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1. INTRODUCTION

Automatic verification of state-transition systems using temporal logic model check-
ing has been investigated by numerous authors [Burch et al. 1992; Clarke and
Emerson 1981 Clarke et al. 1986; Lichtenstein and Pnueli 1985; Quielle and Sifakis
1982]. The basic model-checking problem can be stated as

Given a state-transition system P and a temporal formula f , determine
whether P satisfies f .
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Current model checkers can only verify a single state-transition system at a time.
The ability to reason automatically about entire families of similar state-transition
systems is an important research goal. Such families arise frequently in the design of
reactive systems in both hardware and software. The infinite family of token rings
is a simple example. More complicated examples are trees of processes consisting
of one root, several internal and leaf nodes, and hierarchical buses with different
numbers of processors and caches.

The verification problem for a family of similar state-transition systems can be
formulated as follows:

Given a family F = {Pi}∞i=1 of systems Pi and a temporal formula f ,
verify that each state-transition system in the family F satisfies f .

In general the problem is undecidable [Apt and Kozen 1986]. However, for spe-
cific families the problem may be solvable. This possibility has been investigated
by Browne et al. [1989]. They consider the problem of verifying a family of token
rings. In order to verify the entire family, they establish a bisimulation relation
between a two-process token ring and an n-process token ring for any n ≥ 2. It fol-
lows that the two-process token ring and the n-process token ring satisfy exactly the
same temporal formulas. The drawback of their technique is that the bisimulation
relation has to be constructed manually.

Two other research groups [Emerson and Namjoshi 1995; German and Sistla
1992] show that it is possible to automatically solve the parameterized model-
checking problems for some special cases. They prove that for rings composed of
certain kinds of processes there exists a k such that the correctness of the ring with
k processes implies the correctness of rings of arbitrary size. In Vernier [1994] an
alternative method is proposed for checking properties of parameterized systems.
In this framework there are two types of processes: Gs (slave processes) and Gc
(control processes). There can be many slave processes with type Gs, but only one
control process with type Gc. The slave processes Gs can only communicate with
the control process Gc.

Our technique is based on finding network invariants [Kurshan and McMillan
1989; Wolper and Lovinfosse 1989]. Given an infinite family F = {Pi}∞i=1, this tech-
nique involves constructing an invariant I such that Pi � I for all i. The preorder
� preserves the property f we are interested in, i.e., if I satisfies f then Pi satisfies
f . Once the invariant I is found, traditional model-checking techniques can be used
to check that I satisfies f . The original technique in Kurshan and McMillan [1989]
and Wolper and Lovinfosse [1989] can handle only networks with one repetitive
component. Also, the invariant I has to be explicitly provided by the user.

In Marelly and Grumberg [1991] and Shtadler and Grumberg [1989] context-free
network grammars are used to generate infinite families of processes with multiple
repetitive components. Using the structure of the grammar they generate an in-
variant I and then check that I is equivalent to every process in the language of
the grammar. If the method succeeds, then the property can be checked on the
invariant I. The requirement for equivalence between all systems in F is too strong
in practice and severely limits the usefulness of the method. Our goal is to replace
equivalence with a suitable preorder while still using network grammars.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.
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We first address the question of how to specify a property of a global state of a
system consisting of many components. Such a state is an n-tuple, (s1, . . . , sn) for
some n. Typical properties we may want to describe are “some component is in a
state si,” “at least (at most) k components are in state si,” or “if some component
is in state si, then some other component is in state sj .” These properties are
conveniently expressed in terms of regular languages. Instead of n-tuple (s1, . . . , sn)
we represent a global state by the word s1 · . . . · sn that can either belong to a given
regular language L, thus having the property L, or not belong to L, thus not having
the property. As an example, consider a mutual exclusion algorithm for processes
on a ring. Let nc be the state of a process outside the critical section and let cs be
the state inside the critical section. The regular language nc∗ cs nc∗ specifies the
global states of rings with any number of processes in which exactly one process is
in its critical section.

After deciding the types of state properties we are interested in, we can partition
the set of global states into equivalence classes according to the properties they
possess. Using these classes as abstract states and defining an abstract transition
relation appropriately, we get an abstract state-transition system that is greater
in the simulation preorder � than any system in the family. Thus, whenever a
∀CTL∗ [Clarke et al. 1992] formula is true of the abstract system it is also true of
any of the systems in the family.

Following Marelly and Grumberg [1991] and Shtadler and Grumberg [1989] we
restrict our attention to families of systems derived by network grammars. The
advantage of such a grammar is that it is a finite (and usually small) representation
of an infinite family of finite-state systems (referred to as the language of the gram-
mar). Whereas Marelly and Grumberg [1991] and Shtadler and Grumberg [1989]
use the grammar in order to find a representative that is equivalent to any system
derived by the grammar, we find a representative that is greater in the simulation
preorder than all of the systems that can be derived using the grammar.

In order to simplify the presentation we first consider the case of an unspeci-
fied composition operator. The only required property of this operator is that it
must be monotonic with respect to the simulation preorder. At a later stage we
apply these ideas to synchronous models (Moore machines) that are particularly
suitable for modeling hardware designs. We also demonstrate our techniques on an
asynchronous model of computation. To apply our ideas, we use a simple mutual
exclusion algorithm as the running example. Two realistic examples are given in a
separate section.

Our article is organized as follows. In Section 2 we define the basic notions
of network grammars and regular languages as state properties. In Section 3 we
define abstract systems. Section 4 presents our verification method. In Section 5 we
describe a synchronous model of computation and show that it is suitable for our
technique. Section 6 describes an asynchronous model of computation. In Section 7
we apply our method to two nontrivial examples. Section 8 concludes with some
directions for future research.

2. DEFINITIONS AND FRAMEWORK

Definition 2.1. A Labeled Transition System or an LTS is a structure M =
(S,R,ACT, S0) where S is the set of states; S0 ⊆ S is the set of initial states;
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.
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ACT is the set of actions; and R ⊆ S × ACT × S is the total transition rela-
tion, such that for every s ∈ S there is some action a and some state s′ for which
(s, a, s′) ∈ R. We use s a→ s′ to denote that (s, a, s′) ∈ R.

A path π from a state s in an LTS M is a sequence of transitions s = s0
α0→ s1

α1→
s2 · · ·. The suffix of π starting from the ith state is denoted by πi. The ith state on
the path π is denoted by π[i]. Let LACT be the class of LTSs whose set of actions
is a subset of ACT . Let L(S,ACT ) be the class of LTSs whose state set is a subset
of S and whose action set is the subset of ACT .

Definition 2.2. A function ‖ : LACT × LACT 7→ LACT is called a composition
function iff given two LTSs M1 = (S1, R1, ACT, S

1
0) and M2 = (S2, R2, ACT, S

2
0)

in the class LACT , M1‖M2 has the form (S1×S2, R
′, ACT, S1

0×S2
0). The definition

of R′ depends upon the exact semantics of the composition function. Notice that
we write the composition function in infix notation.

