● Entity Ranker: Ranks entities based on their feature 

values 

● Homepage Retrieval: Finds homepages for the ranked 

entity list 

 

Each of these components is described in detail in the following 

subsection. 

4.2 Components 

4.2.1 Query Analysis 
We use OpenEphyra [5] to extract keywords from query 

narratives and supplied this information to subsequent 

components in the pipeline. We do not perform more 

sophisticated processing with query analysis because of its limited 

value in increasing the overall accuracy of our system.  

4.2.2 Document Retrieval 
We experiment with using web-based search as well as Indri-

based local search for document retrieval. For both cases, we vary 

parameters such as the number of documents retrieved, and the 

use of full query narratives versus only keywords.  

4.2.2.1 Web Search 
We wrap two different commercial web search engines, including 

Yahoo BOSS [7] (build your own search service), and Microsoft 

Bing [4]. For our final system, we use Yahoo BOSS since it was 

more reliable and flexible with respect to behavior and API rate 

limitations; though anecdotally, the results from both services are 

quite similar. 

4.2.2.2 Local Search 
We use a JNI-based Indri interface [6] that searches the 

ClueWeb09 category B corpus (a set of 50 million high-quality 

English language webpages, including all of Wikipedia) [2]. We 

do not use any of Indri’s sophisticated query operators, as we are 

interested in treating the web and local search engines as black 

box search engines with minimal changes to the queries provided 

as input. 

4.2.3 Entity Extraction 
We adopted and experimented with state-of-art named entity 

extraction systems, including academic [11] and commercial 

products [1], to extract candidate entities from the retrieved 

documents for feature extraction and entity ranking. The input for 

the entity extraction component is HTML web page and the 

desired output is the set of candidate entities extracted from the 

web page. We implemented and investigated various heuristics to 

improve such webpage-based entity extraction. 

4.2.3.1 Stanford NER 
Stanford Named Entity Recognizer (Stanford NER) is a 

commonly used academic tool for named entity recognition 

known for the accuracy of its results. It incorporates conditional 

random field-based classifier to label the named entities in the 

text. Yet Stanford NER is originally designed and trained with 

plain text without HTML decorations. Thus we made several 

efforts to adapt the Stanford NER for our purpose of extracting 

entities from HTML web pages.  

Firstly, we incorporated a standard HTML text extractor, JSoup 

[3], to perform text extraction from HTML web pages. It mainly 

removes the HTML tags, formatting information and meta-data. 

Secondly, we varied the system by incorporating structure 

information in the HTML web pages. The intuition is that simply 

removing the HTML tags in the web pages eliminates the 

structured information associated with them. Yet such information 

might be useful for considering the candidacy of the entities. By 

applying Stanford NER directly on the extracted text, we failed to 

use the structure information. Thus we decided to use the readily 

available structure information in the HTML web pages - the 

HTML elements (e.g. “body”, “title”, “anchor text”, “table” etc.). 

We hypothesize that since many queries are targeted towards a list 

of entities thus the candidate entities are more likely to appear in 

the lists or tables inside the HTML web pages. Thirdly, we 

improved the system by using the heuristics of injecting delimiters 

to the HTML web page. In our early error analysis, we found that 

the removal of the HTML tags in the HTML text created this 

problem. HTML web pages sometimes use the HTML elements as 

text delimiters; however, our HTML text extractor removes all 

these delimiters to produce the plain text for Stanford NER to 

work with. Since Stanford NER is trained on News texts with 

numerous text delimiters such as punctuation marks, it fails to 

separate the neighboring entities in our case. We then tested our 

heuristics to inject artificial delimiters to the HTML web pages. 

While there are many artificial delimiters we could use, we chose 

the punctuation marks “,” since it has less ambiguity than “.” 

(which can be considered as a mark for initial other than a 

sentence break) or “-” (which can be used to connect two words). 

We inserted the punctuation marks “,” before every occurrence of 

HTML tag-closing statement “</” in the HTML text before the 

HTML text extraction. Fourthly, we attempted and experimented 

with several heuristics to filter ill-formed entities in order to 

improve the system. We designed and tried three different filtering 



heuristics to remove the ill-formed candidate entities. The first 

filtering heuristics consider the number of characters in the 

surface form of the token, discard the entity if it is shorter than a 

threshold value. The second filtering heuristics consider the 

number of tokens in the entity, discard the entity if the number of 

tokens is less than a minimum value or larger than a maximum 

value. We tried a few different values for the thresholds in these 

two filters and eventually picked 4 for the minimum number of 

characters in the entity surface form, 1 for the minimum number 

of tokens and 5 for maximum number of tokens in the entity. The 

third filtering heuristics consider the tokens in the entity, if they 

consist of only function words, the entity is discarded. The 

function word list is obtained from the open sourced question 

answering tool OpenEphyra [5]. 

