
LADS: Rapid Development of a Learning-To-Rank Based

Related Entity Finding System using Open Advancement
Bo Lin, Kevin Dela Rosa, Rushin Shah, Nitin Agarwal

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213 USA

{bolin,kdelaros,rnshah,nitina}@cs.cmu.edu

ABSTRACT

In this paper, we present our system called LADS, tailored to

work on the TREC Entity Track Task of Related Entity Finding.

The LADS system consists of four key components: document

retrieval, entity extraction, feature extraction and entity ranking.

We adopt the open advancement framework for the rapid

development and use a learning-to-rank approach to rank

candidate entities. We also experiment with various commercial

and academic NLP tools. In our final experiments with the TREC

2010 dataset, our system achieves the fourth rank compared to the

fifteen teams who participated in TREC 2010.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – information filtering retrieval models, search

process, selection process.

General Terms

Algorithms, Design, Experimentation

Keywords

Named Entity Recognition, Learning to Rank, Information

Retrieval

1. INTRODUCTION
We focus on the task of related entity finding, as defined by the

TREC 2011 Entity Track. This is essentially an entity-oriented

web search task. As input, we are given “topics”, which consist of

the name of an input entity, the type of the target entity, and a

narrative describing the nature of the relationship between

entities. There are four different target entity types: organization,

location, person, and product. The goal of the task is to find

homepages, represented by their ClueWeb09 id [2], for target

entities for a given topic. This is a challenging task due to several

factors; one being that web search engines are optimized to find

documents and not entities, and another being that it is harder to

precisely convey the semantics of a relation to a search engine.

Our approach to this task is notable for two reasons: Firstly, in

order to achieve fast iteration and the best possible results, we

used an open advancement approach and designed a modular

architecture that allows us to easily plug in different NLP

components, including off-the-shelf commercial ones. Secondly,

we made use of a rich feature set to rank candidate entities, and

experimented with a Learning to Rank (LETOR) approach to

combine these features in a sophisticated manner. We were able to

create a system that achieved results close to the best published

numbers; with the advantage of requiring very little development

time.

2. RELATED WORK
The TREC evaluations have been the pre-eminent venue for

advancements in the field of information retrieval. The TREC

Entity track was added a few years ago with the aim of

encouraging entity oriented research. The Related Entity Finding

task is currently the main task in this track. The Clueweb 09

corpus that we used was compiled with the aim of allowing

researchers to develop and test our system on a complete snapshot

of the web, as it existed in 2009. There has also been a lot of prior

work in developing the open advancement software engineering

approach, particularly in the field of question answering.

3. DATASET AND EVALUATION

3.1 Dataset
We use topics from the 2010 REF data set. This data set consists

of 50 topics, with a heavy skew towards the “organization” target

entity type (60%). Of these topics, 47 were ultimately judged,

with homepages being pooled (depth 20) from all of the

participants in the 2010 evaluation [8].

Homepages are retrieved from the Clueweb 09 corpus, and

acceptable homepages are ranked as either being “primary”, or

pages that are devoted and in control of the entity (i.e.

http://www.metallica.com/), and “related”, or pages that are

devoted but not in control of the entity (i.e.

http://www.last.fm/music/Metallica). For the 2010 offering of the

task, Wikipedia pages are disallowed as homepages. An example

query from the 2010 data set, in XML format is in figure 1:

Figure 1: Example TREC 2010 Entity Track Topic

<query>

 <num>25</num>

 <entity_name>U.S. Supreme Court</entity_name>

 <entity_URL>clueweb09-en0012-87-

19363</entity_URL>

 <target_entity>organization</target_entity>

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EOS, SIGIR 2011 Workshop, July 28, 2011, Beijing, China.

Copyright is held by the author/owner(s).

 <narrative> From what schools did the Supreme Court

justices

 receive their undergraduate degrees?

 </narrative>

</query>

3.2 Evaluation
We use NDCG@R as our primary metric to evaluate our results.

We set the gain to 1 for relevant pages, and 3 for primary pages.