Throughout this article Si denotes the vectors of length i, with components drawn
from the set S. Equivalently, we also interpret Si as words of length i with S as the
alphabet. Our verification method handles a set of LTSs referred to as a network.
Intuitively, a network consists of a set of LTSs obtained by composing any number
of LTSs from the set L(S,ACT ). Thus, each LTS in a network is defined over the
set of actions ACT and over a set of states in Si.

Definition 2.3. Given a state set S and a set of actions ACT , any subset of⋃∞
i=1 L(Si,ACT ) is called a network on the tuple (S,ACT ).

2.1 Network Grammars

Following Marelly and Grumberg [1991] and Shtadler and Grumberg [1989] we use
context-free network grammars as a formalism to describe networks. The set of
all LTSs derived by a network grammar (as “words” in its language) constitutes a
network. Let S be a state set and ACT be a set of actions. Then, G = 〈T,N,P ,S〉
is a grammar where

—T is a set of terminals, each of which is an LTS in L(S,ACT ); these LTSs are
sometimes referred to as basic processes;

—N is a set of nonterminals; each nonterminal defines a network;
—P is a set of production rules of the form

A→ B‖iC
where A ∈ N , and B,C ∈ T ∪N , and ‖i is a composition function. Notice that
each rule may have a different composition function;

—S ∈ N is the start symbol that represents the network generated by the grammar.

Example 2.1.1. We clarify the definitions using a network consisting of LTSs
that perform a simple mutual exclusion using a token ring algorithm. The produc-
tion rules of a grammar that produces rings with one process Q and at least two
processes P are given below. P and Q are terminals, and A and S are nonterminals
where S is the start symbol.

S → Q‖A
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.
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τ τ

get-token

send-tokennc cs

Fig. 1. Process Q, if S0 = {cs}; process P if S0 = {nc}.

τ

ττ

τ τ

τ

cs,nc,nc nc,cs,nc nc,nc,cs

Fig. 2. Reachable states in LTS Q‖P‖P .

A → P‖A

A → P‖P
P and Q are LTSs defined over the set of states {nc, cs} and the set of actions
ACT = {τ, get-token, send-token}. They are identical, except for their initial
state, which is cs for Q and nc for P . Their transition relation is shown in Figure 1.

For this example we assume a synchronous model of computation in which at
any moment each process takes a step. We do not give a formal definition of the
model here. In Sections 5 and 6 we suggest suitable definitions for synchronous
and asynchronous models. Informally, a process can always perform a τ action.
However, it can perform a get-token action if and only if the process to its left
is ready to perform a send-token action. In the composed LTS, the two actions
get-token and send-token are replaced by τ .

We can apply the following derivation

S ⇒ Q‖A ⇒ Q‖P‖P
to obtain the LTS Q‖P‖P . Figure 2 shows the reachable states (with corresponding
transitions) for the LTS Q‖P‖P .

2.2 Specification Language

Let S be a set of states. From now on we assume that we have a network defined
by a grammar G on the tuple (S,ACT ). The automaton defined in the following
has S as its alphabet. Thus, it accepts words that are sequences of state names.

Definition 2.2.1. D = (Q, q0, δ, F ) is a deterministic automaton over S, where

(1) Q is the set of automaton states,
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.
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(2) q0 ∈ Q is the initial state,
(3) δ ⊆ Q× S ×Q is the transition relation,
(4) F ⊆ Q is the set of accepting states, and
(5) L(D) ⊆ S∗ is the set of words accepted by D.

Our goal is to specify a network of LTSs composed of any number of basic processes.
We use finite automata over S in order to specify atomic state properties. Since
a state of an LTS is a tuple from Si, for some i, we can view such a state as a
word in S∗. Let D be an automaton over S. We say that s satisfies D, denoted
s |= D, iff s ∈ L(D). Our specification language is a universal branching temporal
logic (e.g., ∀CTL, ∀CTL∗ [Grumberg and Long 1994]) with finite automata over S
as the atomic formula. In this article we only define ∀CTL, but the theorems hold
for ∀CTL∗ as well.

Definition 2.2.2. The logic ∀CTL is inductively defined as follows:

(1) The constant true is an atomic formula.
(2) Any specification automaton D is an atomic formula.
(3) If φ is an atomic formula, then ¬φ is a formula.
(4) If φ and ψ are formulas, then φ ∧ ψ and φ ∨ ψ are formulas.
(5) If φ and ψ are formulas, then AXφ, A(φV ψ), and A(φU ψ) are formulas.

Consider a LTS M = (Si, R,ACT, S0). Given s ∈ Si, the satisfaction relation (|=)
is inductively defined as follows:

(1) s |= D ⇔ s ∈ L(D),
(2) s |= ¬f1 ⇔ s 6|= f1,
(3) s |= f1 ∨ f2 ⇔ s |= f1 or s |= f2,
(4) s |= f1 ∧ f2 ⇔ s |= f1 and s |= f2,

(5) s |= AX g1 iff for all states s′ and for all actions α if s α→ s′, then s′ |= g1,
(6) s |= A(g1 U g2) iff for all paths π starting from s there exists k ≥ 0 such that

π[k] |= g2 and for all 0 ≤ j < k, π[j] |= g1,
(7) s |= A(g1 V g2) iff for all paths π starting from s and for every k ≥ 0, if

π[j] 6|= g1 for all 0 ≤ j < k, then π[k] |= g2.

The operators AG and AF can be defined as follows:

AG f = A(false V f)
AF f = A(true U f)

Example 2.2.3. Consider again the network of Example 2.1.1. Let D be the
automaton of Figure 3, defined over S = {cs, nc}, with L(D) = {nc}∗cs{nc}∗.
The formula AGD specifies mutual exclusion, i.e., at any moment there is exactly
one process in the critical section. Let D′ be an automaton that accepts the lan-
guage cs{nc}∗, then the formula AG AFD′ expresses nonstarvation for process Q.
Note that, for our simple example nonstarvation is guaranteed only if some kind of
fairness is assumed.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.
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q0 q1 q2

nc nc

cs cs

nc cs,

Fig. 3. Automaton D with L(D) = {nc}∗cs{nc}∗.

3. ABSTRACT LTS

In the following sections we define abstract LTSs and abstract composition in order
to reduce the state space required for the verification of networks. The abstraction
should preserve the logic under consideration. In particular, since we use ∀CTL,
there must be a simulation preorder � such that the given LTS is smaller by� than
the abstract LTS. We also require that composing two abstract states will result
in an abstraction of their composition. This will allow us to replace the abstraction
of a composed LTS by the composition of the abstractions of its components. For
the sake of simplicity, we first assume that the specification language contains a
single atomic formula D. We later show how to extend the framework to a set of
atomic formulas.

3.1 State Equivalence

We start by defining an equivalence relation over the state set of an LTS. The
equivalence classes are then used as the states of the abstract LTS. Given an LTS
M , we define an equivalence relation on the states of M , such that if two states
are equivalent then they both either satisfy or falsify the atomic formula. In other
words the two states are either both accepted or both rejected by the automaton
D. We also require that our equivalence relation be preserved under composition.
This means that if s1 is equivalent to s′1 and s2 is equivalent to s′2 then (s1, s2) is
equivalent to (s′1, s

′
2).

