A PROOF METHODOLOGY FOR VERIFYING
REQUEST PROCESSING PROTOCOLS

by
Christos N. Nikolaou
Edmund M. Clarke, Jr.
Stephan A. Schuman

TR-04-82

January, 1982







A Proof Methodology for Verifying
Request Processing Protocols

Christos N. Nikolaou
Edmund M. Clarke, Jr.
Center for Research in Computing Technology

Harvard University

Stephen A. Schuman

Massachusetts Computer Associates, inc.

At Harvard University, this research was supported in part by NSF Grant
MCS-7908365 and by Contract NO00039-78-G-0020 with the Naval Electronics
Systems Command.

At Massachusetts Computer Associates, Inc., this research was supported in part
by the US. Army CORADCOM, through the Scientific Services Program under
Delivery Order No. 1704 from Battelle Columbus Laboratories.

—t e e X e

Mt e S | AR e s 20 SR

E T SRR SRR S R R ——— ‘ S U e



Table of Contents
Abstract
1. Introduction
2. Sequential Request Processing Protocol
2.1. The overall system
2.2. the DRIVER Y=
2.3. The Server
2.4. The INTERFACE
3. Description of the Formal Tools
3.1. History variables
3.2. A Proof System for Safety Properties
3.3. Using Temporal Logic to prove liveness properties
3.3.1. The strong fairness axiom
3.3.2. Proving liveness properties
4. Analysis of the SRP protocol
5. Conclusion
References

List of Figures
Figure 1-1: A network of communicating Virtual Machines
Figure 2-1: Overall Structure and Data Flow for two neighboring nodes
supporting the SRP protocol
Figure 2-2: The INTERFACE process
Figure 4-1: Annotated AGENT and SURROGATE processes at node n
Figure 4-2: Annotated INTERFACE process at node n

W

27
Zl



Abstract
In this paper, we view computer networks as distributed systems that provide
their users with a set of services. A given target network configuration is conceived

as a network of communicating virtual machines and its behavior is modelled

v -
f

through a system of communicating sequential processes. We thus develop a proof
methodology which enables us to express and verify partial and total correctness
assertions about the system in a simple and natural way. Global invariants are used
to establish invariant properties of the whole system and temporal logic to express

eventuality properties.

1. Introduction

We view a computer network as a distributed system which provides its users
with a set of services. Every user can access any node in the network, and submit a
request for getting a particular service (e.g. data retrieval, file transfer, etc.). The
network will eventually satisfy this request and will also give a response to the user
(this response may be either data retrieved or a message indicating the completion
of the user’s request). In what follows we develop distributed algorithms, running on
each node of the network, which hide from the user the distributed nature of a
computer network by handling both local and remote requests in a uniform way. In
section 2 we present an algorithm whereby a node can handle at most one request
for a particular §ervice at any given time; we also assume that the underlying
communication medium linking the various nodes of the network is perfectly

reliable. These assumptions are relaxed in [10]; there we assume that every node is




able to handle a bounded number of requests for a particular service at any given
time. We furthermore assume that the medium is unreliable permitting information

to be lost, duplicated or reordered.

At each node, the algorithms are implementéd as a system of Communicating
Sequential Processes (CSP). CSP is a language of concurrent programming developed
by Hoare in [6] which we will subsequently be using with some simple extensions.
For an alternative implementation of the algorithms using ADA, the reader is

referred to [11).

Abstractly, we wish to conceive of some given target network configuration, as a
network of communicating Virtual Machines (VMs) (Fig 1-1). The individual nodes
of a particular network correspond to fully independent (autonomous) processors,
each of which is capable of executing a complete CSP program. We can thus modéi
a broad number of computer networks such as:

1. Inter-Virtual-Machine Transmission (e.g. the "VMCF" -capability
provided by IBM’s VM/370 system) where seperate VMs are actually
multiprogrammed onto the same physical processor (and so may
communicate by accessing common memory supplied by the operating

system).

2. Input/Output-Bus Transmission (e.g. between a central processor and
some intelligent peripheral), where a number of distinct (but quite

specialized) processors communicate by direct, very high-speed

G, ooy i B S S N el N R G ARy S LT O N T T DT, et

v s e aam b




AL, e

Figure 1-1: A network of communicating Virtual Machines



connections.

3. Local-area Network Transmission (e.g. the Xerox Ethernet or the
Cambridge Digital Communication Ring, see [12]), where several
autonomous (and often logically specializédi processors are connected

together over relatively short distances by dedicated cables.

4. Long-Haul Network Transmission (e.g. the ARPANET and various
public or private packet-switching networks) where many large-scale
general-purpose processors are interconnected by means of phone lines,

microwave relays nor even satellite communication.

The paper is organized as follows: in section 2 we describe a simple distributed
algorithm for sequential request processing, assuming a peffectly reliable underl)dﬁg
communication medium. In the subsequent section 3 we present an axiom system for
expressing the partial correctness properties of the sequential request processing
protocol and its temporal logic extensions for handling the verification of total
correctness properties. In the final section of this chapter we prove that responses
always correspond to their associated requests, and that all requests are processed

exactly once by the system.

i SR 4 SPSAE B W R TSRS gl . S - n e e et R L




o i a e A PREY

2. Sequential Request Processing Protocol
The strategy employed in this section is based on the property that no more than
one remote request of each service is in progress from the same node at any given

time, so as to avoid saturation of the communication medium or overloading of the

- corresponding server node. As such, this property is necessarily established on the

driver side of the protocol defined below.