4.2.3.2 AlchemyAPI NER 
AlchemyAPI Named Entity Extractor (NEE) is one of the state-of-

art commercial tools for named entity extraction. We conducted 

an extensive survey of both state-of-art academic and commercial 

tools and found that AlchemyAPI NEE is one of the best among 

them and provides the best balance of extraction accuracy and 

processing speed. 

AlchemyAPI NEE is capable of identifying people, companies, 

organizations, cities, geographic features, and other typed entities 

within HTML text, plain text, or web-based content. It supports 

entity disambiguation which links the extracted entity to its 

corresponding entry in external database including DBpedia, 

Freebase, OpenCyc etc.. It also supports entity type identification 

for 34 different entity types such as automobile, city, facility.  

We implemented AlchemyAPI in our system with manually 

created mapping between its 34 entity types to the 4 entity types 

in TREC entity track.  

 

4.2.4 Feature Extraction 
We investigated a wide set of features that we thought might be 

good indicators of how relevant a candidate entity is to the query.   

● Frequency Based Features 

These features are based on the number of times a candidate entity 

shows up in search results. In particular, we count  

● F1 - The total number of occurrences of a candidate 

entity in all the search results 

● F2 - The number of unique search results that an entity 

occurs in 

● Density Based Features 

These features consider the quality of web pages that a candidate 

entity occurs in, as judged by the number of other candidate 

entities in these web pages. Specifically, for a particular candidate 

entity EC we count: 

● D1 - The number of all entities in a webpage that EC 

occurs in (summed over all the search results that EC 

occurs in). 

● D2 - The number of unique entities in a webpage that 

EC occurs in (summed over all the search results that EC 

occurs in). 

● Proximity Based Features 

These features are based on the concept of ranking entities 

according to how closely they occur to query keywords in the 

retrieved web pages. We use two such features: 

 P:  The minimum distance between any query keyword 

and a candidate entity EC in a webpage (averaged 

across all the search results that EC occurs in). 

 PN : Product of cumulative proximity between keywords 

and entities in retrieved documents and number of such 

documents. Formally,  

 

 

where dist is the proximity and f is any aggregate 

function such as summation or maximum. 

● Semantic Similarity Based Features 

We evaluate semantic similarity between words using the Jiang 

Conrath metric [12], which considers the WordNet distance 

between two strings. We apply this metric to count the following 

specific features: 

● S1: Similarity between the query narrative and the 

snippet of a search result (Averaged across all search 

results for an entity EC). 

● S2: Similarity between the keywords in the query and 

the type of the candidate entity 

● S3: Similarity between the keywords in the query and 

the Freebase description of the candidate entity 

● Average Rank of Web Pages 

We consider the average rank of the web pages that a candidate 

entity EC occurs in, with the intuition that entities that appear in 

higher ranked pages on average are more likely to be relevant. We 

refer to this feature as AvgRank subsequently.  

4.2.5 Entity Ranking 
We noticed that almost all the systems that have participated in 

the TREC entity track in previous years used some sort of linear 

weighting scheme to combine different features in order to rank 

entities, and one of our motivations was to use a learning to rank 

(LETOR) approach for this task and see whether such an 

approach would outperform traditional linear weighting schemes. 

We therefore developed an SVM model to rank candidate entities.  

A significant problem in using an SVM for this task is finding 

gold standard data to train such a model, because the relevance 

judgments from the previous years that are available to us are in 

the form of binary values that indicate whether an entity is 

relevant or not, while our desired output from the SVM ranker is a 

real-valued score for each candidate entity. To get around this 

problem, we train an SVM using this binary-formatted data, but 

while testing on new instances, we have it output a score between 

0 and 1, indicating how likely an entity is to be relevant.  