We use h(M) to denote the abstract LTS corresponding to M . The straightfor-
ward definition that defines s and s′ to be equivalent iff they both are in or not in
the language L(D) has the first property, but does not have the second one. The
following example illustrates this point.

Example 3.1.1. Consider LTSs defined by the grammar of Example 2.1.1. Let
D be the automaton in Figure 3, i.e., L(D) is the set of states that have exactly one
component in the critical section. Let s1, s

′
1, s2, s

′
2 be states such that s1, s

′
1 ∈ L(D),

and s2, s
′
2 6∈ L(D). Further assume that the number of components in the critical

section are 0 in s2 and 2 in s′2. Clearly, (s1, s2) ∈ L(D) but (s′1, s
′
2) 6∈ L(D). Thus,

the equivalence is not preserved under composition.

We therefore need a more refined equivalence relation. Our notion of equivalence
is based on the idea that a word w ∈ S∗ can be viewed as a function on the set
of states of an automaton. We define two states to be equivalent if and only if
they induce the same function on the automaton D. Formally, given an automaton
D = (Q, q0, δ, F ) and a word w ∈ S? the function induced by w on Q, fw : Q 7→ Q,
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.
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is defined by

fw(q) = q′ iff q
w−→ q′.

Note that w ∈ L(D) if and only if fw(q0) ∈ F , i.e., w takes the initial state to a
final state. The set of functions associated with an automaton D is a monoid and
has been studied extensively (see Eilenberg [1974]).

Let D = (Q, q0, δ, F ) be a deterministic automaton. Let fw be the function
induced by a word w on Q. We define two states s and s′ to be equivalent, denoted
by s ≡ s′, iff fs = fs′ . It is easy to see that ≡ is an equivalence relation. The
function fs corresponding to the state s is called the abstraction of s and is denoted
by h(s). Let h(s) = f1 and h(s′) = f ′1. The abstract state of (s, s′) is h((s, s′)) =
f1 ◦ f ′1 where f1 ◦ f ′1 denotes composition of functions. We follow the convention
that when we write f1 ◦ f ′1 we apply f1 before f ′1. Note that s ≡ s′ implies that
s ∈ L(D)⇔ s′ ∈ L(D). Thus, we have s |= D iff s′ |= D. We also have the following
result.

Lemma 3.1.2. If h(s1) = h(s2) and h(s′1) = h(s′2) then h((s1, s
′
1)) = h((s2, s

′
2)).

In order to interpret specifications on the abstract LTSs, we extend |= to abstract
states so that h(s) |= D iff fs(q0) ∈ F . This guarantees that s |= D iff h(s) |= D.

Our framework can be easily extended to any set of atomic formulas. The re-
striction to one atomic formula was made in order to simplify the presentation.
However, in practice we may want to have several such formulas, related by boolean
and temporal operators. The notion of equivalence is extended to any set of atomic
formulas in the following way. Let AF = {D1, . . . ,Dk} be a set of atomic formulas,
where Di = (Qi, qi0, δi, Fi). Let f is be the function induced by s on Qi. Then, two
states s and s′ are equivalent if and only if for all i, f is = f is′ . The abstraction
of s is now h(s) =< f1

s , . . . , f
k
s >, and we have that, if s ≡ s′ then for every i,

s ∈ L(Di)⇔ s′ ∈ L(Di). The relation |= is extended to abstract states by defining
h(s) |= Di iff f is(q

i
0) ∈ Fi. Thus, we again have that for every Di ∈ AF , s |= Di iff

h(s) |= Di. Recall that s and s′ are interpreted as words over the alphabet S.

Example 3.1.3. Consider again the automaton D of Figure 3 over S = {cs, nc}.
D induces functions fs : Q 7→ Q, for every s ∈ S∗. Actually, there are only three
different functions, each identifying an equivalence class over S∗:

f1 = {(q0, q0), (q1, q1), (q2, q2)} represents all s ∈ nc∗ (i.e., fs = f1 for all s ∈ nc∗);
f2 = {(q0, q1), (q1, q2), (q2, q2)} represents all s ∈ nc∗ cs nc∗; and
f3 = {(q0, q2), (q1, q2), (q2, q2)} represents all s ∈ nc∗ cs nc∗ cs {cs, nc}∗.

3.2 Abstract Process and Abstract Composition

Let FD be the set of functions corresponding to the deterministic automaton D.
Let Q be the set of states D. In the worst case |FD| = |Q||Q|, but in practice the
size is much smaller. Note that FD is also the set of abstract states for s ∈ S∗

with respect to D. Subsequently, we apply abstraction both to states s ∈ S∗ and to
abstract states h(s). To unify notation we first extend the abstraction function h
to FD by setting h(f) = f for f ∈ FD. We also extend the abstraction function h
to (S ∪FD)? in the natural way, i.e., h((a1, a2, · · · , an)) = h(a1) ◦ · · · ◦ h(an). From
now on we consider LTSs in the network N on the tuple (S ∪ FD, ACT ).
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We define abstract LTSs. The abstract transition relation is defined in the usual
manner (see Dams et al. [1994]). If there is a transition between two states in the
original structure, then there is a transition between corresponding states in the
abstract structure. Formally, this is expressed as follows:

Definition 3.2.1. Given an LTS M = (Si, R,ACT, S0) in the network N , the
corresponding abstract LTS is defined by h(M) = (Sh, Rh, ACT, Sh0 ), where

—Sh = {h(s) | s ∈ Si} is the set of abstract states,
—Sh0 = {h(s) | s ∈ S0}, and
—the relation Rh is defined as follows. For any h1, h2 ∈ Sh, and a ∈ ACT

(h1, a, h2) ∈ Rh ⇔ ∃s1, s2[h1 = h(s1) and h2 = h(s2) and (s1, a, s2) ∈ R].

We say that M ′ simulates M [Milner 1971] (denoted M �M ′) if and only if there
is a simulation preorder E ⊆ S × S′ that satisfies the following conditions: for
every s0 ∈ S0 there is s′0 ∈ S′0 such that (s0, s

′
0) ∈ E . Moreover, for every s, s′, if

(s, s′) ∈ E then

(1) h(s) = h(s′) and
(2) for every s1 such that s a→ s1 there is s′1 such that s′ a→ s′1 and (s1, s

′
1) ∈ E .

Notice that the definition of the simulates relation is using the fact that M and M ′

are defined on the same set of actions. If (s, s′) ∈ E , we say that s � s′. Given a
path π in M and a path π′ in M ′, we say that π � π′ iff for all i π[i] � π′[i].

Lemma 3.2.2. Let M and M ′ be two LTSs such that M �M ′. Let π be a path
starting from s in M . If s � s′, then there exists a path π′ starting from s′ in M ′

such that π � π′.
Proof. Proof follows from the definition of the simulation relation E .