In addition, we also report the number of primary and relevant

pages retrieved, and a few other standard information retrieval

metrics such as R-precision (Rprec), mean average precision

(MAP), and precision at 10 (P@10).

4. ARCHITECTURE AND COMPONENTS

4.1 Architecture
As mentioned earlier, one of our key objectives in designing our

system was to have the ability to develop parts independently and

combine them quickly, and ensure quick experimentation and

frequent integration of components. To this end, we designed our

system to consist of interchangeable components with common

interfaces, and a specific pipeline set dynamically via

configuration files. Our pipeline contains the following abstract

base components:

● Query Analysis: Performs an initial analysis of the input

topic queries

● Document Retrieval: Searches for documents based on

input from the query analysis

● Entity Extractor: Extracts candidate entities from the

retrieved document pool

● Feature Extractor: Extracts features for each candidate

entity

● Entity Ranker: Ranks entities based on their feature

values

● Homepage Retrieval: Finds homepages for the ranked

entity list

Each of these components is described in detail in the following

subsection.

4.2 Components

4.2.1 Query Analysis
We use OpenEphyra [5] to extract keywords from query

narratives and supplied this information to subsequent

components in the pipeline. We do not perform more

sophisticated processing with query analysis because of its limited

value in increasing the overall accuracy of our system.

4.2.2 Document Retrieval
We experiment with using web-based search as well as Indri-

based local search for document retrieval. For both cases, we vary

parameters such as the number of documents retrieved, and the

use of full query narratives versus only keywords.

4.2.2.1 Web Search
We wrap two different commercial web search engines, including

Yahoo BOSS [7] (build your own search service), and Microsoft

Bing [4]. For our final system, we use Yahoo BOSS since it was

more reliable and flexible with respect to behavior and API rate

limitations; though anecdotally, the results from both services are

quite similar.

4.2.2.2 Local Search
We use a JNI-based Indri interface [6] that searches the

ClueWeb09 category B corpus (a set of 50 million high-quality

English language webpages, including all of Wikipedia) [2]. We

do not use any of Indri’s sophisticated query operators, as we are

interested in treating the web and local search engines as black

box search engines with minimal changes to the queries provided

as input.

4.2.3 Entity Extraction
We adopted and experimented with state-of-art named entity

extraction systems, including academic [11] and commercial

products [1], to extract candidate entities from the retrieved

documents for feature extraction and entity ranking. The input for

the entity extraction component is HTML web page and the

desired output is the set of candidate entities extracted from the

web page. We implemented and investigated various heuristics to

improve such webpage-based entity extraction.

4.2.3.1 Stanford NER
Stanford Named Entity Recognizer (Stanford NER) is a

commonly used academic tool for named entity recognition

known for the accuracy of its results. It incorporates conditional

random field-based classifier to label the named entities in the

text. Yet Stanford NER is originally designed and trained with

plain text without HTML decorations. Thus we made several

efforts to adapt the Stanford NER for our purpose of extracting

entities from HTML web pages.

Firstly, we incorporated a standard HTML text extractor, JSoup

[3], to perform text extraction from HTML web pages. It mainly

removes the HTML tags, formatting information and meta-data.

Secondly, we varied the system by incorporating structure

information in the HTML web pages. The intuition is that simply

removing the HTML tags in the web pages eliminates the

structured information associated with them. Yet such information

might be useful for considering the candidacy of the entities. By

applying Stanford NER directly on the extracted text, we failed to

use the structure information. Thus we decided to use the readily

available structure information in the HTML web pages - the

HTML elements (e.g. “body”, “title”, “anchor text”, “table” etc.).

We hypothesize that since many queries are targeted towards a list

of entities thus the candidate entities are more likely to appear in

the lists or tables inside the HTML web pages. Thirdly, we

improved the system by using the heuristics of injecting delimiters

to the HTML web page. In our early error analysis, we found that

the removal of the HTML tags in the HTML text created this

problem. HTML web pages sometimes use the HTML elements as

text delimiters; however, our HTML text extractor removes all

these delimiters to produce the plain text for Stanford NER to

work with. Since Stanford NER is trained on News texts with

numerous text delimiters such as punctuation marks, it fails to

separate the neighboring entities in our case. We then tested our

heuristics to inject artificial delimiters to the HTML web pages.