2.1. The overall system
The overall system is represented as an array of CSP processes, each one standing

for one node of the network:
NETWORK :2 [NODE [mn: 1. .N1]

The interconnection pattern of the nodes define the sets I'(n), whose elements
are the indices of the neighboring nodes to node n. Function target_node, residing
in every node of the network is able to select a neighboring node, according to the

service requests received.

The overall structure and associated data-flow for two neighboring nodes are

depicted in Fig. 2-1. There are three processes running in parallel on every node:
NODE[nl = ¢ [ DRIVER | | INTERFACE | | SERVER 1

The DRIVER process receives the requests from the users and forwards them to the
INTERFACE. The INTERFACE selects (using the target-node function) the
appropriate node to service the request (which might very well be the local node)

and transmits the request to the chosen node & The INTERFACE process of node




DRIVER,,

NODE,,

input?&

ouiputn

inputgl

n
outputg

AGT|| <+ [AGT,

hund?

A
ref] hand]

3
n
retu

Y

|

INTERFACE

ZARRNN

SGT,,| *

. deﬁverﬂ
Iy

n
S6T2 1

SERVER|,

forwurd?.-
]

Y

n
S6Tg)

jo

NODE q

qel(n)

N |
dsshwbuteq

respondg

Q
5
I

Figure 2-1: Overall Structure and Data Flow for two neighboring nodes
supporting the SRP protocol




k delivers the request to the SERVER, which then forwards the response to the
INTERFACE process of node k. Finally, the response is shipped back to node n, the
INTERFACE process of which, returns the results to the DRIVER, that makes
them available to the user. We next describe -the DRIVER, INTERFACE and

SERVER processes in detail.

2,2, the DRIVER
The DRIVER is defined as an array of processes, called AGENTS, each one

responsible for one type of service, among those available to users at node n:
DRIVER ¢ ¢+ [ AGENT [a:1 . . A1]1

AGENT] a ] is the only process which is responsible for all requests of "type @"

submitted at node n. Its body is shown below:
AGENTI[al : : x[ USER ? input(p} =
INTERFACE ! hand(p};
INTERFACE ? return(r);
USER ! output(r)

In the above program, a user who can access node n and request service of "type
a", is able to communicate with AGENT]a] and pass a parameter list p to an object
of type input. These parameters are then passed to the INTERFACE. A typed
message is again used (kand (p.a)) for reasons which will become apparent in the
analysis section of the SRP protocol. The result parameter list 7 is then placed by

the INTERFACE in an object of type return and is deliverd to the appropriate




agent, which passes it back to the (unknown) user.

2.3. The Server

Similarly, the server is defined as an array of processes, called SURROGATES,
whose sole responsibility is to (locally) process a ‘re-quest for a given type of service.
However, this time the array is two-dimensional to account for the fact that for
each type of service, D (= [T'(n)| ) surrogates are required, the number of neighbors

to node n:
SERVER :: [ SURROGATE [s: 1. .S 3m:1..D1]1

The number of services S, supplied by the server of node n, does not, of course,
have to be equal to 4, the number of agents. For simplicity however, we assume
that, on every node, § = A and, moreover, that there -is an one-to-one natural
mapping between agent indices and types of services at the server’s side. We next

give the code for the SURROGATE process:
SURROGATE [s,m] & @
% [INTERFACE? deliver (p, source_node) -
processip,r);
INTERFACE! forward{r, source_node)
]

In a cyclic fashion, a surrogate simply receives a new request from the
INTERFACE, processes it and forwards the results list 7 back to the INTERFACE.
It also forwards the identity of the node, which this request originated from. The

INTERFACE will thus be able to deliver the response to the right agent.




2.4. The INTERFACE
The communication medium is assumed to be perfectly reliable and messages
always reach their destination without being lost, duplicated, reordered or corrupted.

The body of the INTERFACE process of node n’is given in figure 2-2.

Basically, INTERFACE has to nondeterministically select among the following six

alternatives:

1. receive a new request from one of the agents. Using function
target_node, INTERFACE determines the destination ﬁode of the
request and by setting the appropriate entry of the flag array ERC
(standing for Enable Request Channel) it enables communication with
the target node. Furthermore, it disables communication with all agents,
by turning off flag EA (standing for Enable 4gent) until the parameter
list p; is transmitted to its destination. Finally, it temporarily stores the
identity of the agent, which originated the last request, in the variable

aid.

2. if the appropriate flag permits, transmit to some neighboring node ka
request, together with the name of the agent (i.e. the type of service)
responsible for it. Once the communication is accomplished, disable
transmission of requests to node k ( reset ERC[k] ) and enable

communication with the agents again (set flag E4).

3. receive a request from a neighboring node and deliver it to the



10

INTERFACE ::
x0 ] (@ : 1..A) EA; AGENTI[al ? hand(py) -
q := target_node(pp);
aid 1= a;
ERC[g) := true;
EA := false

0 (: 1..D) ERCIKI; NODE[K] ! distribute(py, aid) -
ERCIk] := false;

EA := true

 k: 1..0) NODEIk] ? distribute(pp, agt) -
t ] tm: 1..0) SURROGATE[agt, m) ! deliver (pp, k) = skip ]

l ¢s:1..5;5 m:1..D) ES;
SURROGATE? foruard(rl, source_node) =
EAC [source_nodel := true;
sid := s}

ES := false

0 k : 1..D) EACIKI; NODE(K] ! respond (rj, sid) =
EACIk] := false;
ES := true

[  : 1..D) NODEIK] ? respond{rp,sgt) -

AGENT [sgt] ! return(rz)

Figure 2-2: The INTERFACE process




11

appropriate surrogate.