Lemma 3.2.3. We have the following results:

(1 ) M � h(M), i.e., h(M) simulates M .
(2 ) If M �M ′, then h(M) � h(M ′).

Proof. For the proof of the first part, consider the simulation relation

(s, a) ∈ E ⇔ (h(s) = a).

It is easy to prove the E has all the desired properties. For the second part, let E be
the simulation relation between M and M ′. Define the relation Eh in the following
manner:

(a, b) ∈ Eh ⇔ ∃s1, s2(h(s1) = a ∧ h(s2) = b ∧ (s1, s2) ∈ E)

It is easy to prove that Eh is the required simulation relation between h(M) and
h(M ′).

Recall that the abstraction h guarantees that a state and its abstraction agree
on the atomic property corresponding to the automaton D. Based on that and on
the previous lemma, the following theorem is obtained. A proof of a similar result
appears in Clarke et al. [1992].
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 5, September 1997.
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Theorem 3.2.4. Let φ be a formula in ∀CTL over the atomic formula D. Let
M and M ′ be two LTSs such that M �M ′. Let s � s′. Then s′ |= φ implies s |= φ.

Proof. The proof is by structural induction on φ. Notice that (s′ |= φ⇒ s |= φ)
is equivalent to (s 6|= φ ⇒ s′ 6|= φ). During the course of the proof, we sometimes
use the second formulation.

—Case φ = D: h(s) = h(s′) implies that s |= D if and only s′ |= D.
—Case φ = f1 ∨ f2: Assume that s′ |= φ. By definition s′ |= f1 or s′ |= f2. By the

inductive hypothesis s |= f1 or s |= f2. Therefore, s |= φ.
—Case φ = f1 ∧ f2: This is very similar to the case given previously.
—Case φ = AX g1: Assume that s 6|= φ. Then there exists s1 such that s α→ s1,

and s1 6|= g1. By definition there exists s′1 such that s′ α→ s′1 and s1 � s′1. By the
inductive hypothesis s′1 6|= g1. Therefore, s′ 6|= φ.

—Case φ = A(g1 U g2): Assume that s 6|= φ. This means that there exists a path
π starting from s such that for all k, either π[k] 6|= g2 or there exists 0 ≤ j < k
such that π[j] 6|= g1. Using Lemma 3.2.2 there exists a path π′ starting from
s′ in M ′ such that π � π′, i.e., for every i ≥ 0, π[i] � π′[i]. By the induction
hypothesis we have that for all k, either π′[k] 6|= g2 or there exists 0 ≤ j < k such
that π′[j] 6|= g1. Thus, π 6|= g1 U g2, which implies that s′ 6|= φ.

—Case φ = A(g1 V g2): Assume that s′ |= φ. We prove that s |= φ. Let π be an
arbitrary path starting from s in M . Let π′ be a path starting from s′ in M ′ such
that π � π′. Since s′ |= φ, for all k, either there exists a j such that 0 ≤ j < k,
π′[j] |= g1 or π′[k] |= g2. By the induction hypothesis, we can conclude that for
k, π[k] |= g2 or there exists j such that 0 ≤ j < k and π[j] |= g1. Therefore,
π |= g1 V g2. Since π is an arbitrary path starting from s, we have that s |= φ.

Definition 3.2.5. A composition ‖ is called monotonic with respect to a simula-
tion preorder � if and only if given LTSs such that M1 � M2 and M ′1 � M ′2, we
have that M1‖M ′1 � M2‖M ′2. A network grammar G is called monotonic if and
only if all rules in the grammar use only monotonic composition operators.

4. THE VERIFICATION METHOD AND THE UNFOLDING HEURISTIC

Given a network grammar G, we associate with each symbol A of the grammar a
representative process rep(A). A set of representative processes is said to satisfy
the monotonicity property if and only if

—for every terminal A, h(rep(A)) � h(A), and
—for every rule A→ B‖C we have the condition

h(rep(A)) � h(h(rep(B))‖h(rep(C))).

We thus have the following theorem:

Theorem 4.1. Let G be a monotonic grammar (see Definition 3.2.5) and sup-
pose we can find representatives for the symbols of G that satisfy the monotonicity
property. Let A be a symbol of the grammar G, and let a be an LTS derived from
A using the rules of the grammar G. Then, h(rep(A)) � a.
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Proof. We prove that h(rep(A)) � h(a). Since h(a) � a, the result follows by
transitivity. Let A⇒k a, i.e., A derives a in k steps. Our result is by induction on
k.

—(k = 0): In this case A is a terminal and a = A. The result follows from the
monotonicity property.

—(k > 0): In the derivation of a from A, let the first rule be A → B‖C. Assume
B ⇒i b and C ⇒j c such that i < k, j < k, and a = b‖c. By the induction
hypothesis h(rep(B)) � h(b) and h(rep(C)) � h(c). We have the following
equations:

h(rep(B))‖h(rep(C)) � h(b)‖h(c) (monotonicity of ‖)
� b‖c (Lemma 3.2.3 and monotonicity of ‖)

h(h(rep(B))‖h(rep(C))) � h(b‖c) (Lemma 3.2.3)
� h(a)

By the monotonicity property we have
h(rep(A)) � h(h(rep(B))‖h(rep(C))).

The result follows.

4.1 Verification Method

This section describes our verification method. Assume that we are given a mono-
tonic grammar G and a ∀CTL formula φ with atomic formulas D1, · · · ,Dk. To
check that every LTS derived by the grammar G satisfies φ we perform the follow-
ing steps:

(1) For every symbol A in G choose a representative process rep(A) and construct
the abstract LTS h(rep(A)) with respect to the atomic formulas D1, · · · ,Dk.

(2) Check that the set of representatives satisfies the monotonicity property. The-
orem 4.1 implies that for every a derived by the grammar G, h(rep(S)) � a.

(3) Perform model checking on h(rep(S)) with φ as the specification. If h(rep(S)) |=
φ, then by Theorem 3.2.4 we can conclude that for all LTSs M derived by the
grammar G, M |= φ.

Next, we describe an unfolding heuristic that might help us find the set of repre-
sentatives which satisfy the monotonicity property.

4.2 The Unfolding Heuristic

We discuss a heuristic that might be helpful in automatically finding monotonic
representatives. Initially, the representative of a symbol A in G = 〈T,N,P ,S〉 is
the LTS that can be derived from A using the minimum number of rules. A further
search for monotonic representatives is based on the observation that often certain
behaviors only occur when a process is composed with other processes (these other
processes provide the environment). This leads to the idea that by unfolding the
current set of representatives we will find a larger set of potential representatives
that might satisfy the monotonicity property. Given two sets of LTSs X and Y we
define X‖Y in the following way:

X‖Y = {p‖q | p ∈ X and q ∈ Y }
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An association for a grammar G assigns a set of processes to each symbol A of the
grammar. Let N be a network on the tuple (S,ACT ) (see Section 2). Formally,
an association is a function AS : (T ∪ N) → 2N . Given an association AS for a
grammar G, we define an unfolding operator. The unfolding of an association AS
is denoted by U [AS]. U [AS] is defined as follows:

—If A is a terminal, U [AS](A) = AS(A).
—Assume that A is a nonterminal. A process p ∈ U [AS](A) iff there exists a rule
A→ B‖C in G such that p ∈ AS(B)‖AS(C) or p ∈ AS(A).

