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1. Introductiocn

1.1 Background. Dijkstra [DI76] proposes the use of weakest precondition predicate
transformers to describe correctness properties. A typical example of such a predicate

transformer is the weakest precondition for total correctness wp{7,Q) which gives a

necessary and sufficient condition on initial states to ensure that program T
terminates in a final state satisfying predicate Q. Dijkstra defines the wp predicate

transformer on a do-od program as the least fixpoint of a simple predicate transformer

which is derivable directly from the program text. Basu and Yen [BY75)} and Clarke
[cL76) extend Dijkstra's fixpoint characterization of weakest preconditions to
arbitrary sequential programs with "regular® control structures. In addition, Clarke
argues that soundness and (relative) completeness of a Hoare-style [HO69] axiom system
are equivalent to the existence and extremality of fixpoints for appropriate predicate
transformers. Related results appear in the work of de Bakker [DE77a) and Park [PABY].

Many important properties of parallel programs can also be described using
fixpoints. Flon and Suzuki [FS78] give fixpoint characterizations of certain
correctness properties including freedom from deadlock, invariance, absence of logical
starvation, and jnevitability under pure nondeterministic scheduling. They also give
proof rules which allow the construction of 2 sound and (relatively) complete proof
system for any correctness property with an appropriate fixpoint characterization
(e.g. as the least fixpoint of a continuous predicate transformer or as the greatest
fixpoint of a monotonic transformer). This reduces the task of designing a proof
system for a specified correctness property to the problem of giving 2 fixpoint
characterization for the property. Developing the initial fixpoint characterization
can still be quite difficult, however, for correctness properties. such aé fair
inevitability.

A valuable attribute of a correctness property is the existence of a "econtinuous"
fixpoint characterization (i.e. one in terms of extremal fixpoints of continuous
transformers). Such a characterization is desirable because the extremal fixpoints ar
defined as the limit of a natural sequence of approximations. The approximations can
be useful in applicatinons, particularly in mechanical efforts to develop reliable and
efficient parallel programs. Sintzoff and Van Lam;weerde [sv76) use continuous

fixpoint characterizations of certain correctness properties to show how a given



program can be transformed into another program with the specified correctness
properties. Clarke [CL78] shows how a widening operator [C076] can be used to
synthesize resource invariants from a continuous fixpoint characterization of the set
of reachable states in a computation. Continuous fixpoint characterizations are also

used by Reif [RE79] for parallel program optimization.

1.2 New results of this aper. We investigate the problem of characterizing
correctness properties of parallel programs using fixpoints and, in particular, using
noontinuous" fixpoints. In this paper, 2 parallel program is treated as a
nondeterministic sequential program at an appropriate level of granularity. A
program's semantics is defined in terms of computation trees recording all possible
execution sequences for the program starting in a particular state. In order to make
precise statements about computation trees, we introduce the language of computation
tree formulae (CTF). The advantage of this approach is that many correctness
properties for parallel programs have a natural description in terms of computation
trees. Thus, with CIF's we can define in a straightforward manner most correctness
properties of interest for parallel programs, including invariance, deadlock freedom,
absence of actual starvation, and inevitability under fair scheduling assumptions. We
also define the language of fixpoint formulae, FPF, and give an effective procedure
for translating CTF's into FPF's. A practical consequence of this procedure is that we
ean derive an FPF characterization of a correctness property from its CTF description
in a uniform manner. Since it is often easier to give an operational (CTF)
characterization than a fixpoint characterization, this can make the Flon and Suzuki
proof rule technique considerably easier to apply. We then give conditions on a
correctness property's CTF description which  ensure that it  has an FPF
characterization using only continuous transformers. Finally, we show how our results
can be interpreted in a modal logic where the computation trees determine Kripke
structures.

One consequence of our findings is that, while inevitability under fair
scheduling can Yc characterized as the least fixpoint of a monotonic nonceontinuous
predicate transformer, it cannot be characterized in terms of fixpoints of continuous
transformers (nor can it be meaningfully characterized as the greatest fixpoint of a
monotonic transformer). We also show that inevitability under fair scheduling, over
the natural numbers, is not expressible by a formula of 1st order arithmetic (see also
[CHT8]). These facts strongly suggest that it is impossible to formulate a useful,

sound and (relatively) complete proof system for this correctness property.