While there are many artificial delimiters we could use, we chose

the punctuation marks “,” since it has less ambiguity than “.”

(which can be considered as a mark for initial other than a

sentence break) or “-” (which can be used to connect two words).

We inserted the punctuation marks “,” before every occurrence of

HTML tag-closing statement “</” in the HTML text before the

HTML text extraction. Fourthly, we attempted and experimented

with several heuristics to filter ill-formed entities in order to

improve the system. We designed and tried three different filtering

heuristics to remove the ill-formed candidate entities. The first

filtering heuristics consider the number of characters in the

surface form of the token, discard the entity if it is shorter than a

threshold value. The second filtering heuristics consider the

number of tokens in the entity, discard the entity if the number of

tokens is less than a minimum value or larger than a maximum

value. We tried a few different values for the thresholds in these

two filters and eventually picked 4 for the minimum number of

characters in the entity surface form, 1 for the minimum number

of tokens and 5 for maximum number of tokens in the entity. The

third filtering heuristics consider the tokens in the entity, if they

consist of only function words, the entity is discarded. The

function word list is obtained from the open sourced question

answering tool OpenEphyra [5].

4.2.3.2 AlchemyAPI NER
AlchemyAPI Named Entity Extractor (NEE) is one of the state-of-

art commercial tools for named entity extraction. We conducted

an extensive survey of both state-of-art academic and commercial

tools and found that AlchemyAPI NEE is one of the best among

them and provides the best balance of extraction accuracy and

processing speed.

AlchemyAPI NEE is capable of identifying people, companies,

organizations, cities, geographic features, and other typed entities

within HTML text, plain text, or web-based content. It supports

entity disambiguation which links the extracted entity to its

corresponding entry in external database including DBpedia,

Freebase, OpenCyc etc.. It also supports entity type identification

for 34 different entity types such as automobile, city, facility.

We implemented AlchemyAPI in our system with manually

created mapping between its 34 entity types to the 4 entity types

in TREC entity track.

4.2.4 Feature Extraction
We investigated a wide set of features that we thought might be

good indicators of how relevant a candidate entity is to the query.

● Frequency Based Features

These features are based on the number of times a candidate entity

shows up in search results. In particular, we count

● F1 - The total number of occurrences of a candidate

entity in all the search results

● F2 - The number of unique search results that an entity

occurs in

● Density Based Features

These features consider the quality of web pages that a candidate

entity occurs in, as judged by the number of other candidate

entities in these web pages. Specifically, for a particular candidate

entity EC we count:

● D1 - The number of all entities in a webpage that EC

occurs in (summed over all the search results that EC

occurs in).

● D2 - The number of unique entities in a webpage that

EC occurs in (summed over all the search results that EC

occurs in).

● Proximity Based Features

These features are based on the concept of ranking entities

according to how closely they occur to query keywords in the

retrieved web pages. We use two such features:

 P: The minimum distance between any query keyword

and a candidate entity EC in a webpage (averaged

across all the search results that EC occurs in).

 PN : Product of cumulative proximity between keywords

and entities in retrieved documents and number of such

documents. Formally,

where dist is the proximity and f is any aggregate

function such as summation or maximum.

● Semantic Similarity Based Features

We evaluate semantic similarity between words using the Jiang

Conrath metric [12], which considers the WordNet distance

between two strings. We apply this metric to count the following

specific features:

● S1: Similarity between the query narrative and the

snippet of a search result (Averaged across all search

results for an entity EC).

● S2: Similarity between the keywords in the query and

the type of the candidate entity

● S3: Similarity between the keywords in the query and

the Freebase description of the candidate entity

● Average Rank of Web Pages

We consider the average rank of the web pages that a candidate

entity EC occurs in, with the intuition that entities that appear in

higher ranked pages on average are more likely to be relevant. We

refer to this feature as AvgRank subsequently.