Now we define an iterative process to find representatives. First, we describe how
to find the initial association. Given a symbol A of the grammar G let Dk(A) be
all the processes that can be derived from A (using the rules of G) in ≤ k steps.
Let minA be the minimum k such that Dk(A) is not empty. We define the initial
association as the association AS0 such that AS0(A) = DminA(A). A procedure to
compute the initial association is described later. For a terminal A, AS0(A) = {A}.
We repeat the following step until we have a nonempty association for each symbol
A.

—Assume that AS0(A) is empty. Let AR be the set of rules A → B‖C such that
AS0(B) and AS0(C) are nonempty:

AS0(A) =
⋃

α∈AR

AS(right(α))

If α is of the form A→ B1‖ · · · ‖Bk, then

AS(right(α)) is equal to AS(B1)‖ · · · ‖AS(Bk).

Once we find the initial association, we keep unfolding the current association until
we find representatives satisfying the monotonicity property. The algorithm is given
below.

(1) Set AS = AS0, where AS0 is the initial association.
(2) If there exist representatives for each nonterminal A such that rep(A) ∈ AS(A)

and the representatives satisfy the monotonicity property, we are done. Other-
wise go to the next step.

(3) Create a new association AS by unfolding the current association, i.e., AS =
U [AS]. Go back to the previous step.

It is not hard to see that each iteration increases the set of processes associated with
a nonterminal. Therefore, as we unfold, we have more choices to find representatives
with the required property. Moreover, unfolding results in processes that are a
combination of a larger number of basic processes. A (global) state of such a process
consists of more local states and therefore may correspond to an abstract state
that could not be produced before. For example, consider two abstract processes
I1 = h(P‖P ) and I2 = h(P‖P‖P ) where P is an arbitrary process and h an
abstraction function. Suppose we are trying to establish the inequality

I1 � h(I1‖h(P )).
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The preceding inequality might fail because the process h(I1‖h(P )) might have more
abstract states than I1. This is exactly what happens in the example given in Sec-
tion 7. On the other hand, I2 may have more abstract states than I1 and the equa-
tion with I1 replaced by I2 might be valid. In the examples we show how unfolding
is used to find representatives. In light of the result given in Apt and Kozen [1986]
the foregoing procedure might not terminate. Therefore, the user will have to put a
limit on the number of iterations. In general, the user might replace the initial as-
sociation with any arbitrary association (depending on the domain knowledge). In
the algorithm given previously, users can also define their own unfolding heuristics.

Notice that if we find representatives with the monotonicity property such that
h(rep(S)) 6|= φ, we cannot conclude anything about the correctness of the network
derived by the grammar G. In this case the counter-example might aid the user
in finding a more refined representative or we may want to apply the unfolding
technique again.

5. SYNCHRONOUS MODEL OF COMPUTATION

In this section we develop a synchronous framework that has the properties required
by our verification method. We define a synchronous model of computation and
a family of composition operators. We show that the composition operators are
monotonic with respect to �.

Our models are a form of LTSs, M = (S,R, I,O, S0), that represent Moore
machines. Traditionally, in Moore machines the outputs are associated with the
states. We assume that the outputs are moved from the states to the transitions
emanating from it. Our models have an explicit notion of inputs I and outputs O
that must be disjoint. In addition, they have a special internal action denoted by
τ (called silent action in the terminology of CCS [Milner 1980]). The set of actions
is ACT = {τ}∪2I∪O, where each noninternal action is a set of inputs and outputs.

The composition of two LTSs M and M ′ is defined to reflect the synchronous
behavior of our model. It corresponds to standard composition of Moore machines.
To understand how this composition works, we can think of the inputs and outputs
as “wires.” If M has an output and M ′ has an input both named a, then in the
composition the output wire a will be connected to the input a. Since an input
can accept a signal only from one output, M‖M ′ will not have a as input. On
the other hand, an output can be sent to several inputs; thus M‖M ′ still has a as
output. Consequently, the set of outputs of M‖M ′ is O∪O′, while the set of inputs
is (I ∪ I ′) \ (O ∪O′).

A transition s a→ t from s in a machineM with a = i∪o such that i ⊆ I and o ⊆ O
occurs only if the environment supplies inputs i and the machine M produces the

outputs o. Assume transitions s a→ t in M and s′ a
′
→ t′ in M ′. There is a transition

from (s, s′) to (t, t′) iff the outputs provided by M agree with the inputs expected
by M ′ and the outputs provided by M ′ agree with the inputs expected by M .

Formally let O∩O′ = ∅. The synchronous composition of M and M ′, M ′′ = M ‖
M ′ is defined by

(1) S′′ = S × S′,
(2) S′′0 = S0 × S′0,
(3) I ′′ = (I ∪ I ′) \ (O ∪O′),
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(4) O′′ = O ∪O′, and1

(5) (s, s′) a′′→ (s1, s
′
1) is a transition in R′′ iff the following holds: s a→ s1 is a

transition in R and s′
a′→ s′1 is a transition in R′ for some a, a′ such that

a ∩ (I ′ ∪O′) = a′ ∩ (I ∪O) and a′′ = a ∪ a′.

Lemma 5.1. The composition ‖ is monotonic with respect to �.

Proof. Let

M = (S,R, I,O, S0)
M ′ = (S′, R′, I ′, O′, S′0)
M1 = (S1, R1, I1, O1, S1,0)
M ′1 = (S′1, R′1, I ′1, O′1, S′1,0)

be four Moore machines. Assume that M � M ′ and M1 � M ′1. Let E ⊆ S ×
S′ and E1 ⊆ S1 × S′1 be the corresponding simulation relations. We say that
((s, s1), (s′, s′1)) ∈ E × E1 iff (s, s′) ∈ E and (s1, s

′
1) ∈ E1. We show that E × E1 has

the required properties. It is clear from the definition that given states s0 ∈ S0 and
s0,1 ∈ S1,0, there exists a s′0 ∈ S′0 and s′1,0 ∈ S′1,0 such that

((s0, s1,0), (s′0, s
′
1,0)) ∈ E × E1.

Assume that ((s, s1), (s′, s′1)) ∈ E × E1.

(1) By assumption, we have that h(s) = h(s′) and h(s1) = h(s′1). Therefore,
h((s, s1)) = h(s) ◦ h(s1) is equal to h((s′, s′1)) = h(s′) ◦ h(s′1).