4. if enabled, receive a response from a surrogate and prepare for its
transmission to its source node. Flags ES (Enable Surrogate) and EAC

(Enable Answer Channel) function exactly as flags E4 and ERC above.

5. if enabled, transmit a response to its source node; then prepare for

receiving another response from some surrogate.

6. finally, receive a response from a neighboring node and deliver it to the
appropriate agent. Note that according to the aforementioned
convention, the first surrogate index (here called sgr) is also the agent

index.

3. Description of the Formal Tools

In general, we want to prove safety and liveness properties about network
protocols. As the folklore goes, safety properties are properties which assert that
something bad never happens, while liveness properties are properties that assert that
something good will eventually happeﬁ. In the context of nmetwork protocols there
are two classes of properties that we want to verify:

1. that the responses that the users receive, match their requests and that

every request is processed at most once by the network (safety).

2. that every message (be it a request or a response) is eventually delivered




12

through the network to the appropriate node (or user) (liveness).

To reason about safety and liveness properties of programs written in CSP we

shall use a mixture of informal deliberation - whenever we think that a

formalization of the presented arguments is more or less straightforward - together
with proof theoretic deductions. Several partial correctness proof systems for CSP
have already been proposed in the literature ( [1], [LG], [9], [3]). We will be
using the proof system proposed by Apt, Francez and De Roever in [1] with the
addition of history variables to record the history of communication exchanges
between every potentially (syntactically) matching pair of processes. History
variables are also used in [9] and [7]. Our formal tool for proving liveness

properties will be temporal logic.

3.1. History variables

Our assertion language is a first order language (see, for example, [Shoenfield]) in
which certain variables are designated as history variables. Let us consider a pair of
i/o commands of the form: P[e_,] !Ty .. .,.t,) and P[ez] 2Ty v v oXg)
Assume that the output command appears in the body of the process FPfif and that
the input command appears in the body of the process P/[j]. Here, e; and e, are
integer expressions, x;, . . . ,x, are variables local to process P[j}, ¢ . . . ,t, are
terms composed by variables local to process Pfif and T is the type of the message
to be exchanged. We say that these two i/0 commands match potentially if j is in

the range of values obtained by e; and / is in the range of values obtained by e,.




13

The reader is reminded that this is not standard CSP, in [6] e; and e, are only
allowed to be integer constants. However, we use this extension in our network
protocols and we feel that it is quite useful. To each syntactically matching
communication pair we assign a history variable, which, by convention, has the same
name as the type of the message exchanged. At any given (global) state, each
history variable contains the sequence of messages exchanged through the

communication pair (channel) that it is attached to.

Following Hailpern [5], we now introduce notation for describing histories. Let &
and B be arbitrary history variables. The length of a is denoted by |a|. If the first
element of a is a,, the second is e,, . . ., and the last one is e, then we can write:

a==<a1a2...an>

We denote the i-th element of history & by a;, and concatenation of sequences by
juxtaposition:

a=<a1...a,,><BI...ﬁm>=Q;...anﬁl...ﬁm>

We write @ < B if « is an initial subsequence of 8. This means that || < |8| and
the two sequences are identical in their first ja| elements. Let a* be derived by a by

omitting the last element of a. For the following CSP program,

%[ Sy; Py 201) alxg, ... » %05 Sp; Pp 201 Blxg, ooy xp)s S3]
we may clearly deduce the inequalities given below:
Oslp| - B = 1 (1)

Furthermore, in the following specialization

®[ S5 Py 2 @lxg, «vo s Xpdi(3) Pp 8 Blxy, ooy %p)s S3 ]




14

one can make the stronger statement shown below:

2

a <fza

v -

We shall be dealing with histories of structure'd CSP objects, for which selection
operators are defined in the obvious way: if n, ..., ng are the component names
of the object A =T(v; ..., w) then An; = vy ..., A = v If history & is
composed of objects of type T as above, then we extend the selection operator to
histories in the following way: if &« = <d;... A;>then a.n; = <dpn;. .. 4,,.n>
We shall also want to form subhistories of @ by selecting some of its objects. We
will usually be given a function f and the selection criterion will be that the value
of this function applied to some particular component n; of all the el.ements should
be equal to a predetermined constant v

selfy, @, n; f) 2

if a = <>then <>

else if v = f{firstfe.n; ) then

(firstfa).ny,. . . first(a ).nj_ p Jirstfe)n,p,. .. firsta).ny Jsel(y, restfe), n; f)

else selfy, restfa), n; f)
where <> is the empty history and restfa) and firstfa) have the obvious meanings.
We will frequently omit the third or the fourth argument of sel or even both,
whenéver their values are obvious from the context. Assume that the objects of
history & belong to a totally ordered set (e.g. assume that each request, submitted to

a particular agent, is uniquely identified by a code number; @ may be the history of




15

codes associated to these requests). Then a is nondecreasing if a; < a; whenever i<j.
We denote this property by Ndfe). Similarly a is monotonically increasing if a; < a;
whenever /<j. Again we write Mi(a). Let S(a) denote the set of elements of a. Then,

for monotonic histories & and f the following lemma holds:

Lemma 1: If Mifx) and MiB) then from Sfa~) c SB) c S(ee) we can deduce B < e.