1.3 Outline of paper. The paper is organized as follows: Section 2 gives preliminary
information about the model of computation and the lattice of total predicates.
Sections 3 and 4 informally discuss the syntax and semantics of computation tree

formulae (CTF) and fixpoint formulae (FPF}, rcspéctively. Section 5 describes the main



results on the existence of fixpoint characterizations for parallel programs. Section
6 discusses the relationship with modal legic. Finally, Section 7 presents some

concluding remarks and suggests scome remaining open questions.

2. Model of Computation.

We represent parallel programs as nondeterministic sequentizl programs using
Dijkstra's do-od construct :
do By -> Ay () By => Ap [1 ... {1 By => Ay ed.
Let I be the set of program states (for this paper, we can assume that L = w, the set

of natural numbers). Each guard Bj is a total recursive predicate on L, Each action A4;

is a total recursive function from L to I. The pair Bj -> Ay is called a ceommand.
Intuitively, we may- describe the operation of the do-od construct as follows:
repeatedly perform the body of the do-od lcop. Oon each trip through the loop,
nondeterministically select a command whose guard B; evaluates to True and execute the
corresponding action Aj. If all guards By evaluate to False, execution of the loop
halts.

Given a state ¢ in I and a do-od program T we define the computation tree

5?'(ﬁ,5). Eéch node of the tree is labelled with the state it represents, and each arc
out of a node is labelled with the guard indicating which nondeterministic choice is
taken, i.e., which command having a true guard is executed next. The root is labelled
with the start state o. Thus, a path from the root through the tree represents a
possible computation sequence of program m starting in state 0. A fullpath of F(w,0)
is a path which starts at the root and which is not a proper nsubpath" of any other
path. Any infinite path starting at the root is a fullpath. A finite path is a
fullpath only when its last node is labelled with a state in which all guards are
false. A segment of F(w,0) is a {finite or infinite) contizuous initial portion of a
rullpath.‘Similar uses of computation trees appear in the work of de Bakker [DE77b],
Meyer and Winklmann [MW79], and Flon and suzuki [FS78].

We now describe how to transform cobezin-coend programs with conditional critical
regions into do-od programs. We let the underlying domain of states I be the set of
all tuples of the form

(PCqsee-1PCpsVyaeresVm)
where pcq,...,pPCpn 2re explicit location counters and Vq,...,Vp are all the variables
which appear in the cobegin-ccend program. The transformation is essentially the same

as that used by Flon and Suzuki (FS78] and will only be illustrated by example:

x:=0;
cobegzin
repeat produce; when true do x:=x+1 end forever
/7 .
repeat when x > 0 do x:=x-1 end; consume forever
coend

is transformed inlo



“pelizpe2:=0; x:=0;

do
pcl = 0 -> produce; pel:i=(pcl1+t) mod 2 [1
pel = 1 and TRUE  => x:i=x+1; pel:=(pei+1) mod 2 (1
pe2 = 0 and x > 0 => xi=x-1;pc2:=(pe2+1) mod 2 (]
pc2 = 1 -> consume; pc2:=(pc2+1) mod 2
od

Finally, we use PRED(L) to denote the lattice of total predicates where each
predicate is identified with the set of states in I which make it true and the

ordering is set inclusion.

2.1 Definition
Let T: PRED(Z) -> PRED(E) be given; then
(1) T is monotonic provided that P € Q implies [P} € 1[Q]

(2) 1T is U-continuous provided that Py & P & ... implies T[U P;) = U T{P;]
==Lt i i

(3) T is N-contincus provided that Py 2P, 2 ... implies t[0p;] = Ma(P;l. []
e i i

A monotonic functional T on PRED(E) alwa&s has both a least fixpoint, 1fpX.t[%],

and a greatest fixpoint, gfpX.T[X] (see Tarski [TA55]): 1fpX.T[X] = N{X:1[X]=X}

vhenever T is monotonic, and 1fpX.t[X] = ngiiFalse] whenever T is also U-continuous ;
gfpX.t[X] = O{X:1[X]=X} whenever t is monotonic, and gfpX.t[X] = ?Ti[True] whenever <t

is alsoc N-continuous.