(2) Let (s, s1) a′′→ (t, t1) be a transition in M‖M1. This means that there exists a
transition s a→ t in M and a transition s1

a1→ t1 in M1 such that a∩ (I1 ∪O1) =
a1∩(I∪O) and a′′ = a∪a1. By definition there exists t′ and t′1 such that s′ a→ t′

and s′1
a1→ t′1, where (t, t′) ∈ E and (t1, t′1) ∈ E1. Therefore, (s′, s′1) a′′→ (t′, t′1)

and ((t, t1), (t′, t′1)) ∈ E × E1.

The proof is thus complete.

5.1 Network Grammars for Synchronous Models

Only a few additional definitions are required in order to adapt our general defini-
tion of network grammars to networks comprised of Moore machines. As before a
network grammar is a tuple G = 〈T,N,P ,S〉, but now every terminal and nonter-
minal A in T ∪ N is associated with a set of inputs IA and a set of outputs OA.
In G we allow different composition operators ‖i for the different production rules.
In order to define the family of operators to be used in this framework we need the
following definitions.

A renaming function R is an injection that acts on the inputs and outputs of
the Moore machines. When applied to A, it maps inputs to inputs and outputs
to outputs such that R(IA) ∩ R(OA) = ∅. Applying R to a LTS M results in an

1Note that ACT ′′ = 2I
′′∪O′′ ∪ {τ} is not identical to ACT and ACT ′. This is a technical issue

that can be resolved by defining some superset of actions from which each LTS takes its actions.
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LTS M ′ = R(M) with S = S′, S0 = S′0, I ′ = R(I) \ {τ}, O′ = R(O) \ {τ}, and
(s, a, s′) ∈ R iff (s,R(a), s′) ∈ R′.

A hiding function Ract for act ⊆ I ∪ O, is a renaming function that maps each
element in act to τ .

A typical composition operator in this family is associated with two renaming
functions, Rleft, Rright and a hiding function Ract, in the following way.

M‖iM ′ = Ract (Rleft(M)‖Rright(M ′)),

where ‖ is the synchronous composition previously defined. The renaming func-
tions are applied to LTSs and not to nonterminals. Therefore, the derivations are
composed bottom up. For example, consider the rule of the following form:

A→ Ract(Rleft(B)‖Rright(C))

In this case first we apply the derivations for B and C to derive two LTS b and c.
Then the renaming and hiding functions are applied to complete the derivation.

To use our framework, we need to show that every composition operator used
in the grammar is monotonic, i.e., if M1 � M2 and M ′1 � M ′2 then M1‖iM ′1 �
M2‖iM ′2. The latter means that

Ract (Rleft(M1)‖Rright(M ′1)) � Ract (Rleft(M2)‖Rright(M ′2)).

The following lemma, together with monotonicity of the synchronous composition
‖ implies the required result.

Lemma 5.1.1. Let M , M ′ be Moore Machines, and letR be a renaming function.
If M �M ′ then R(M) � R(M ′).

Proof. Let E be the simulation preorder between M and M ′. It is easy to show
that E is also a simulation preorder between R(M) and R(M ′).

Corollary 5.1.2. The composition operators ‖i, previously defined are mono-
tonic.

Example 5.1.3. We return to Example 2.1.1 and reformulate it within the syn-
chronous framework. During the process we can describe more precisely the pro-
cesses and the network grammar that constructs rings with any number of processes.
The processes P and Q will be identical to those described in Figure 1 except that
now we also specify for both processes I = { get-token} and O = {send-token}.

The derivation rules in the grammar apply two different composition operators:

S → Q‖1A

A → P‖2A

A → P‖2P
‖1 is defined as follows:

—R1
left maps send-token to some new action cr (stands for connect right) and

get-token to cl (stands for connect left).
—R1

right maps send-token to cl and get-token to cr.
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get Q get A send
cr

cl

S send

A
get P send get A send

crget send

get P send get P send
sendgetA cr

Fig. 4. Derivation rules with renaming.

S
Q A

Q P

τ

τ

τ

τ

τ
P

Fig. 5. Derivation of a ring of size 3.

—The hiding function Ract hides both cr and cl by mapping them to τ .

Thus, the application of this rule results in a network with one terminal Q and one
nonterminal A, connected as a ring. ‖2 is defined by (see Figure 4):

—R2
left maps send-token to cr and leaves get-token unchanged.

—R2
right maps get-token to cr and leaves send-token unchanged.

—The hiding function Ract hides cr.

For instance, the application of the third rule results in a network in which the
nonterminal A is replaced by a LTS consisting of two processes P , such that the
send-token of the left one is connected to the get-token of the right one. The
get-token of the left process and send-token of the right one will be connected
according to the connections of A (see Figure 4 and Figure 5).

6. ASYNCHRONOUS MODEL OF COMPUTATION

In this section we describe a model for asynchronous communication. The model
is similar to CCS [Milner 1980]. Each process is associated with a set of actions.
The symbol τ denotes the internal (noncommunication) actions of a process.

Definition 6.1. A process M is a 4-tuple,

M = (ACT, S,R, S0)

where

—ACT is a finite set of actions (ports or channels) not containing τ ,
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—S is a finite set of states,
—R is a labeled transition relation, R ⊆ S × (ACT ∪ {τ})× S, and
—S0 is the set of initial states.

When two processes M and M ′ are combined into a new process M‖M ′, zero or
more channels are formed. Each channel pairs a port of M and a port of M ′ that
have identical names. The channel is used merely for synchronization, i.e., no data
are transferred. However, data can be encoded by sequences of synchronizations.
The unpaired ports of M and M ′ become the ports of the combined process M‖M ′.

Definition 6.2. The composition of M = (S,R,ACT, S0) and M ′ = (S′, R′,
ACT ′, S′0) is a new process

M ′′ = M‖M ′ = (S′′, R′′, ACT ′′, S′′0 )

where

—ACT ′′ = (ACT ∪ACT ′)\(ACT ∩ACT ′),
—S′′ = (S × S′),
—S′′0 = S0 × S′0, and
—R′′ =

{((s, s′), τ, (s1, s
′
1)) | ∃α : s α→ s1 ∧ s′

α→ s′1 ∧ α ∈ ACT ∩ACT ′} ∪
{((s, s′), α, (s1, s

′)) | s α→ s1 ∧ α 6∈ ACT ′} ∪
{((s, s′), α, (s, s′1)) | s′ α→ s′1 ∧ α 6∈ ACT }.

When combining processes, we sometimes need to change their action names in
order to form a network of a desirable structure. The definitions of renaming and
hiding functions are similar to the ones introduced for the synchronous model. Let
R be an 1-1 renaming function of the ports of the process M = (ACT, S,R, S0).
R(M) = (ACT, S,R′, S0) denotes a new process M ′ identical to M except that

—s
R(α)→ t ∈ R′ iff s

α→ t ∈ R.

A hiding functionRact (where act ⊆ ACT ) disallows synchronization on the actions
in the set act by renaming them to the silent action τ . Formally, Ract(M) is a new
process M ′, which is identical to M except that its transition relation R′ is

—s
α→ t ∈ R′ iff s

α→ t ∈ R and α 6∈ act .
—s

τ→ t ∈ R′ iff s
α→ t ∈ R and α ∈ act .

