
Model Checking and Abstraction . 1533

input ml 16

input in2 16

input req 1

output factorl 16 = O

output factor2 16 .= O

output output : 16 ,= O

output overflow 1 ,= O

output ack 1 ,= O

procedure wa,tfor(e)

while ye

wait

endwhile

endproc

loop

1 waitfor(req)

factorl = inl

fact0r2 = in2

output := o
overflow : = O

wait

loop

if (factorl = O) V (overflow = 1)

break

endif

if Isb(factorl) = 1

(overflow, output) = (output. 17)+ fact0r2

endif

factorl = factorl >1

wait

if (factorl = O) V (overflow = 1)

break

endif

(overflow] fact0r2) = (factor2: 17)< 1

wait

endloop

ack := I

wait

waitfor(~req)

ack := O
endloop

Fig. 4. Program using a 16-bit-by-16-bit unsigned multiplier

multiplier then waits for req to become zero before starting another cycle. The

multiplication itself is done with a series of shift-and-add steps. At each step,

the low-order bit (bit O) of the first factor is examined; if it is one, then the

second factor is added to the accumulating result. The first factor is then

shifted right, and the result is shifted left in preparation for the next step.4

40ne feature of the language that the program uses is the ability to extend an operand to a
specified number of bits. For example, z :5 extends x to be 5 bits wide by adding leading O bits.
This facility is used to extend output and factor2 when adding that shifting so that overflow can
be detected. The statement (overflow, output) = (output: 17) + factor2 sets output to the 16-bit

sum of output and factor2, and overflow to the carry from this sum. Also, .%<< 1 is x shifted left
by one bit. Right shifts are indicated using >> The break statement is used to exit the

innermost loop.
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The specification we used for the multiplier was a series of formulas of the

following form:s

b’G waiting ~ req A (inl mod m = z) A (in2 mod m = j)

~ V( = ack U ack A (overflow v (output mod m = ij mod m))).

Here, i and j range from O through m – 1 (hence, we have to check O(m2 )

formulas), and waiting is an atomic proposition that is true when execution is

at the program statement labeled 1. The input in2 and the outputs factor2

and output were all abstracted modulo m. The output factorl was not

abstracted, since its entire bit pattern is used to control when factor2 is

added to output. We performed the verification for m = 5, 7, 9, 11, and 32.

These numbers are relatively prime, and their product, 110,880, is sufficient

to cover all 216 possible values of output. The entire verification required

slightly less than 30 minutes of CPU time on a Sun 4. We also note that

because the BDDs needed to represent multiplication grow exponentially

with the size of the multiplier, it would not have been feasible to verify the

multiplier directly. Furthermore, even checking the above formulas on the

unabstracted multiplier proved to be impractical.

6.4 Representation by Logarithm

When only the order of magnitude of a quantity is important, it is sometimes

useful to represent the quantity by (a fixed-precision approximation of) its

logarithm. For example, suppose i >0. Define

lg i = [log2(i + 1)1;

that is, lg i is O if i is O, and for i >0, lg i is the smallest number of bits
needed to write i in binary. We take h(i) = lg i.

As an illustration of this abstraction, again consider the multiplier of

Figure 4. Recall that a program that always indicated an overflow would

satisfy our previous specification. We note that, if lg z + lg j < 16, then

lg ij < 16, and hence, the multiplication of i and ~ should not overflow.

Conversely, if lg i + lg j > 18, then lg ij > 17, and the multiplication of i and

j will overflow. When Ig i + lg j = 17, we cannot say whether overflow should

occur. These observations lead us to strengthen our specification to include

the following two formulas:

VG waiting A req A (lg inl + lg in2 < 16) + V( T ack U ack A ~ overflow),

VG waiting A req A (lg inl + lg in2 > 18) s V( 1 ack U ack A overflow).

We represented all of the 16-bit variables in the program by their logarithms.

Compiling the program with this abstraction and checking the above proper-

ties required less than a minute of CPU time.

5Thls specification admits the possibility that the multiplier always signals an overflow We will

verify that this M not the case using a different abstraction (see Subsection 6,4).
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6.5 S/lngle-Bit and Product Abstractions

For programs involving bitwise logical operations, the following abstraction is

often useful:

h(i) = thejth bit of i,

where j is some fixed number.

If hl and hz are abstraction mappings, then

h(i) = hi(i), hz(i)

also defines abstraction mapping. Using this abstraction, it may be possible

to verify properties that are not possible to verify with either h ~ or h ~ alone.

As an example of using these types of abstractions, consider the program

shown in Figure 5. This program reads an initial 16-bit input and computes

the parity of it. The output done is set to one when the computation is

complete; at that point, parity has the result. Let #i be true if the parity of i

is odd. One desired property of the program is the following:

(1) The value assigned to b has the same parity as that of in, and

(2) #b @ parity is invariant from that point onward.

We can express this with the following formula:

1 #in A VX( ~ #b A VG~ (#b @ parity)) v #in A VX(#b A VG(#b @ parity)).