Proof: For the sake of contradiction, assume that the lemma holds for the first
i-1 elements of both histories. Now suppose that §; = ;. By hypothesis, 8; e Sfa).
Hence, let 8; = a; We distinguish the following cases:

1. j<i. By our assumption, there is f; = a; = §; in violation of the

monotonicity of 8.

2. j>i. By the monotonicity of a, @; > a; Therefore, a; cannot be the last
element of e and by hypothesis, a; e 8. Let §; = a; < a-(j = 8;). By the
monotonicity of B, k</. By our assumption, however, 8; = a; = a; in

violation of the monotonicity of a.

Q.E.D.

For nondecreasing histories @ and 8, we define the merge operation recursively as

follows:




16

Mergefe, B} £
if « = <>then 8

else if 8 = <> then o

else if firstfee) < first(B) .-
then first(a)firsi(B) Merge( rest(a), rest(B))
else firstB)firstfx) Merge( rest(a), rest(8))

Observe that if a; =8 for some i and j, both of them are included in Merge(a, 8).

3.2. A Proof System for Safety Properties

To reason about safety roperties of CSP programs, one has first to provide proofs
for component processes and then to deduce properties of a parallel program by
analyzing the proofs for components. Apt, Francez and De Roever in [1] provide a
method, called cooperation test, to tie separate proofs together into a meaningful
whole. In this section, we only present those axioms and proof rules which are
explicitly used in the analysis of our algorithms; The reader is referred to [1] for

the complete axiom system. In what follows, by a we denote an i/o command of

the form: pfe] ? T(xp ..., x,) or ple] I T(ty ..., tp).

We first define the concept of bracketing: (adopted from [2])




17

Definition 1: A process is brackeied if the brackets "<" and ">" are interspersed
in its text so that for each program section <S> (10 be called a bracketed section), §
is of one of the following forms:

1.85;;a;80r

2. a- S],

and Sy and S, do noi contain any i/o statements.

For the cooperation tests a global invariant I (possibly referring to variables of al/
processes and auxiliary variables) is introduced. Every process is annotated with
brackets in such a way that a brackered section contains at most one communication
command. The invariant is only required to hold outside bracketed sections. We
now repeat the definition of the potential marching for the convenience of the

reader:

Definition 2: -

- 1. Two communication commands of the form pfe] ? T(x;,...x,) and
ple']! T(t;. ..., 1) are potentially matching if they appear in a
g-process and p-process respectively. (Hence ple]? T(xy, ..., x,) and

ple']! T(ty, ..., t,) are always potentially matching).

2. Two bracketed sections {pre;} S; {post;}, {prey} S, {posty} are

potentially matching if the corresponding communication commands

are.,




18

In the above definition, by p-process (or g-process) we mean a process that is a
member of an array of process p (or ¢). The notion of potential matching replaces
that of syntactic matching in [1]. A potential match will be an acrual (semantic)
match provided the following two conditions hold: ~

1. The sections S; and S, are taken from gfif and pfj] respectively, and

the current values of e and e’ are j and 7 respectively, and

2. There is a global state in a computation sequence when the controls of

g[i] and p[j] are about to execute S, S respectively.

The cooperation test has to establish the postconditions of the potentially
matching bracketed sections and the invariant, given that the precondition and the
invariant held initially. The invariant is also used to rule out all potentially
matching pairs of bracketed sections, which do nor actually (semantically) match.
The cooperation test is:

{pre;Apre;,AIANe=jAe’ =i} S| S, {posty A posty A1}

whenever §; and §, are potentially matching bracketed sections taken from gfi]

and pfj] respectively.

In case S; and S, do not semantically match, the conjunction of the precondition
and the invariant will be inconsistent. To establish the cooperation test we use the
following additional axiom:

communication



19

[Tl )=} pli] 2 Ty ... xRl ! Tl 1)
{151 ;=N TG j)=a<(ty, ..., 1,)>}
provided pfi] ? T(x;, . .., x,) and p[jJl T(t;, ..., t,) are taken from p[j/ and
p[i] respectively. Here T(i, j) is the history of the unidirectional channel permitting

flow of information from process i to process j.

We can now give the proof rule for parallel composition:

parallel composition

proofs of {p;} Pli] {g;} (i = 1, . .., m) cooperate

pih. . Ap, NBPI]]... | B[m]{g;A...Ag, AL}

provided no variable free in [/ is subject to change outside a bracketed section.

We have now concluded the presentation of our proof system for safety

properties.

3.3. Using Temporal Logic to prove liveness properties

Temporal logic is an instance of modal logic [HC], which considers a universe
that consists of many similar stares (or worlds) and a basic accessibility relation
between the states, R(fs, s '), which specifies the possibility of getting from one state
s to another state s'. As Manna and Pnueli point out in [8], "the main notational
idea is to avoid any explicit mention of either the state parameter or the

accessibility relation. Instead we introduce two special operators that describe




20

properties of states which are accessible from a given state in a universe.”