4.2.5 Entity Ranking
We noticed that almost all the systems that have participated in

the TREC entity track in previous years used some sort of linear

weighting scheme to combine different features in order to rank

entities, and one of our motivations was to use a learning to rank

(LETOR) approach for this task and see whether such an

approach would outperform traditional linear weighting schemes.

We therefore developed an SVM model to rank candidate entities.

A significant problem in using an SVM for this task is finding

gold standard data to train such a model, because the relevance

judgments from the previous years that are available to us are in

the form of binary values that indicate whether an entity is

relevant or not, while our desired output from the SVM ranker is a

real-valued score for each candidate entity. To get around this

problem, we train an SVM using this binary-formatted data, but

while testing on new instances, we have it output a score between

0 and 1, indicating how likely an entity is to be relevant.

More precisely, we train on a subset of the queries, and during

Table 3: Effect of various improvements on Stanford NER

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

Stanford 31 108 0.0681 0.096 0.0551 0.078

Stanford-Injection 50 160 0.1 0.1306 0.0792 0.1093

Stanford-Minmax 30 108 0.0702 0.0949 0.0551 0.078

Stanford-Minmax-

Keyword

27 108 0.0766 0.0995 0.0582 0.0781

Table 1: Performance with full query narrative versus using

keywords only

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

Full Narrative 40 183 0.1021 0.1176 0.072 0.0861

Key Word 40 176 0.1106 0.1182 0.0662 0.0909

training we check if a candidate entity for a particular query is

present in the relevance judgment file and marked as a primary or

relevant entity. If so, this constitutes a positive instance for the

SVM, and if not, a negative instance. We encounter many more

negative instances than positive ones, so we keep a fixed ratio of

negative instances for each positive instance found, and throw

away the rest of the negative instances. We then perform a grid

search to find the optimal parameters for training and

subsequently train our SVM. During testing, we have it output a

relevance score for each candidate entity and classify entities

according to this score. We use the LibSVM [9] library to

implement SVMs.

4.2.6 Homepage Retrieval
We started with a naive homepage retrieval strategist that returns

the first page from a search engine which is not a Wikipedia page,

since the Wikipedia domain is explicitly disallowed for the TREC

Related Entity Finding task. We picked this strategy because

search engines like Google & Yahoo do a very good job at

returning homepages, or at least very devoted and informative

pages, for entities & topics, and in fact this turned out to be a

surprisingly difficult strategy to beat. One change that was a

significant improvement over this naïve strategy was using a list

of “blacklisted domains” for use in filtering irrelevant homepages.

The domains we filtered were primarily content farms, such as

“answers.com”, “about.com” and “mahalo.com”. Content farms

are typically web pages that that have high concentrations of text

that are specifically designed to be ranked highly by web search

engine algorithms and are thus unlikely to be considered a

relevant or primary page with respect to the TREC Entity task. In

other words, instead of rejecting Wikipedia pages from

consideration, we reject any page from a blacklisted domain.

5. EXPERIMENTS AND ANALYSIS
In this section we describe the results of each of our component

experiments, and provide an analysis of the experimental results.

5.1 Document Retrieval
We experimented with using both full query narratives and

keywords only, and found that both strategies yielded the same

number of related pages. Using the full narrative had a slight edge

in retrieving more primaries, but NDCG@R was higher for the

key word strategy. This is due to the fact that the key word search

returned slightly better quality documents, which were ultimately

beneficial in entity ranking.

We also used both web-based (Yahoo, Bing) and local (Indri)

search engines, and found that web search clearly out performs

the Indri search on all counts, since it gets significantly better

quality pages which resulted in more related and primary pages.

5.2 Entity Extraction
We used heuristics and filtering techniques to improve Stanford

NER on web-page entity extraction. The baseline run “Stanford”

is the same as in previous experiment by directly applying

Stanford NER on the text extracted from the entire web-page.

Other runs show the result from using Stanford NER together

with the delimiter injection heuristics (“Stanford-Injection”); and

using Stanford NER together with the entity length filtering

heuristics which filters the entity with too many / few tokens or

too few characters (“Stanford-Minmax”); and using Stanford NER

with the entity length filtering heuristics and keyword filtering

heuristics which filters the entity containing only function words

from the OpenEphyra’s function word list (“Stanford-Minmax-

Keyword”). The following table shows the measures of

performance from these runs.