The network grammar G = 〈T,N,P ,S〉 has the production rules of the following
form:

—P is the set of production rules of the form:

A→Ract (Rleft(B)‖Rright(C))

where A ∈ N , B,C ∈ T ∪N , Rleft and Rright are renaming functions, and Ract

is the hiding function for that rule.

The following theorem proves the monotonicity of the asynchronous composition.
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Theorem 6.3 (Monotonicity Theorem). Let

M = (S,R,ACT, S0)
M1 = (S1, R1, ACT1, S0,1)
M ′ = (S′, R′, ACT, S′0)
M ′1 = (S′1, R

′
1, ACT1, S

′
0,1)

be processes such that M �M ′ and M1 �M ′1. In this case M‖M1 �M ′‖M ′1.

Proof. Let E ⊆ S × S′ and E1 ⊆ S1 × S′1 be the simulation relations. Consider
the following relation E × E1 ⊆ (S × S1)× (S′ × S′1):

—((s, s1), (s′, s′1)) ∈ E × E1 iff (s, s′) ∈ E and (s1, s
′
1) ∈ E1

We prove that E × E1 is the simulation relation between M‖M1 and M ′‖M ′1 and,
hence, M‖M1 � M ′‖M ′1. Note that set of actions of M‖M1 and M ′‖M ′1 are both
identical to (ACT ∪ACT1)\(ACT ∩ACT1).

—For all (s0, s0,1) ∈ S0 × S0,1 there exists (s′0, s
′
0,1) ∈ S′0 × S′0,1 such that

((s0, s0,1), (s′0, s
′
0,1)) ∈ E × E1.

This follows because we can find s′0 ∈ S′0 and s′0,1 ∈ S′0,1 such that (s0, s
′
0) ∈ E

and (s0,1, s
′
0,1) ∈ E1.

—Let ((s, s1), (t, t1)) ∈ E×E1. By assumption, we have that h(s) = h(t) and h(s1) =
h(t1). Therefore, h((s, s1)) = h(s) ◦ h(s1) is equal to h((t, t1)) = h(t) ◦ h(t1).
Assume that (s, s1) α→ (s′, s′1). There are three cases to consider.
—(s, s1) τ→ (s′, s′1) and s

α→ s′, s1
α→ s′1 for α ∈ ACT ∩ ACT1. In this case,

there exists t′ and t′1 such that t α→ t′ and t1
α→ t′1 such that (s′, t′) ∈ E and

(s′1, t′1) ∈ E1. It is clear that (t, t1) τ→ (t′, t′1) and ((s′, s′1), (t′, t′1)) is in E × E1.
—(s, s1) α→ (s′, s′1) and s

α→ s′, s1 = s′1 and α 6∈ ACT1. In this case, there
exists t′ such t

α→ t′ and (s′, t′) ∈ E . It is clear that (t, t1) α→ (t′, t1) and
((s′, s1), (t′, t1)) is in E × E1. Notice that by assumption (s1, t1) ∈ E1.

—(s, s1) α→ (s′, s′1) and s = s′, s1
α→ s′1, and α 6∈ ACT . This case is similar to

the one given previously.

The proof is thus complete.

The next theorem states that renaming and hiding preserve monotonicity.

Theorem 6.4. Let M and M ′ be two processes such that M � M ′. Let R and
Ract be renaming and hiding functions respectively. In this case R(M) � R(M ′)
and Ract (M) � Ract (M ′).

Proof. The proof of this theorem is straightforward.

Using the preceding two theorems we can prove that the composition operators
used in the grammar are monotonic.

7. EXAMPLES

We implemented the algorithm for network verification and applied it to two ex-
amples of substantial complexity. The first example uses the asynchronous compo-
sition. The second example uses the synchronous model of composition.
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wne
r/r→ bne wne

/r→ wde bne→ bde

bne
t/t→ wne wde

r/→ bde wde
t/→ wct

bde
t/→ bct wnt

r/t→ wde wnt→ wct

wct
r/→ bct wct→ wnt bct

/t→ wne

Fig. 6. Transitions for a process that performs the token ring protocol.

7.1 Dijkstra’s Token Ring

Our first example is the famous Dijkstra’s token ring algorithm [Dijkstra 1985].
This algorithm is significantly more complicated than the one used as a running
example throughout the article. The example uses the asynchronous model of com-
putation. There is a token t which passes in the clockwise direction. To avoid the
token from passing unnecessarily, there is a signal r (r stands for request) which
passes in the counter-clockwise direction. Whenever a process wishes to have the
token, it sends the signal r to its left neighbor, i.e., the process on the counterclock-
wise side. The states of the processes have the following four components:

—It is either b (black;an interest in the token exists to the right), w (white;no one
is interested in the token).

—It is either n (in the neutral state), d (the process is delayed waiting for the
token), or c (the process is in the critical section).

—It is either t (with the token), or e (empty;without the token).
—A set of outputs o enabled from the state. The possible values of o are ∅, {r},
{t}, and {r, t}.

Each process has r? and t? as input actions and r! and t! as output actions. This
notation is borrowed from CSP. While synchronizing, r! is matched with r?. Sim-
larly, t! is matched with t?. Each state has an output associated with it (kept in
the component o). The name of the state is a combination of its properties. Thus
〈wne, {r}〉 is a neutral state with no request on the right and no token and has
output r. We describe a state with a 2-tuple, i.e., 〈x, o〉 where x describes the first
three components and o is the set of outputs enabled from that state. If the output
from a state s′ is nonempty (o 6= ∅), then there is a transition to s′ with every
action in o labeling the transition. Given a state 〈x, o〉, the following transitions
are present in the system:

∀(α ∈ o)
[
〈x, o〉 α!→ 〈x, o\{α}〉

]
For conciseness, the list of transitions for a process that performs the token ring
protocol is given in Figure 6.

We explain how the transitions given in Figure 6 can be translated into our
notation. The first component on the transition label is the input, and the second
is the output. We consider the four kinds of transitions:

—x→ y corresponds to the transitions 〈x, o〉 τ→ 〈y, o〉,

—x
/v→ y corresponds to transitions 〈x, o〉 τ→ 〈y, o ∪ {v}〉,
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—x
u/→ y corresponds to transitions 〈x, o〉 u?→ 〈y, o〉, and

—x
u/v→ y corresponds to transitions 〈x, o〉 u?→ 〈y, o ∪ {v}〉.

Notice that each entry in the table actually corresponds to a group of transitions
that only differ from each other by the value of the second component.

Let Q be the process with 〈wnt, ∅〉 as the initial state and the preceding transi-
tions. Let P be the process with 〈wne, ∅〉 as the initial state and the same transitions
as Q. The network grammar generating a token-ring of arbitrary size is similar to
the one given for Example 5.1.3.

Let S be the set of states in a basic process of the token ring. Let t be the subset
of states that have the token. Let not-t denote S\t. The automaton D is the same
as the automaton in Figure 3 with t substituted for cs and not-t substituted for
nc. The automaton accepts strings S? such that the number of processes with the
tokens is exactly one. Let h be the abstraction function induced by the automaton.
The initial association is

AS0(Q) = {Q}
AS0(P ) = {P}
AS0(A) = {P‖P}
AS0(S) = {Q‖P‖P}.