The two modal operators introduced are O (called the necessity operator) and &
(called the possibility operator. Let |W |; denote thF _Irurh value of formula w in state
s. Then: _

oWl =Vs'[R(s, s')>|W]s' ] (3)

oWl =3s"[R(s s')N|W]s" ] (4)

A modal formula is a formula constructed from proposition symbols, predicate
symbols, function symbols, individual constants and individual variables, the classic
logic operators and quantifiers, and the modal operators. The truth value of a modal
formula at a state in a universe is found by repeated use of 3 and 4 above for the
modal operators and evaluation of any subformula on the'state itself. A formula w
which is true in all states of every universe is called valid, i.e. w is valid if for every
universe U and every state s € U, | |, is true. Henceforth, we will assume that the
accessibility relation R is reflexive and transitive, ie.

| Vs R(s, s)
Vs; sa 53/ Risp, s5) A R(sp s3) > R(sp, s3) ]

In [10] we present a complete axiom system for propositional modal logic and its

extension for formulas involving quantifiers.

Our language uses a set of basic symbols consisting of individual variables and

constants, and proposition, function and predicate symbols. The set is partitioned

L ma he——— e T



21

into two subsets: global and local symbols. The global symbols have a uniform
interpretation over the complete universe and do not change their value or meaning
from one state to another. The Jocal symbols, on the other hand, may assume
different meanings and values in different states of the universe. A universe consists
of a nonempty domain of interpretation D, an assignment over D to all global
symbols a set of states (worlds) S where each state s € S specifies an assignment over
D to all Jocal symbols, and a specification of the accessibility relation R. A model
(U, sg ) is a universe U with one of the states of U, spe€ S, designated as the initial
or reference state. Manna and Pnueli characterize temporal logic as follows:
The framework of temporal logic is a modal framework in which we
impose further restrictions on the models of interpretation ( [PRI], [RU]).
The interpretation given by temporal logic to the basic accessibility
relation is that of the passage of time. A world s’ is accessible from a
world s if through development in time, s can change to s'. We
concentrate on histories of development which are linear and discrete.
Thus, the models of temporal logic consist of w-sequences, i.e. infinite
sequences of the form ¢ = sy 55 . .. In such a sequence, s; is accessible
from s; iff i<j. Due to the discreteness of the sequences we can refer not
only to states that lie in the future of a given state, but also to the
(unique) immediate future state or nexr state. This leads to the

introduction of an additional operator, the mext instant operator denoted

by o ([8)-

o mr——————— -



22

Consider, now, a program

Pis IR JewalPyls
where each P; denotes a single process containing no nested processes within its
body. Assume that each statement in every P; has a unique label identifying that
statement. Let L1 denote the set of labels of P;, and let y7 be the vector of

yariables local to process P;. An execution state of P has the form

1

§=< l,-; S l,-: , > where I{'; e LJ is the label of the next statement to be
executed by process P; and 7gives the current values of the local variables ¥ = <y 4,

., y" > For /e Li the predicate ar / holds (at a given state) iff control of P;
resides at I (ie. the statement labelled by / is the next candidate for execution in

P;). Similarly, the predicate after 1 holds at a given state, iff control of P; resides at

the state immediately after execution of the statement labelled L

Every partial correctness assertion of the form {p} § {q} can now be converted to

an equivalent temporal logic formula as follows:

{at SA p)> O (after §> q)

3.3.1. The strong fairness axiom

The issue of fairness is briefly discussed in [7], the paper defining CSP. There it
is argued that it is the programmer’s responsibility to prove that his (or her)
program behaves correctly, without making any assumptions whatsoever, about the
fairness introduced by the implementation. We felt, however, that ensuring a fair
execution of the SRP protocol through explicit programming in CSP, would

dramatically increase their already high complexity and would distract us from the



23

reliability issues that we want to study in this thesis. On the other hand, it would be
impossible to establish the desired liveness properties of the protocols without

making any assumptions about fairness.

Francez and De Roever ( [4]) distinguish twc; icinds of fairness: weak fairness -
associated with eventual advance of each process - and strong fairness - associated
with eventual occurance of each pending communication. We adopt the strong
fairness assumption, which we next formalize, as in [4]. In the sequel, for simplicity

of notation, we consider only one array of processes which we call p.

Let L € L1 be a label of an alternative, repetitive or a communication command
in process P; Let m be the number of guards g,, @a=1,..., m in the alternative
or the repetitive command. By convention, we assume that-' this number is always ‘1
in the case of a communication command. For example, L could label the following

alternative command:

L []]b1=ﬁ1~*|-1=31

Let B(g, ) denote the boolean part of g, (true, if not explicitly mentioned or if L
is labelling a communication command). Also, let

Cfga)=<P.g>.15P.q$nandp=iorq=i,



24

be the communication part of g, ; here p denotes the index of the source process
and g the index of the destination process. Because we allow computed targets,
function Cf.) depends on the current state of the system; therefore it is rather a
semantic function than a syntactic one, as it is the case in [4]. By convention we
take p = g = I for those branches having no communication part. Next, we define
the set of communication expectations for L:

E[i, ={Clg, )/ Blg,) =true instates, a=1,..., m}

Clearly, if L labels a communication command, Ei = { C(g;) } where g; is the
command. Henceforth, we will omit the state subscript of the communication
expectation sets, but we will keep in mind that these sets are always state

dependent.

In [4], the strong fairness axiom is expressed as follows:
Vi(l<i<n.VL (LeL).-Va(lsasm()).
Vj(lsjsn. VL' (L’e L))
{foofaLAhNalL ABg,)ANClig,e E‘LJ: oarL,}

This axiom, expressing eventual occurrence of every matched

communication, can be understood as follows:

Let P; denote a given process, L a label of a given guarded command in
P, and g, denote a given guard. Let P; denote 2 given process, and L’

denote a given guarded command in P; Then if it is infinitely often the




25

case that the communication part of g, is matched with (an element of)
E i,, then eventually this specific communication will occur. Note again

the special case of / = j which induces fair choice among local alternatives.