More precisely, we train on a subset of the queries, and during 

Table 3: Effect of various improvements on Stanford NER 

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

Stanford 31 108 0.0681 0.096 0.0551 0.078

Stanford-Injection 50 160 0.1 0.1306 0.0792 0.1093

Stanford-Minmax 30 108 0.0702 0.0949 0.0551 0.078

Stanford-Minmax-

Keyword

27 108 0.0766 0.0995 0.0582 0.0781

 

 



Table 1: Performance with full query narrative versus using 

keywords only 

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

Full Narrative 40 183 0.1021 0.1176 0.072 0.0861

Key Word 40 176 0.1106 0.1182 0.0662 0.0909  

 

training we check if a candidate entity for a particular query is 

present in the relevance judgment file and marked as a primary or 

relevant entity. If so, this constitutes a positive instance for the 

SVM, and if not, a negative instance. We encounter many more 

negative instances than positive ones, so we keep a fixed ratio of 

negative instances for each positive instance found, and throw 

away the rest of the negative instances. We then perform a grid 

search to find the optimal parameters for training and 

subsequently train our SVM. During testing, we have it output a 

relevance score for each candidate entity and classify entities 

according to this score. We use the LibSVM [9] library to 

implement SVMs. 

 

4.2.6 Homepage Retrieval 
We started with a naive homepage retrieval strategist that returns 

the first page from a search engine which is not a Wikipedia page, 

since the Wikipedia domain is explicitly disallowed for the TREC 

Related Entity Finding task. We picked this strategy because 

search engines like Google & Yahoo do a very good job at 

returning homepages, or at least very devoted and informative 

pages, for entities & topics, and in fact this turned out to be a 

surprisingly difficult strategy to beat. One change that was a 

significant improvement over this naïve strategy was using a list 

of “blacklisted domains” for use in filtering irrelevant homepages. 

The domains we filtered were primarily content farms, such as  

“answers.com”, “about.com” and “mahalo.com”. Content farms 

are typically web pages that that have high concentrations of text 

that are specifically designed to be ranked highly by web search 

engine algorithms and are thus unlikely to be considered a 

relevant or primary page with respect to the TREC Entity task. In 

other words, instead of rejecting Wikipedia pages from 

consideration, we reject any page from a blacklisted domain. 

5. EXPERIMENTS AND ANALYSIS 
In this section we describe the results of each of our component 

experiments, and provide an analysis of the experimental results. 

5.1 Document Retrieval 
We experimented with using both full query narratives and 

keywords only, and found that both strategies yielded the same 

number of related pages. Using the full narrative had a slight edge 

in retrieving more primaries, but NDCG@R was higher for the 

key word strategy. This is due to the fact that the key word search 

returned slightly better quality documents, which were ultimately 

beneficial in entity ranking. 

We also used both web-based (Yahoo, Bing) and local (Indri) 

search engines, and found that web search clearly out performs 

the Indri search on all counts, since it gets significantly better 

quality pages which resulted in more related and primary pages.   

5.2 Entity Extraction 
We used heuristics and filtering techniques to improve Stanford 

NER on web-page entity extraction. The baseline run “Stanford” 

is the same as in previous experiment by directly applying 

Stanford NER on the text extracted from the entire web-page. 

Other runs show the result from using Stanford NER together 

with the delimiter injection heuristics (“Stanford-Injection”); and 

using Stanford NER together with the entity length filtering 

heuristics which filters the entity with too many / few tokens or 

too few characters (“Stanford-Minmax”); and using Stanford NER 

with the entity length filtering heuristics and keyword filtering 

heuristics which filters the entity containing only function words 

from the OpenEphyra’s function word list (“Stanford-Minmax-

Keyword”). The following table shows the measures of 

performance from these runs. 

As observed, delimiter injection outperforms others by 30% in all 

the measures, which confirms our early error analysis that there 

are around 10%-20% ill-formed entities are related to the removal 

of delimiters in HTML text extraction. The other filtering 

techniques also helped improve P@10, NDCG@R and MAP 

relatively by 5%-10%. Eventually, we selected “Stanford-

Injection” and “Stanford-Minmax-Keyword” as the two 

competitive settings for Stanford NER in our final runs. 

We also compared performance of our system with the use of 

Stanford NER versus AlchemyAPI NEE. The performances of the 

two runs differ in different metrics. In terms of P@10 and Rprec, 

the “Best-Alchemy” outperforms the “Best-Stanford” relatively by 

20%-30%. However, in NDCG@R and MAP, “Best-Stanford” 

performs slightly better than “Best-Alchemy”.  

Also with respect to NDCG@R, the best run using Stanford NER 

with delimiter injection is the best run of our entire system. We 

further investigated this problem and discovered that “Best-

Stanford” produced more relevant results (as of “# Relevant”) and 

more total correct results (as the sum of “# Relevant” and “# 

Primary”) in terms of number of home pages. But “Best-Stanford” 

suffered in the primary results it returned (as of “# Primary”) thus 

in the measures of P@10 and Rprec. We hypothesized that by 

using Stanford NER, we obtained more entities than using 

AlchemyAPI NEE. However, the entities returned by 

AlchemyAPI NEE is more accurate than that by Stanford NER, 

which might have significantly affected the down-stream 

homepage retrieval component. 