Unfortunately, the corresponding representatives did not satisfy the monotonic-
ity condition. Therefore, we unfolded the initial association to get the following
association:

AS(A) = {P‖P‖P, P‖P}
AS(S) = {Q‖P‖P‖P,Q‖P‖P}

Notice that unfolding does not change the associations for the terminals. If we
choose the representatives as

rep(P ) = P

rep(Q) = Q

rep(A) = P‖P‖P
rep(S) = Q‖P‖P‖P

then the monotonicity condition holds, i.e.,

h(rep(A)) � h(h(rep(P ))‖h(rep(P )))
h(rep(A)) � h(h(rep(A))‖h(rep(P )))
h(rep(S)) � h(h(rep(Q))‖h(rep(A))).

By Theorem 4.1 we conclude that rep(S) simulates all the LTSs generated by the
grammar G. Notice that if rep(S) satisfies the property AGD, then Theorem 3.2.4
implies that every LTS generated by the grammar G satisfies AGD. Using our
system we established that rep(S) is a model for AGD.
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7.2 Parity Tree

We consider a network of binary trees, in which each leaf has a bit value. We
describe an algorithm that computes the parity of the values at the leaves. The
algorithm is described in Ullman [1984]. A context-free grammar G generating a
binary tree is given below, where root, inter, and leaf are terminals (basic pro-
cesses), and S and SUB are nonterminals. The precise definition of the composition
operator is given later in this section.

S → root‖SUB‖SUB
SUB→ inter‖SUB‖SUB
SUB→ inter‖leaf‖leaf

An intuitive description of the algorithm follows. The root process initiates a
wave by sending the readydown signal to its children. Every internal node that gets
the signal sends it further to its children. When the signal readydown reaches a leaf
process, the leaf sends the readyup signal and its value to its parent. An internal
node that receives the readyup and value from both its children, sends the readyup
signal and the xor(⊕) of the values received from the children to its parent. When
the readyup signal reaches the root, one wave of the computation is terminated
and the root can initiate another wave. The semantics of the composition used in
the grammar G should be clear from Figure 7. For example, the inputs readyp l
and value l of an internal node are identified with the outputs readyup and value
of its left child.

Next, we describe the various signals in detail. First we describe the process
inter. The process inter corresponds to the internal node of the tree. The
various variables for the process are shown in Figure 8.

The following equations are invariants for the state variables:

root or leaf = 0
readyup = readyup l ∧ readyup r

The output variables have the same value in each state as the corresponding state
variable, e.g., the output variable readydown has the same value as the state vari-
able readydown. The following equations show how the input variables affect the
state variables. The primed variables on the left-hand side refer to the next state
variables, and the right-hand side refers to the input variables.

readydown′ = readydown

readyup l′ = readyup l

readyup r′ = readyup r

value′ = (readyup l ∧ value l)⊕ (readyup r ∧ value r)

Since the root process does not have a parent, it does not have the input variable
readydown. The invariant root or leaf = 1 is maintained for the root and the
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readyup readydown readyup readydown
value value

readydownreadyup
value

Parent

left child right child

readyup_l
value_l

readyup_r
value_r

Fig. 7. Internal node of the tree.

state vars output vars input vars

root or leaf readydown readydown
readydown readyup readyup l
readyup l value readyup r
readyup r value l
value value r
readyup

Fig. 8. Variables used in processes.

leaf process. Since the leaf process does not have a child, the output variable
readydown is absent. The leaf variable has only one input variable readydown
and the following equation between the next state variables and input variables is
maintained:

readyup′ = readydown

For each leaf process the assignment for the state variable value is decided non-
deterministically in the initial state and then kept the same throughout the com-
putation.

A state in the basic processes (root,leaf,inter) is a specific assignment to the
state variables. We call this state set S. Since there are 6 state variables, the state
set S ∼= {0, 1}6.

The automata we describe accepts strings from S?. Let value1, · · · , valuen be the
values in the n leaves. Let value be the value calculated at the root. Since at the
end of the computation the root process should have the parity of the bits valuei
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q0 q1

not(p)

not(p)

p

p

Fig. 9. Automaton for parity.

m0 m1not(readyup)

readyup

S

Fig. 10. Automaton for ready.

(1 ≤ i ≤ n), the following equation should hold at the end of the computation:

value⊕
n⊕
i=1

valuei = 0.

Let p be defined by the following equation:

p = {s ∈ S | s satisfies root or leaf ∧ value}

Let not(p) = S − p. The automaton given in Figure 9 accepts the strings in S?

that satisfy the preceding equation. Since root or leaf = 0 for internal nodes,
the automaton essentially ignores the values at the internal nodes. We call this
automaton parity. We also want to assert that everybody is finished with his or
her computation. This is signaled by the fact that readyup = 1 for each process.
The automaton given in Figure 10 accepts strings in S? iff readyup = 1 in each state,
i.e., all processes have finished their computation. We call this automaton finished.
The automata parity and finished are our atomic formulas. We want to verify
that if the computation is finished then the parity at the root is correct. Hence, we
want to check that the initial state satisfies the property AG(finished→ parity).
Let h be the abstraction function induced by the atomic formulas (see Section 3 for
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the definition of h). The initial association is

AS0(SUB) = {inter‖leaf‖leaf}
AS0(S) = root‖AS0(SUB)‖AS0(SUB).

The association corresponding to the terminals is just the process associated with
the terminal. The association for S can be derived from AS(SUB). The repre-
sentatives corresponding to the initial association did not satisfy the monotonicity
condition. Unfolding the initial association we get

I = inter‖leaf‖leaf
I1 = inter‖I‖I

AS(SUB) = {I1} ∪ AS0(SUB)
AS(S) = {root‖I1‖I1} ∪ AS(S).

Now we could find representatives that did satisfy the monotonicity condition. Us-
ing Theorem 4.1 we can conclude that H = h(rep(S)) simulates all the networks
generated by the context free grammarG. We checked thatH, s0 |= AG(finished→
parity) (s0 is the initial state of the process H). Theorem 3.2.4 implies that ev-
ery network derived by G has the desired property, i.e., when the computation is
finished the root process has the correct property.

8. DIRECTION FOR FUTURE RESEARCH

In this article we have described a new technique for reasoning about families
of finite-state systems. This work combines network grammars and abstraction
with a new way of specifying state properties using regular languages. We have
implemented our verification method and used it to check two nontrivial examples.
In the future, we intend to apply the method to even more complex families of
state-transition systems.

There are several directions for future research. The context-free network gram-
mars can be replaced by context-sensitive grammars. Context-sensitive grammars
can generate networks such as square grids and complete binary trees that can-
not be generated by the context-free grammars. The specification language can be
strengthened by replacing regular languages by more expressive formalisms. We
are also considering adding fairness to our models.
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