. —

3.3.2. Proving liveness properties

Again deviating from the original semantics of CSP, as presented in [7], we will
consider liveness properties of non-terminating processes only. Henceforth, we
assume that processes are composed by an optional initial terminating part, and a
non-terminating repetitive command. Processes are allowed to be defined as arrays

of other processes, but only at top level.

We next introduce the predicate marching(L, a) which becomes true iff there is
at least one communication command in some précess P; matching the
communication command in the guard g, of the statement labelled L in process P;

marching (L, a) &

Aj(I<jsn. AL L. Li)[at L'N Blg, ) A Clg,)c Ey+ ]

For the terminating constructs to be used, we now recursively define the
predicate rerminate(L). The general scheme to be used for proving termination
properties will be:

at L A terminate (L) > ¢ after L

The predicate terminare(L) is defined as follows:
skip

terminate (L) = & after L



26

assignment

terminate (L) = & after L

composition

Let L:S;; 855 ... ; Sy Then:
n
terminate(L) = terminate(S;) N A (ar S; > terminate(S; )
i=2
alternative command

terminate(L) =
d a1 <a< mfL)). marching(L, a) A AT 1( matching(L, a) > terminate(S, ))
terminating repetitive command ’
terminate (L)= A a (I < a < m(L)). matching(L, a) >
j\; ; (matching(L, a) > terminate(S, )) A ¢ -(a/rg , ~B(g,))
The predicate terminate, as defined above, expresses the necessary and sufficient
conditions for termination of the aforementioned constructs, in @/l possible execution

sequences.

We next give a condition asserting that a non-terminating repetitive command
labelled L, will never be blocked within its body, and that, moreover, control will be
at L infinitely often:

O a{’:I Bg,)hD( j\: , ( marching(L, a) > rerminate(S, ))
snoaLAno(-after L)

Observe that the condition above is also established in the trivial case, when the i/0




27

commands of the guards, though infinitely often enabled, are never actually
executed (because there are no matching i/o commands in other processes). In that

case ¢ O ar L holds.

This completes our description of the formal tools.

4. Analysis of the SRP protocol

To uniquely identify user’s requests we assign to them a code ¢, so that no two
requests have the same code. Moreover, the codes are monotonically increasing with
time. The channel histories are named after the type of messages exchanged through
that channel. Indices are also used whenever deemed necessary, to uniquely identify

histories. Figures 4-1 and 4-2 show the annotated versions of the SRP processes.

In order to establish the safety properties of the SRP protocol we use the proéf
methodology outlined in section 3. Thus we form a global invariant J, which we
should prove holding at all times. I is the conjunction of several clauses, that we list
below:

Miinput? .C) (5)

We first assert that the codes asssociated to incoming requests to be handled by
agent a are monotonically increasing.

hand}} < input}; (6)

The above inequality states that at node n and agent a the Aand-history is an

initial subsequence of the input-history. Similarly:



28

AGENT [al : : {input) = <> A hand} = <>
A return] = < A outputg: = <>}
ALD : %[ USER? input(p,c) -
AL1D :  INTERFACE ! hand (p,c);
AL2 : INTERFACE ? return (r,c);
AL3] : USER ! output (r,c)

SURROGATE [s,m] : : { deliverD | = <> A foruard] ; = <>}
SLg.m : %[ INTERFACE ? deliver(p, source_node,c) -
Sng,m : process(p,r);
SLZQ'm : INTERFACE ! forward (r, source_node, c)
]

Figure 4-1: Annotated AGENT and SURROGATE processes at node 7



29

n
INTERFACE : : { EA = true A ES = true A A ERCLi] = false

n i=1
A AEACILiI1 = false
iml

T (n)
A A distributeg = <> A respondd )
q=1 . -
ILN s % [(a:1..A) EA; < AGENTIal ? hand(py,cq) -

q := target_node(pj,cq);
aid := as
ERCIg] := true; EA

:= false >

ltk: 1..D) ERCIKI; < NODE[K] ! distribute(py, aid, cq) -

ERCIk] := false : EA := true >

Dik: 1..0) NODEIK] ? distributelps, agt, co) =
2 2
w1t : t s 1.0 “

SURROGATE [agt, m]l ! deliver{py, k, co} = skipl

[ ts:1..5;m: 1..0) ES;

< SURROGATE[s, m] ? forward(r), source_node, c3) -
sid = s3
EAC [source_nodel

:= true; ES := false >

'ﬂ (k ¢+ 1..0) EACIKk]; < NODE[k] ! respond(rqy, sid, c3) =

EAC[k] := false; ES := true >

[ « : 1..00 NODEIK] ? respond{rs, sgt, c4) =

IL2M : AGENT[sgtl ! returnirp, cg}
1

Figure 4-2: Annotated INTERFACE process at node n



30

outputl < returny (7)

For the m-th SURROGATE process of service type s at node dn we have:
forwardg';'n .Cs deliverf,{’,‘n .C (8)

In the following four clauses we describe the behaviour of the INTERFACE
processes at two neighboring nodes sn and dn.

sel(a, distributed}, ).C < sel(dn, hands}', P, target_node).C (9)

Here, we select those requests listed in history distribute which come from agent
a only, at source node sn, and we state that the thereby formed subhistory of their
codes, is an initial subsequence of that same agent’s hand-subhistory, containing
codes of requests with destination node dn. Hereafter, for economy of notation, we
will omit the third and fourth arguments of se/, when selecting from the han.d
history according to the destination node (or the hand history for that matter).