3. Computation Tree Formulae

Given a program T and an initial state o, a computation tree formula (CTF) makes
a statement about the occurence of nodes and arcs satisfying certain correctness
predicates in the computation tree F(n,0). When presenting the syntax of CTF's we
will use the notation:
choice 1

.

choice n

to indieate that one item may be selected from among n alternatives. A fixed but
arbitrary k > 1 is chosen. Our discussion of CTF semantics will assume a fixed
interpretation I = (u,(Ri>,c) consisting of: 1) a do-od program m with k commands over
domain of states I , 2) an assignment of predicates Ry € I to each predicate symbol
X;, and 3) an initial state o.

A CIF is a boclean combination of predicate symbols, guard symbols, and
constructs of the following form:

3] | fullpath : .
<body>

¥ segment

The body is a boolean combination of one or more terms. Each term makes a statement



" about a particular path p of F(7,0) and has the form:

node <CTF>
arc <guard symbol set>

<8 LB << W

3 and Y have their ysual meanings. 2 means "there exist infinitely many" and 9 ceans
wfor all but a finite number". Each predicate symbel is interpreted by one <f the
predicates Rj from I. Similarly, each guard_symbel is interpreted by one of.the suards

By in the program T. A guard symbol set corresponds to a subset [511’--'rBi } ¢<f the

e n
actual guards of ™. Examples of CIF's together with their intuitive meanings are given
below:

1) © yfullpath 3 node Rq" which means "for every fullpath p of F(m,0), there is a
node v on p labelled with a state satisfying predicate Rq" (this deserizss the

correctness property inevitability of Ry [under pure nondeterministic
schedulingl}).

2) “"Rq A 3 segment 3 arc {B1,B3}“ which means "o satisfies predicate R, and there is
a seguent of F{ 1, ¢ having an arc labelled with guard Bq or guard 33".

3) v ¥fullpath (3 node Bq = % arc {By})" which means nfor every fullpath p of
G (n,0) if there are infinitely many states along p at which the guard By is
true, then there are infinitely many arcs labelled  with guard By (s, aF
process 1 is enabled infinitely often, it is executed infinitely often)".

4y v 3Ifullpath 3 node (V¥ fullpath ¥ node Ry)" which means wthere exists a fullpath
p of Z(m,0) and there is a node v on p labelled with state o' such that for
every fullpath q of F(n, o') all but a finite number of nodes on q are lazbelled
with a state satisfying Rq".
Each of the above CTF's will be either true or false depending on the particular
interpretation I that is chosen.

CTF's define predicate transformers for correctness properties of parallel

programs. Let e(Xl,...,Xn) be a CTF involving predicate symbols Kq,...,Xp. Then e
defines the mapping e': PROG(Z) x (PRED(Z))P -> PRED(E) such that e‘(n.Rl,...,Rn) =
{¢ € L : e{x1,...,xn) is true when interpreted with programm -, start state 0, and Xj

assigned Rj for i € [1:n] }.

4. The Lanpuage of Fixpoint Formulae

A fixpoint formula (FPF) is interpreted with respect to a program @ (with k
commands) and domain I . Fach FPF is built up from predicates Rt,ﬂ2,R3,... over L,
guards 51,82,B3,... of the program m, and nsub-FPF's" using

(1) the logical connectives (A W),

1 ,-1
,A3 ...), and

(2) the weakest preconditions for the actions Ay of n_{A;‘, Az

(3) the least fixpoint and greatest fixpoint operators {(1fp, gfpl).