5.3 Feature Extraction 
We tested the relative performance of our extracted features, by 

using each feature individually to rank the candidate entities. 

We notice a number of interesting trends in these results. For the 

frequency based and density based features, we find that counting 

all occurrences of an entity in a document instead of unique 

occurrences of the entity (i.e. F1 and D1 instead of F2 and D2) 

Table 4: Performance with Stanford NER versus AlchemyAPI 

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

Stanford NER 48 159 0.1064 0.1352 0.0815 0.1163

AlchemyAPI 36 168 0.1362 0.1339 0.08 0.1302  

Table 2: Performance with web search (Yahoo) versus Indri 

for document retrieval 

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

Indri 37 154 0.1 0.0978 0.0513 0.0855

Web Search 40 176 0.1106 0.1182 0.0662 0.0909  



Table 5: Performance of the system with individual features 

used to rank candidate entities 

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

F1 (Frequency) 34 147 0.1064 0.1146 0.0665 0.1034

F2 (Frequency) 34 147 0.1064 0.114 0.0658 0.1032

D1 (Density) 32 142 0.0957 0.1071 0.0607 0.0855

D2 (Density) 32 141 0.0957 0.1063 0.0604 0.0861

P (Proximity) 33 147 0.0957 0.112 0.0628 0.0847

S1 (Semantic) 31 145 0.1106 0.1121 0.0646 0.1065

S2 (Semantic) 33 138 0.0255 0.0392 0.0212 0.036

S3 (Semantic) 32 136 0.0321 0.0401 0.0228 0.0341

AvgRank 33 143 0.1 0.1164 0.062 0.1085

C (Combination) 32 150 0.1128 0.1226 0.0696 0.1123
 

leads to slightly better performance. Also, the frequency based 

features perform better than the equivalent density based ones. 

The proximity feature PN is the best performing feature on almost 

all metrics; notably, it does better than the pure proximity feature 

P and all the semantic similarity features S1, S2 and S3. 

Surprisingly, AvgRank (the average rank of web pages), which is 

quite a naive feature, is the next best performing feature. Amongst 

the semantic similarity based features, S1 (similarity between 

query narrative and candidate webpage snippet) performs 

reasonably well, but S2 (similarity between the given target type 

and the candidate entity type) and S3 (similarity between given 

target type and candidate entity freebase type) both give very poor 

performance. We believe that while type similarity information 

might still be valuable, the way in which we were interpreting 

semantic similarity might be flawed and hence cause such poor 

results. 

5.4 Entity Ranking 
We tried different variants of our SVM Ranker: We trained one 

variant V1 using the default parameters supplied by the LibSVM 

[9] tool, and another one V2 using tuned parameters that we 

calculated using a grid search. We also used a feature selection 

tool and trained another variant V3 that used only the features 

suggested by this tool, namely F1, D2 and P.  

As expected, we find that the model that uses the tuned 

parameters performs better than the one that uses default 

parameters. Surprisingly however, we find that neither of the 

models performs as well as just using the proximity feature PN 

alone (results using individual features for ranking are detailed in 

the previous section). This contradicts our initial assumption that 

the use of SVMs for ranking entities would produce better 

performance than using any individual feature alone. We also find 

that the model V3 that uses the subset of features suggested by the 

feature selection tool doesn’t perform as well as the tuned model 

V2 that uses all the features in the refined feature set. This 

suggests that feature selection is not very effective for this 

problem.  

As a baseline, we also trained a linear combination model that 

simply combined all of our features (except S2 and S3, which 

performed quite poorly on their own), with equal weights. 

Surprisingly, this model performs slightly better than the tuned 

SVM model using the same feature set. This negates our 

assumption that SVMs would be a more effective way to combine 

different types of features for ranking than linear combination. 

However, none of the above models perform as well as simply 

using the proximity feature PN alone to rank candidate entities 

(results using individual features for ranking are detailed in the 

previous section). We tried running an exhaustive parameter 

sweep, since this might have yielded a set of weights that 

performed better than the feature PN alone, but the total number of 

possible models was exponential in the number of features, and 

since each model required re-running at least the homepage 

retrieval component of our system, we quickly encountered API 

rate limits (even when we cached previously found web pages). 