Merge  (sel(sn, deliverd ).C )< sel(r, distributeS]!, ).C (10)
me (L (dn) !

'In 10 we consider the histories of all channels which deliver requests to all
surrogates of type 4, t e {I, ..., S} at node dn. We form their subhistories by
selecting only those requests (of type f) coming from node s# and we merge them.
We then state that the thus formed history is an initial subsequence of the

distribute-subhistory containing requests of type .

The following two clauses are essentially symmetric to 9 and 10.

sel(t, responddn ).C < fgerﬁw(sel(sn, forwarddn, ).C') (11)
€




31

sel(dn, returni"R ,target_node).C < selft, respondf,’,' JC (12)
Again, for economy of notation, we shall omit the third and fourth arguments in se/
above, when selecting from the return history according to destination node (or the

outpur history for that matter).

The last two clauses of I express an invariant property of the flags E4, ERC and

ES, EAC of INTERFACE

EA® k% ERC[k] (13)
=1

) _
ES® ® EAC[k] (14)
k=1
where "®" denotes exclusive OR.

In order to establish the truth of the invariant 7 we have to prove that J holds:

1. initially
2. outside the bracketed sections of every process.

Clearly, I holds initially because all histories are empty and E4 and ES are true

whereas all elements of ERC and EAC are false.

We now examine the truth value of each individual clause of J. When agent a




32

receives a request from the user the inpur history is increased by one more element
by virtue of the communication axiom. So 6 now holds as a strict inequality. When
the agent @ communicates with the INTERFACE, the hand history is increased, and
6 still holds possibly as inequality. Since nowhere else in the system the input and
hand histories are affected the truth of 6 is established. Observe that the processes
pairs USER - AGENT][a] and AGENTJ[a] - INTERFACE, whose communications
we used to establish 6, trivially pass their communication tests. We can similarly

establish the truth of 7 and 8.

The truth of 13 can be established by inspection of the first two alternatives of
the INTERFACE process. If we assume that 13 holds at the beginning of
INTERFACE’s infinite loop, then the first group‘of alternatives is enabled and the
second disabled. Moreover, after execution of one of the alternatives in the fifst
group, EA becomes false and exactly one of the ERCs becomes true, so 13 continues
to hold. One of the alternatives of the second group is now enabled, namely the ¢-th
branﬁh; after its execution EA is reset to true and ERC[q] to false thus maintaining

the truth of 13. The truth of 14 can be similarly established.

Let a = sel(a, distributelf, ).C and B = sel(dn, handy').C. If both & and B are
empty then 9 holds trivially. If § is nonempty, consider ;. The fact that §; has been
put into B implies that INTERFACE has communicated with the agent a and that
subsequently the target node dn (value of g) is determined, communication with all

agents has been disabled (E4 set to false), and that exactly the dn-th branch of the



33

second group of alternatives of INTERFACE has been enabled. Thus, if history a« is
altered, because of communication with node dn, then §; will have to be appended
to a. A simple induction on the length of e and § then shows that a;=8;, thus

establishing the truth of 9. The truth of 12 is similérly established.

The following lemma is used to show 10:
Lemma 1: :

1. The subhistory a™ = sel(sn, delt'verf’}" ).C increases monotonically.

2. 10 is an invariant over all computation sequences.

Proof: To be given in the final draft of the paper.

We finally prove 11 through the following lemma:

Lemma 2: 11 is invariant over all computation sequences.

Proof: To be given in the final draft of the paper.

‘Let us observe now a useful general property of histories, which follows as a

direct generalization of the above lemma:

Lemma 3: Consider the monotonic histories e, g1, ..., B™ and history ¥.
Assume that all SB') are pairwise disjoint, that every element of v belongs in exactly

one B’ and that S(a~) c Sfv) c S(e). Then y=<e.

We are now in a position to prove the following theorem:




34

Theorem 1:
1. Every request submitted to a node’s driver reaches exactly one surrogate,
at most once, at the server’s side:

Merge ( sel(sn, deliverd, ).C') < sel(dn, inpus§).C
me[l' (dn ) ’

2. At every node, and for every agent responses correspond 10 requests:
outputi" C < inputin C
Proof:

1. An immediate consequence of J and 10.

2. By applying lemma 3 for the histories inpufi".C, sel(t, respondf};’ ).C for
all dnel'(sn), and history rerurni®C, we get:
returni" C < inputit C
which together with 7 yields the desired result.

Q.ED.

The second part of the present analysis is devoted to liveness properties of the
SRP protocol. Our goal is to prove that if an _unbounded number of requests are
submitted to every node of the network, then the output is an unbounded number
of responses. We formalize the continuous availability of the USER processes by the
following assertion:

O ((atAL? > & at ALIZ A (at AL37 > © after AL3%))

We first prove that INTERFACE cannot be blocked at JLI™ or IL2%




35

Lemma 4:
o at IL1I™ 5 o after ILIT (15)
& ar IL2™ 5 & after IL2" (16)

Proof: To be given in the final draft of the paper.