We write E[Xj] to indicate that the predicate R; in the fixpoint formula E is
viewed as a variable ranging over PRED(Z ). E[X;] defines a mapping E': PRED(Z) ->

-1
PRED{Z) in the obvious way; for example, By A Ry) v (By A A3 Xy} sends each



oredicate R € T to (( T % Byl A Ryl VB3 N wp(A3,R)). We vse LfpXj.E(X;] and
gfpxi.E[Xi] to denote the least fixpoint and the greatest fixpoint, respectively, of

E' where E[X;] is required to be (formally) monotonic; i.e. all occurrences of X; in E

pust be in an even number of distinct negated nsub-FPF's". Examples of FPF's are
gfpXq-[(By A Ro) v (B3 /\A3 X1)]
1epXy. [(Ry A ~By A=Ba)V (B ABSIX) v (By AAZX)).
We shall be interested in wContinuous FPE's" where we only allow least fixpoint
formation on (formally) U-continuocus transformers and greatest fixpoint formation on

(formally) N-ccntinuous transformers. We say that.an FPF E is formally U-continuous

(N-continuous) in X provided that its normal form E' ({obtained by driving all
negations winward" using DeMorgan's laws and the fact that ~gpr.t[X,Y} &
1fpX.~t[~X,¥Y]) satisfies two conditions: (i) E' is monotonic in X and (ii) E' contains
no free occurrence of X inside a subFPF of the form gfpY. PAVE, ,...,K...]
(lpr.E"[...Y,...,X...]). Given that E is in normal form, we can say the following:
if E contains no occurrences of 1fp or gfp, then E is a Continuous FPF. If E contains
no occurrences of 1lfp or gfp, and no negated occurrences of X, then 1fpX.E{X] and
gfpX.E[X] are Continuous FPF's. On the other hand, if E involves an "alternation" of
1fp and gfp operators (entailing the situation disallowed in (ii) ), then E is not a

Continuous FPF.

5. Results

Qur main results are summarized below (and proved in the appendix):
5.1 Theorem: There is an effective procedure to translate CTF definitions of
correctness properties into FPF definitions. Any correctness property defined in CTF

without use of the 3 and 7 quantifiers is translated into a Continuous FPF. []

5.2 Theorem: Any correctness property definable as a Continuous FPF is A% over the

natural numbers. []

5.3 Theorem: The correctness property definabie in CTF as "V fullpath ¥ node R" is

13-
liy-complete on the domain of natural numbers. (]

5.4 Corollary: "V fullpath ¥ node R" is not definable as a Continuous FPF, nor as a
CTF without use of the 9 or ¥ quantifiers. (]

A formula F(Xq,...,%y) of 1ist order arithmetic with free variables Xq,...s¥p
defines, in a natural way, an n-ary relation over w . For example, the formula F(x)=
3y x=2y defines the set of even natural numbers. A rcla*lon definable by a formula of
ist order arithmetic is called an arithmetical relation. The class of all arithmetical

relations can be organized in a hierarchy based on the number of alternations of



existential and universal gquantifiers required in the defining formulae: Let Eg = Hg =
the class of all recursive relations over w. For all m > 0, let Eg be the class of all

relations R definable as R(x1,...,xn) =3y S(y,Xq1,...,%Xp) where 3 belongs to ﬂg_1, and

let ng be the class of all relations whose complements belongs to Eg. By induction, we

can show that each relation in Eg can be defined by a formula of the form:

3xq Yxp 3x3 ... H(z Xy,eearXp ) where R is recursive and Q denotes 3 for odd m, Y

for even m. Slmllarly, each relation in T can be defined by a formula of the form:
¥xq 3%xp ... m R(Z,Xqs0. ,Xp) where R is recursive and Q denotes ¥ for odd m, 3 for
even m. It can be shown that the arithmetical hierarchy is indeed a hierarchy (EO u ﬁg

c £m+1 n ﬁg+1for all m) which covers the arithmetical relations. Also, for each class
in the hierarchy there are "complete" relations ("hardest" relations in the class).
For example, the class E? (which coincides with the eclass of all recursively
enumerable relations) has a complete relation K = nthe set of encodings of Turing
machines which halt on their own encodings".