As observed, delimiter injection outperforms others by 30% in all

the measures, which confirms our early error analysis that there

are around 10%-20% ill-formed entities are related to the removal

of delimiters in HTML text extraction. The other filtering

techniques also helped improve P@10, NDCG@R and MAP

relatively by 5%-10%. Eventually, we selected “Stanford-

Injection” and “Stanford-Minmax-Keyword” as the two

competitive settings for Stanford NER in our final runs.

We also compared performance of our system with the use of

Stanford NER versus AlchemyAPI NEE. The performances of the

two runs differ in different metrics. In terms of P@10 and Rprec,

the “Best-Alchemy” outperforms the “Best-Stanford” relatively by

20%-30%. However, in NDCG@R and MAP, “Best-Stanford”

performs slightly better than “Best-Alchemy”.

Also with respect to NDCG@R, the best run using Stanford NER

with delimiter injection is the best run of our entire system. We

further investigated this problem and discovered that “Best-

Stanford” produced more relevant results (as of “# Relevant”) and

more total correct results (as the sum of “# Relevant” and “#

Primary”) in terms of number of home pages. But “Best-Stanford”

suffered in the primary results it returned (as of “# Primary”) thus

in the measures of P@10 and Rprec. We hypothesized that by

using Stanford NER, we obtained more entities than using

AlchemyAPI NEE. However, the entities returned by

AlchemyAPI NEE is more accurate than that by Stanford NER,

which might have significantly affected the down-stream

homepage retrieval component.

5.3 Feature Extraction
We tested the relative performance of our extracted features, by

using each feature individually to rank the candidate entities.

We notice a number of interesting trends in these results. For the

frequency based and density based features, we find that counting

all occurrences of an entity in a document instead of unique

occurrences of the entity (i.e. F1 and D1 instead of F2 and D2)

Table 4: Performance with Stanford NER versus AlchemyAPI

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

Stanford NER 48 159 0.1064 0.1352 0.0815 0.1163

AlchemyAPI 36 168 0.1362 0.1339 0.08 0.1302

Table 2: Performance with web search (Yahoo) versus Indri

for document retrieval

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

Indri 37 154 0.1 0.0978 0.0513 0.0855

Web Search 40 176 0.1106 0.1182 0.0662 0.0909

Table 5: Performance of the system with individual features

used to rank candidate entities

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

F1 (Frequency) 34 147 0.1064 0.1146 0.0665 0.1034

F2 (Frequency) 34 147 0.1064 0.114 0.0658 0.1032

D1 (Density) 32 142 0.0957 0.1071 0.0607 0.0855

D2 (Density) 32 141 0.0957 0.1063 0.0604 0.0861

P (Proximity) 33 147 0.0957 0.112 0.0628 0.0847

S1 (Semantic) 31 145 0.1106 0.1121 0.0646 0.1065

S2 (Semantic) 33 138 0.0255 0.0392 0.0212 0.036

S3 (Semantic) 32 136 0.0321 0.0401 0.0228 0.0341

AvgRank 33 143 0.1 0.1164 0.062 0.1085

C (Combination) 32 150 0.1128 0.1226 0.0696 0.1123

leads to slightly better performance. Also, the frequency based

features perform better than the equivalent density based ones.

The proximity feature PN is the best performing feature on almost

all metrics; notably, it does better than the pure proximity feature

P and all the semantic similarity features S1, S2 and S3.

Surprisingly, AvgRank (the average rank of web pages), which is

quite a naive feature, is the next best performing feature. Amongst

the semantic similarity based features, S1 (similarity between

query narrative and candidate webpage snippet) performs

reasonably well, but S2 (similarity between the given target type

and the candidate entity type) and S3 (similarity between given

target type and candidate entity freebase type) both give very poor

performance. We believe that while type similarity information

might still be valuable, the way in which we were interpreting

semantic similarity might be flawed and hence cause such poor

results.