Ultimately, this parameter sweep proved intractable. It is an 

interesting point to note that even though linear combination 

rankers are conceptually much simpler than SVMs, optimizing 

their parameters requires more resources for our system than 

optimizing the parameters of our SVM model. 

5.5 Homepage Retrieval 
The evaluations and experiments of LADS system shown in 

previous sections are inherently imperfect because the only 

homepages considered relevant according to the relevance 

judgment file from the 2010 TREC entity track are based on the 

pooled results submitted by the participants to the track. Results 

other than the ones existed in the relevance judgment file will not 

be considered. Our system often produces the correct entities and 

obviously relevant homepages but failed to match the ones 

included in the track’s judgment file. Since we are more interested 

in the problem of discovering related entities, and not necessarily 

their homepages, we conduct an experiment where we assume we 

have a perfect homepage retrieval system which gives exactly the 

same homepages as those in the relevance judgment file. If an 

entity retrieved by the system match exactly some entity in the 

relevance judgment file, we consider it relevant regardless of its 

homepage. We can see from Table 7 that this results in a dramatic 

improvement in the performance of our system. We use this 

modification as part of our system when making our final runs, 

the results of which are reported in the following section. 

6. FINAL RESULTS 
We picked the following configurations to be our final runs, and 

their results in comparison with the best and median automatic 

results from the TREC 2010 Entity task evaluation are reported in 

Table 8. 

● Run 1: Baseline: Yahoo, 40 documents, AlchemyAPI, 

Ranking using PN, no blacklist filtering 

Table 6: Performance with various SVM models for ranking 

candidate entities 

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

V1 (un-tuned) 30 141 0.0915 0.1025 0.0583 0.0964

V2 (tuned) 33 141 0.1 0.1073 0.0651 0.0924

V3 (feature-

selection)

32 141 0.0934 0.1041 0.0603 0.0945

Linear 

Combination

33 145 0.1125 0.1187 0.0665 0.1111

 

Table 7: Improvement due to perfect homepage retrieval 

 NDCG@R MAP Rprec

Regular H/P Retrieval 0.1182 0.0662 0.0909

Perfect H/P Retrieval 0.1976 0.1386 0.141
 



● Run 2: Run 1 with SVM ranker instead of proximity feature 

PN 

● Run 3: Run 1 with the blacklist homepage filter applied 

● Run 4: Run 1 with Stanford NER instead of Alchemy NEE. 

Our results are consistently above the median value, with the best 

results being for Run 1, and would place us around the 4th place 

among all the teams.  

7. DISCUSSION 

Some of the main advantages of our system include the modular 

and pluggable software engineering approach we used to 

implement it, our usage of commercial IR and NLP tools, the 

diverse feature set we implemented to rank candidate entities, and 

our use of a learning-to-rank (LETOR) approach in the form of 

our SVM Ranker. Our architecture allowed us to iterate quickly 

and independently even though there are a lot of moving parts in 

our system, and it also allows for easy improvements to our 

system in the future. We didn’t achieve the improvements that we 

expected from using SVMs to rank candidate entities, but the 

feature set we used to rank candidate entities is diverse enough 

that we are optimistic of obtaining better performance in the 

future as we work on better ways to combine these features, 

including potentially more sophisticated LETOR approaches than 

our current one. We also found that while commercial NLP tools 

may not achieve state-of-the-art performance compared to 

academic systems, they are often more robust and have certain 

other advantages. For example, AlchemyAPI, the commercial 

NER system that we used for entity extraction, has a more fine-

grained type system than academic NER systems such as Stanford 

NER. Consequently, we adapted a number of such tools within 

our system.   

8. CONCLUSION 
In terms of future work, we plan to investigate ways to better 

incorporate the source entity in our system, using structured 

queries for Indri search, using additional sources of information 

for homepage retrieval besides just surface forms of entities, and 

looking for alternative ways to frame entity ranking as a learning-

to-rank task. We also intend to open-source our system (after 

submission to TREC), and we hope that it will be valuable to 

other research groups wishing to work in the field of Related 

Entity Finding, or related areas such as Question Answering.   
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Table 8: Best final runs of our system 

 NDCG@R MAP Rprec

2010 Best System 0.3694 0.2726 0.3075

2010 4th Best System 0.1696 0.0953 0.1453

Run 1 0.2036 0.1406 0.1687

Run 2 0.1754 0.1096 0.1322

Run 3 0.1885 0.1272 0.1276

Run 4 0.1926 0.1188 0.1393
 

 