There are also relations whose arguments include nsnd order" objects such as
predicates (i.e. total functions w -> {0,1}). For instance, if P is a variable ranging

over 29, en we cou ave a relation R(Xq,...3Xp, ol )
#, th 1d b lation R(x4 P m el

x 2Y. To say that such a
relation R is recursive means that there is an "oracle Turing machine" which (i) takes
as input Xq,...,%p; (ii) uses a read-only, ons-way infinite oracle tape encoding the
graph of P, and (iii) always halts (for all inputs and all possible oracle tape
contents). This notion leads to the analytical hierarchy which is a classification for
relations definable in 2nd order arithmetic based on the alternation of 2nd order
quantifiers. We are interested in two classes at the bottom of the eanalytical
hierarchy: nq and E}. H} econsists of all relations R(x1,...,xn,P1,...,Pp) over the
natural numbers which are definable by a formula of 2nd order arithmetic of the form
YF 3y Vz Q(x1,...,xn,y,z,F,P1,...Pp) wnere F,Pq,...,P, range over 2m, Xqseeva XYl
range over w, and Q is a recursive relation. 21 - the cless of all relations whose
complements are in ﬂ}. A} = E} n Hl is called the class of hyperarithmetical relations

and contains the c¢lass of arithmetical relations. {3ee [RO67) and [HIT8] for
discussions of hierarchy theory. )

When we say that a correctness property such as "¥ fullpath v node R" is, e.g.

n}, we mean that the representing relaticn {{m,0,R): ¥ fullpath of F(m,0) v node R} &

w? x Zw is H}. Since a H}—complete relation cannot be hyperarithemetical, it follows
that " V fullpath ¥ node R" cannot be characterized in Continuous FPF. Using some
additional machinery from recursive function theory, it can also be shown that "V
fullpath W node R" cannot be ocharacterized as the greatest fixpoint of any monotonic
transformer of any degree of complexity lower than “1. These conclusions hold for
jnevitability wunder fair scheduling as well. (Here we use vyeak eventual fairness'":
there is no process which is active almost everywhere yet executed only finitely
often; "strong eventual fairness" would also work.) Inevitability under fair

scheduling can be characterized in CTF as



ny fyllpath [path_is_unfair v 3 node R]"
where path_is_unfair abbreviates
"y node ( v Bj) A [( ¥ node By A ~3are B4V ...v (¥ node By A ~3 arc {B})]1".
i

Since this has the form " ¥ fullpath (... ¥ node By ...)" it can be shown that it is
at least as hard to describe as "V fullpath ¥ node R". In the appendix we show how to
apply the effective translation procedure to derive a monotonic, noncontinuous FPF

characterization for fair inevitability from the above CIF formula.

6. Relationship to Modal Logic
CTF may be viewed as a modal logic. The computation trees determine Kripke

structures where the accessibility relaticn R between states is given by oy R o iff
there is a path in the computation tree from a node labelled with state o7 to a node
labelled with state 9,. Since each CTF formula E(Rq,...,Ry) defines a modality, there
are an infinite number of modalities in this logie. However, in the proof that CTF is
translatable into FPF, we show that all these modalities can be expressed in terms of
four basic types of modalities: g, £, 1, and v. Thus, these modalities are

expressively complete for CIF.

7. Conclusion

HWe have shown that correctness properties of parallel programs can be described
using computation trees and that from these descriptions fixpoint characterizations
can be generated. We have also given conditions on the form of computation tree
descriptions to ensure that a correctness property can -be characterized using
econtinuous fixpoints. A consequence 1is that a correctness property such as
inevitability under fair scheduling can be characterized as the least fixpoint of a
monotonic, noncontinuous transformer, but cannot be characterized using fixpoints of
continuous transformers (nor as the greatest fixpoint of a monotonic transformer of
any degree of complexity lower than fair inevitability itself). Hence, currently known
proof rules are not applicable (see however [FS80]). We are now investigating whether
useful proof rules can exist for correctness properties having only a monotonic,
noncontinuous least fixpoint cparacterization. In addition, we are examining alternate

notions of fairness which do have centinuous fixpoint characterizations.
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9. Appendix
Proof outline for 5.1

We outline the main steps of the effective procedure for translating CTF into
FPF. Note that if there are no path quantifiers present in the CTF, then it is already
a legitimate FPF. (To simplify notation we adopt these conventions: symbols such as G,
Gy Gg, etc. denote guardsets chosen from {By,..., By} and the corresponding lower
case symbols g, &1, g%, etc. denote the corresponding set of indices; e.g., 1if Gg

represents {By,B3,Bg} then gg denotes {1,3,5}. We use,e.g., %° and G° to denote

vectors {Rz,...,RE) and (Gz,...,Gz), respectively. Finally, we use BB to abbreviate
1 n 1 n

By v ... v Byg.)