5.4 Entity Ranking
We tried different variants of our SVM Ranker: We trained one

variant V1 using the default parameters supplied by the LibSVM

[9] tool, and another one V2 using tuned parameters that we

calculated using a grid search. We also used a feature selection

tool and trained another variant V3 that used only the features

suggested by this tool, namely F1, D2 and P.

As expected, we find that the model that uses the tuned

parameters performs better than the one that uses default

parameters. Surprisingly however, we find that neither of the

models performs as well as just using the proximity feature PN

alone (results using individual features for ranking are detailed in

the previous section). This contradicts our initial assumption that

the use of SVMs for ranking entities would produce better

performance than using any individual feature alone. We also find

that the model V3 that uses the subset of features suggested by the

feature selection tool doesn’t perform as well as the tuned model

V2 that uses all the features in the refined feature set. This

suggests that feature selection is not very effective for this

problem.

As a baseline, we also trained a linear combination model that

simply combined all of our features (except S2 and S3, which

performed quite poorly on their own), with equal weights.

Surprisingly, this model performs slightly better than the tuned

SVM model using the same feature set. This negates our

assumption that SVMs would be a more effective way to combine

different types of features for ranking than linear combination.

However, none of the above models perform as well as simply

using the proximity feature PN alone to rank candidate entities

(results using individual features for ranking are detailed in the

previous section). We tried running an exhaustive parameter

sweep, since this might have yielded a set of weights that

performed better than the feature PN alone, but the total number of

possible models was exponential in the number of features, and

since each model required re-running at least the homepage

retrieval component of our system, we quickly encountered API

rate limits (even when we cached previously found web pages).

Ultimately, this parameter sweep proved intractable. It is an

interesting point to note that even though linear combination

rankers are conceptually much simpler than SVMs, optimizing

their parameters requires more resources for our system than

optimizing the parameters of our SVM model.

5.5 Homepage Retrieval
The evaluations and experiments of LADS system shown in

previous sections are inherently imperfect because the only

homepages considered relevant according to the relevance

judgment file from the 2010 TREC entity track are based on the

pooled results submitted by the participants to the track. Results

other than the ones existed in the relevance judgment file will not

be considered. Our system often produces the correct entities and

obviously relevant homepages but failed to match the ones

included in the track’s judgment file. Since we are more interested

in the problem of discovering related entities, and not necessarily

their homepages, we conduct an experiment where we assume we

have a perfect homepage retrieval system which gives exactly the

same homepages as those in the relevance judgment file. If an

entity retrieved by the system match exactly some entity in the

relevance judgment file, we consider it relevant regardless of its

homepage. We can see from Table 7 that this results in a dramatic

improvement in the performance of our system. We use this

modification as part of our system when making our final runs,

the results of which are reported in the following section.

6. FINAL RESULTS
We picked the following configurations to be our final runs, and

their results in comparison with the best and median automatic

results from the TREC 2010 Entity task evaluation are reported in

Table 8.

● Run 1: Baseline: Yahoo, 40 documents, AlchemyAPI,

Ranking using PN, no blacklist filtering

Table 6: Performance with various SVM models for ranking

candidate entities

 # Relevant # Primary P@10 NDCG@

R

MAP Rprec

V1 (un-tuned) 30 141 0.0915 0.1025 0.0583 0.0964

V2 (tuned) 33 141 0.1 0.1073 0.0651 0.0924

V3 (feature-

selection)

32 141 0.0934 0.1041 0.0603 0.0945

Linear

Combination

33 145 0.1125 0.1187 0.0665 0.1111

Table 7: Improvement due to perfect homepage retrieval

 NDCG@R MAP Rprec

Regular H/P Retrieval 0.1182 0.0662 0.0909

Perfect H/P Retrieval 0.1976 0.1386 0.141

● Run 2: Run 1 with SVM ranker instead of proximity feature

PN

● Run 3: Run 1 with the blacklist homepage filter applied

● Run 4: Run 1 with Stanford NER instead of Alchemy NEE.

Our results are consistently above the median value, with the best

results being for Run 1, and would place us around the 4th place

among all the teams.