An immediate consequence of lemma 4 and the non-terminating repetitive

command condition is the following lemma:

Lemma S5:
0O< atIL™ (17)
Proof: Using the generalization rule we can transform clauses 13 and 14 of the

invariant:

O (E4 e k% ERCA] ) and,
=]

O (ES & k?:IEAqk] )
ie. at any time, one of the first and second group of alternatives and one of the
fourth and fifth group of alternatives will be enabled. On the other hand, lemma 4,
and the assignment and composition liveness axioms establish the termination of the
statements following all the guards of the INTERFACE. We can thus apply the

non-terminating repetitive command proof rule and conclude 17.
Q.ED.

The next lemma shows that E4 (ES) is enabled infinitely often.




36

Lemma 6:
O ¢ EA (0o ES)
Proof: Assume the contrary. Then, from some state on, EA (ES) should be
false: ¢ O (~EA) (¢ O (-ES)). Because of the 13 (14) -th clause of the invariant,
exactly one ERC[k]) (EAC[k]) should be true from some state on:

ondk(1<k<N).(ERCIK]) (Jk (1 <k < N)o o ERCIK] ) (18)

According to lemma 5, at node k the third group of alternatives of INTERFACE
is infinitely often enabled; hence, we can apply the strong fairness axiom and deduce
that communication between the interfaces of nodes n and % will occur; by the

assignment livenes axiom ¢ E4 (¢ ES) in contradiction with our assumption.
Q.E.D.

We are finally ready to prove the main liveness property of the SRP protocol.

Theorem 2: At every node, if the users are continuously submitting requests and

always willing to accept their responses, the input and output histories are unbounded.:
Vsn (1 <sn<N).Vi({l <t<£A4) (19)

O ((at ALS"> ¢ at ALI") A (at AL3}" > © after AL3})
> ufinputi”) N ufoutputi”

Proof: Consider agent f, who initially is at AL{" Because of 19, ¢ at ALI}".
By lemma 6 and the fairness axiorh, communication between the agent ¢ and
INTERFACE has to occur; thus ¢at AL25" If dn = target_node(p) the dn-th branch

is enabled from the second group of alternatives of INTERFACE, and




37

communication with NODE[dn] will occur, again by virtue of the strong fairness
axiom. Thus, at NODE dn, INTERFACE is at JLI9" by lemma 4 communication
with some SURROGATE[t,m] will occur, and again <at IL9% by lemma 5
SURROGATE[t,n] will go to SL2§,”,’N s after procéséing the request and by lemma 6
communication with the INTERFACE will occur, therefore enabling the sn-th
branch of the fifth group of alternatives in INTERFACE. Again by lemma 5 nodes
sn and dn will communicate and the response will reach node sn with INTERFACE
at that node being at IL2*". By lemma 4 communication with agent ¢ will occur,
therefore bringing agent ¢ at AL3{"; by 19,
after AL33" > ¢ at AL}"
Thus, we proved that:
at AL§" > o at ALT"

which means that:

Vsn (1 <sn<N.Vit(l<t<A4)oo a AL{" (20)
From 20, because of the non-terminating repetitive nature of AGENT, we can

deduce 19.
Q.E.D.

5. Conclusion

In this paper we presented a distributed algorithm for request processing at
remote sites of a network. We verified the preservation of the exactly once
semantics applied to every request submitted to the network. We believe that the

proof methodology used is of wider applicability to systems of processes modelling




38

network protocols. One could envision a systematic way, whereby given a system of
processes and their communication channels, one deduces properties of these channel
histories. It should be interesting to see to what extend the verification of at least
certain classes of process systems (e.g. those mc;délling network protocols) can be

mapped to a calculus of these processes communication histories.




39

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Apt K. R, Francez N., De Roever W. P.

A proof system for Communicating Sequential Processes.

ACM Transactions on Programming Languages and Systems 2(3):359-385, July,
1980.

Apt K. R.

Formal justification of a proof system for communicating sequential
processes.

submitted for publication , 1981.

Chen C. Z., Hoare C. A. R.

Partial Correctness of Communicating Sequential Processes.

In Proceedings of the 2" symposium on distributed systems. , Paris, April,
1981.

Francez N., De Roever W. P.
Fairness in communicating processes.

1980.
Extended Abstract.

Hailpern B.
Verifying Concurrent Processes using Temporal Logic.
PhD thesis, Stanford University, August, 1980.

Hoare C. A. R.

A calculus for total correctness of communicating processes.
1981.

unpublished manuscript.

Hoare C. A. R.
Communicating Sequential Processes.
CACM 21(8):666-677, August, 1978.




40

[8]
Manna Z., Pnueli A.
Verification of concurrent programs: the temporal framework. .
Technical Report STAN-CS-81-836, Stanford University, June, 1981.

[9] 5 s
Misra J., Chandy K. M. )
Proofs of networks of processes.
IEEE Transactions on softrware Engineering SE-7(4):417-426, July, 1981.

[10]
Nikolaou C. N.
Reliability Issues in Distributed Systems.
PhD thesis, Harvard University, 1982.

[11]
Schuman 8. A., Clarke E. M., Nikolaou C. N.
Programming distributed applications in ADA: a first approach.
In Proceedings of the 10-th International Conference on Parallel Processing. ,
Bellaire, Michigan, August, 1981.

[12]
Spector A. Z.
Performing Remote Operations Efficiently on a local Computer Network.
Technical Report STAN-CS-80-831, Stanford University, January, 1981.
pre-publication draft.