(1) Reduce to translating CTF's with at most one path guantifier by recursively

applying the translation procedure to nested CTF sub-expressions. For example:

Let e(R,S) = "3 fullpath V¥ node [ Y fullpath 3 node R A 3 fullpath Y node 5]" be the
CTF to be translated.

Let £1(R), £2(8), £3(T) decnote the FPF translations of " V fullpath 3 node R",
"3 fullpath 3 node 8", and "3 fullpath V node T", respectively.



=] 0=

Then the FPF translation is £3(F1(R) A £2(S)).

(2) Reduce to translating CTF's with one existential path quantifier by use of
duality. The duzl of a correctness property C(Ry,...,Ry) 1s C*(R1,...,Rn) =
~C( ~Ry,.-., “Ry). The following facts about fixpoints of duals are useful (see

[PA69]):

1£pR1.C¥(Ryy. v Ry) = ~EEPR1.C(Ry,~Rp, ..., ~Ry)

8fpRy.CY(Ry,...,Ry) = ~LfpRy.C(Ry,~Ry,...,~R )
For example, let C(R) = "V fullpath 3 node R" be the CTF to be translated. Its dual
C*(R) = » ~¥ fullpath 3 nede ~R" = "3 fullpath Y node R" is in the desired form with a

single existential quantifier. The remaining steps of the procedure will show that the
FPF translation of C*(R) is
EfPX.DLX,R] where DIX,R] = R AL ~(Y B;) VY (By AAT'X) ]

To get the FPF translation of C(R) = (C')t(ﬁ} we again dualize to get
~gfpX.D[X,~R]
= 1pX.D*[X,R]
= 1fpX.~(~ R A E~(V Bj) VY (By A AT'(-X))])

= IMfpX.R V [J\f Bi A 2 ("‘Bi v "‘Ai("'x))]

= LpX.R V [y By A (B => A]'X)]

(3) Reduce to translating a disjunction of CTF's. First, place the body in the

following general form:
V/(V-PARTA 3 -PART A V-PART A 3-PART)
where ecach Y-PART has the form "™ AV node P A AVarc G ",

each 3-PART has the form ¥ A ( V 3 node P v VvV 3arc G)¥,
L--] L [--3

cach V-PART has the form " A ¥ node PA A VY arc G", and
@ o o

each 3-PART has the form " A ( V 3 node Pv\ 3 arc G)".

There may be more than one specific form for the body consistent with the above
. general form, but there is always at least one: Disjunctive Hormal Form (DNF may be
obtained by having certain appropriate inner disjuncticns of 3~PART and S-PART be
vacuous). However, more concise FPF translations often result from keeping 3-PART and
E—PART in true "product of sums" form with the sums as large as possible. We use the
fact that V "commutes" with 3 to separate into a disjunction of CTF's, e.g.:

3 fullpath (Y (V-PARTy V 3-PARTy V Y-party v 3par1;))

= Y 3 fullpath(V-PART; v 3-PART; v ¥-PARTy v 3-PaRT; )

Each of the disjuncts is then translated separately by the remaining step.