7. DISCUSSION

Some of the main advantages of our system include the modular

and pluggable software engineering approach we used to

implement it, our usage of commercial IR and NLP tools, the

diverse feature set we implemented to rank candidate entities, and

our use of a learning-to-rank (LETOR) approach in the form of

our SVM Ranker. Our architecture allowed us to iterate quickly

and independently even though there are a lot of moving parts in

our system, and it also allows for easy improvements to our

system in the future. We didn’t achieve the improvements that we

expected from using SVMs to rank candidate entities, but the

feature set we used to rank candidate entities is diverse enough

that we are optimistic of obtaining better performance in the

future as we work on better ways to combine these features,

including potentially more sophisticated LETOR approaches than

our current one. We also found that while commercial NLP tools

may not achieve state-of-the-art performance compared to

academic systems, they are often more robust and have certain

other advantages. For example, AlchemyAPI, the commercial

NER system that we used for entity extraction, has a more fine-

grained type system than academic NER systems such as Stanford

NER. Consequently, we adapted a number of such tools within

our system.

8. CONCLUSION
In terms of future work, we plan to investigate ways to better

incorporate the source entity in our system, using structured

queries for Indri search, using additional sources of information

for homepage retrieval besides just surface forms of entities, and

looking for alternative ways to frame entity ranking as a learning-

to-rank task. We also intend to open-source our system (after

submission to TREC), and we hope that it will be valuable to

other research groups wishing to work in the field of Related

Entity Finding, or related areas such as Question Answering.

9. ACKNOWLEDGEMENTS
We would like to thank Professors Robert Frederking, Anatole

Gershman, Jamie Callan and Eric Nyberg at Carnegie Mellon

University for their support and guidance.

10. REFERENCES
[1] Alchemy API. [Online]. Available:

http://www.alchemyapi.com

[2] ClueWeb09. [Online]. Available:

http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php

[3] JSoup: Java HTML Parser. [Online]. Available:

http://jsoup.org

[4] Microsoft Bing API. [Online]. Available:

http://www.bing.com/developers/

[5] OpenEphyra Question Answering System. [Online].

Available: http://www.ephyra.info/

[6] The Lemur Project. [Online]. Available:

http://www.lemurproject.org/

[7] Yahoo BOSS API. [Online]. Available:

http://developer.yahoo.com/search/boss/

[8] K. Balog, P. Serdyukov, and A.P. de Vries. Overview of the

TREC 2010 Entity Track. In Proceedings of TREC 2010,

2010.

[9] C. Chang and C. Lin. LIBSVM : A Library for Support

Vector Machines. 2001. Available:

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[10] Y. Fang, L. Si, N. Somasundaram, Z. Yu and Y. Xian.

Purdue at TREC 2010 Entity Track. In Proceedings of TREC

2010, 2010.

[11] J. R. Finkel, T. Grenager, and C. Manning. Incorporating

Non-local Information into Information Extraction Systems

by Gibbs Sampling. In Proceedings of the 43rd Annual

Meeting of the Association for Computational Linguistics,

2005.

[12] J. J. Jiang and D. W. Conrath. Semantic Similarity Based on

Corpus Statistics and Lexical Taxonomy. Computing

Research Repository – CORR, 1997.

[13] P. Jiang, Q. Yang, C. Zhang, and Z. Niu. Beijing Institute of

Technology at TREC 2010: Notebook Paper. In Proceedings

of TREC 2010, 2010.

[14] D. Wang, Q. Wu, H. Chen, and J. Niu. A Multiple-Stage

Framework for Related Entity Finding: FDWIM at TREC

2010 Entity Track. In Proceedings of TREC 2010, 2010.

Table 8: Best final runs of our system

 NDCG@R MAP Rprec

2010 Best System 0.3694 0.2726 0.3075

2010 4th Best System 0.1696 0.0953 0.1453

Run 1 0.2036 0.1406 0.1687

Run 2 0.1754 0.1096 0.1322

Run 3 0.1885 0.1272 0.1276

Run 4 0.1926 0.1188 0.1393