(4) Put the CTF in a standard form which can be translated via the tables below. Note

that A and N "commute" with ¥ and ¥ and that v and U “commute™ with 3 and 4. For
example, A V node Ry = ¥ node A Ry and V 3 arc Gj = 2 are g Gj. Using these facts
7 i i

we obtain the standard form:
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1) (2)

A, A
r 3 (s

1 1 2
fullpath (( YV node R" A Y arc 6') A (‘i‘ ( 3node R v 3 arc G )).‘\)

rJ

4 =
segment ( ?j node R3 ) arc GB) A (g\- ( 3 node R). v 3 arc R?})
N ) —

Y

(3) (4)
Any (nonempty) combination of clauses (1) - (4) may be "present" (i.e., have at least
one term for nodes or at least one term for arcs present). The tables below show how
to translate any combination of clauses (1) - (8) by an appropriate zomposition of the
basic correctness properties (a) - {d) below:
(a) -d(R,G) which means "along some fullpath, R holds of all nodes and G holds of
all arcs."
(b) &(R,G,S) which means "along some (finite) segment, R holds of all nodes and
G holds of all ares upto (ard including) the last node at which §
holds“
(e) «r',¢’,

nodes, G holds of all ares, and for each i € [1:m] there are
1

R G )} which means "along some (infinite) fullpath, Ry holds of all

infinitely many occurrences of a node where R2 holds or infinitely many
ocecurrences of an arc where G holds."
(@) wr',6',8?

nodes, G holds of all ares, for each i €[1: m] there is on the segment

G? S) vnich means " alcng some (finite) segment, R1 holds of all

either a node satisfying R or an arc satisfying GE, and then at the
last node of the segment , S holds.

These basic correctness properties may be defined directly in FPF:

(a) «R,G6) = gfpX.R A(~VB; v v (B; AA]'X) )
: J ieg

(b) E(R,G,S) = 1fpX.R A({ SV V(B; A AE1X) )

iegq
() wr',¢',72,6% -
» 1 .1 2 1 1
gfpX. A E(R',G, (RJ A (B AATX)) Vv (B A A7'X) )
3=k iegl isglﬂ 92.
12 62 4
(d) V(R ,G L,R°,6%,8) =
\/{'yi o srea¥y o E(R1,G1,S) t (iq,...,1p) is a permutation of {1420 wayii} }
1 m
where for j € [1:m] YJ(P) = E(R1,GI, (R?A P) Vv WV (Bj A A'i'1p) )
ieg™n gj

Hote that while the notation looks formidable, the idea in (4) is simple. Each
permutation records a pos ible order of occurrence of nodes satisfying each of the RE
(or arcs satisfying the Gi). It is necessary to consider all permutations since the

definition of y does not specify an order. Verification of the correctness of the
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above FPF characterizations and the table entries below is straightforward znd is left

to the reader.

Table for fullpath for segment

1230: o(r',6") R' ac] AL, AG! whero o'- 61,...,c1
133u: «r',¢', 7,64 wrlel, i, 6

1230: g(r',6',-88 v a(a'a 83,00 63)) B’ mgd bogn gl

1334 ; g(R1,G1,1(R1A r3,6™n 63,74, 5%y gr',6Y, wr"A B3,670 63,5 ‘&))

1235: Wr',6" 72,82, a(r',6")) wR1,6, 52,82, True)

1234: y',G ,ﬁ2,62,1(31,e1,ﬁ” &' Wi, /2,62, (61,5 5Yy)

1238: w(R',6,8%,52,-88 v o(r'A r3,c'nad)) wRr',61,R2,82, True)

1234: or',6",8%,82, «(r'A 33,60 3,5 &%y wr',6',82,52, (r'A 83,60 3,8, 6%

Note that 2 indicates clause 2 is present, and 2 indicates clause 2 is absent,
ete. If clause (1) is abseni, we translate just as when it is present but let R1 =
True, 51 = {Bli""Bk}' If clause (i) is present but there are no node conditions, we
let Ri = True. If clause (i) is present but there zre no arc conditions, let Gi =
{B],...,Bk]. For example, the segment tab;e entry for 1234 indicates that 3 segment
( ¥Ynode R' A ¥ arc G'A A (3 node R v 3 are Gi) = \(R ,G ,RH,G ), which follows
directly from the definition of 1 and the fact that any infinite segment is a
fullpath,

¥We now derive an FPF characterization of fair inevitability starting with the CTF
description V fullpath [path_is_unfair v 3 node R]:

1. Dualize to obtain
3 fullpath [V node R A~path_is unfair]
2. Use the definition of pati_is_unfair to obtain
3 fullpath [V node R A f 3 nede (~BB) v ? (3 node “Bj v 3 arc [B 1o
3. Use the distr:t tutive law and then split apart disjuncts to obtain
3 fullpath [¥ node R A 3 node {~BB) ] v
3 fullpath [V node R A A (1 node By v 3 arc [B 13
4. Use the translation procﬂdure to obtain:
E(R,{Bq,...,By},~BB) v UR, (By,...,B.}, By,..., By, {By},..., {BL})
5. Dualize again to obtain
£*(R,0,BB) A 1‘(R,a,{52,....ak},...,{51,...,Bk_1}) .
Finally, observe that any CTF defined without using the quantifiers 3 orv is

translated using only o and £ which are Continuous FPF's. [l

Proof gutline for 5.2 .

We outline a proof by induction on the structure of correctness properties definable
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in  Continuous FpF that any such ¢orrectness property is hyperarithmetical (i.e. d}):
Since gfpX.t[x] = ?lpr-tx{X] and {V,~} is g complete set of boolean connectives, the
following steps suffice: A )
Basis: LlRy, .o Ry ] = Ry (1 <1< n) is Af immediately.

URyseooaBd = B; (15 €K s 4] since guard By is &,

AN

Inductdon: t[Ry,...,R,) = t1[Ry,... R ) VEalRy, . Ry) is B since 8] 45 oloseq
under finite union.
t[Ryy..0,Ry) = ~t4lRyo. o Ry) s 6; since 4 is closed under
complementation.
tRiye s sRn) = AT 640Ry L Ry) (1€ 1 < K) s & since action Ay is 82,
t[R1,...,R,] = 15pR. t4[R, Ryy...,Ry] is # since 4 is closed under

inductlve definitions with closure ordinals < w . (See [KI781). [}

Proof outline of 553
We show that Q = {(m,0,R): 3 fullpath 3 node R is true of F(n,0)} is E}-complete. It

follows that (the reprepﬂesentlﬂa relation of the) g¢ual correctness property "y

fullpath ¥ node R" is 11~comp1ete

Q is E; ~hard: Let S be an arbitrary Z} set. then for some recdrsive relation Pfi m3 x:
2% x e85« >3FVy3z P(x,y,z,F) (see [RO87]). We can construct a €o-od program Ty
which on input X, guesses F and attempts to find for each y-some 2z so that P holds. We
design Tg So that for each distinet ¥y = 1,2,3,... when (and if) the appropriate z is
found, Tg sets (for one step) a special flag qg to true before proceeding to check
the next y value. There is a possible computation of g Starting in state x for which
Gy becomes true infinitely often iff x € S. Thus, the question "Is X £ 8?" has been
effectlvely reduced to "Is ( TsiX,{ag=True}) e Q?". So Q is E}—hard.

Q is in El Ve use <x,y> to indicate a (recursive) pairing function establishing a
bijection m2 => m.(<x,y>0 = X and <x,y>{ = y). We define the recursive functional
state: w3 2% 3y by state(w,c,n,F)} = <1 sAp(n) © AF(n-1) o ... a Apc1y (a)> if
F(1),...,F(n) encodes a legitimate initial segment in Z(n,0) where v = do Ay > By
[J...0] Ap ~> By od and each F(i) e [1:k] and gives the index of the command chosen on
the ith trip through the loop. Otherwise, state(w,o,n,F) = <0,0>.

Then Q is defined by the z} formula of 2nd order arithmetic:

IFVi3j (§>1ia (state(n,0,§,F))g = 1A P( (state(w,0,4,F))y ) = True). []

Droof cutline for 5.4
If " yfullpath § node Rv were definable as a Continuous FPF, it would be ﬂ} by
Theorem 5.2, But this contradicts Theorem 5.3 since no A} relatien can be
n}—cunplete. If it were definable as a CTF without using the 3 or V quantifiers, it
would be definable as a Continuous FpF by Theorem 5.1: But, we just saw that this is

impossible. []