To verify this property, we used a combined abstraction for in and b. Namely,

we grouped the possible values for these variables both by the value of their

low-order bit and by their parity. The verification required only a few

seconds.

6.6 Symbolic Abstractions

The use of a BDD-based compiler together with a model checker makes it

possible to use abstractions that depend on symbolic values. This idea can

greatly increase the power of a particular type of abstraction. As a simple

example, consider the program in Figure 6.

We wish to show that the next-state value of b is always equal to the

current-state value of a. We can express this property for a fixed value, say,

42, using the formula

VG(a = 42 ~ VXb = 42).

If we want to verify just this property, we can use the following abstraction

for a and b:

When we apply this abstr~ction and compile the program, we obtain the
transition relation R(ti, 6‘, b, $‘) defined by $‘ = d. Here, the primes denote

next-state variables, and all of the variables range over {O, 1}. Now, to check
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Fig. 5 Parity-computation program

input in : 16
output parity : 1 : = O
output b : 16 := O
output done : 1 := O

b = tn

wait

while b # O

parity := parity @ lsb(b)

b:=b>l

wait

endwhile

done := I

input a ; 8
output b :8 ::= O

Fig. 6, Simple program. loop

b:=a

wait

endloop

that our program works correctly for the value 42, we would check the

following formula at the abstract level:

‘v’G(ti = O + VX6 = O).

The formula would, of course, turn out to be satisfied. Obviously, though, we

do not want to have to repeat this process for each possible data value.

Suppose now that we were to modify our abstraction function as follows:

We have introduced a new symbolic parameter that our abstraction depends

on. Imagipe compiling the program with this abstraction; we should get a

relation RC(6A 6‘, b, $‘, c) that is parameterized by c. Fixing c = 42 will give

the relation R that we encountered above. If we could run the model-check-

ing algorithm on our parameterized relation, we would obtain a par,ameter-

ized state set representing the states for which our formula is true. Now our

specification

VG(6=0-VX~=O)

is essentially saying that

VG(a =C +VXb =c).

If the formula turns out to be true for all values of c, we will have proved the

desired specification. The observation now is that, by introducing eight extra

BDD variables to encode the possible choices for c, we can in fact

(1) represent hC with a BDD (the user will supply just hC);

(2) compile with h, to get a BD13 representing fi,,(d, d’, 8, 6‘, c) (the compiler

handles this step automatically);
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perform the model checking to obtain a BDD representing the parametri-

zed state set (the model checker does this automatically; it simply views

c as an additional state component that never changes); and

if necessary, choose a specific c, and generate a counterexample (al:so
done by the model checker).

Furthermore, note that, in this case the program behaves identically regardl-

ess of the value of c, so when we compile it, the BDD for RC will be

independent of the extra variables that we introduced. As a result, doing the

model checking will be no more complex than in the case when we were just

verifying

VG(a = 42 * VXb = 42).

In general, we have found that sharing in the BDDs makes it possible to

perform efficiently the abstraction, compilation, and model checking. We Cdl

abstractions such as hC “symbolic abstractions”; below, we give some more

complex examples that make use of these abstractions.

Con sider a simple partitioning:

We might try to use such an abstraction when the program we are trying to

verify involves comparisons. If two numbers are not equivalent according to

this abstraction, we can find the truth value of a comparison between them.

As an example of using this abstraction, consider the program in Figure 7.

This program represents a cell in a linear sorting array. There is one cell for

each integer to be sorted, and the cells are numbered consecutively from right

to left. In the array, each cell’s left and left-sorted inputs are connected to its

left neighbor’s y and sorted outputs, and each cell’s right input is connected to

its right neighbor’s x output. The values to be sorted are the values of the x

outputs. The sort proceeds in cycles. During each cycle, exactly half the cells

(either all of the odd-numbered cells or all of the even-numbered cells) WIJ1

have their comparing output equal to one. These cells compare their own x

output with that of their right neighbor, The smaller of these values is placed

in y. In addition, if the values were swapped, the cell’s sorted output is set to

zero. .During the next clock period, the right neighbor’s x and sorted values

are copied from the first cell’s y and sorted outputs. When the rightmost celll’s

sortedl output becomes one, the sort is complete. In this example, we consider

an array for sorting eight numbers.G

The properties that we verified are

(1) for every c, eventually the values of the x outputs are such that all

numbers that are less than c come before all numbers that are greater

6 In this program x and y may have any mitlal values. The comparing output is set to O or 1,
depending on the cell’s position in the array The left and right ends of the sorting array are

dummy cells for which x is 216 – 1 and O, respectively. The left cell’s sorted output M also fixed

at 1
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Flg 7 Program representing a cell in a hnear sor’ung array

input left 16

input Ieftsorted 1

output sorted 1 = O

output comparing 1 = O or 1

output swap 1 = O

output X 16

Output y 16
input right 16

loop

if comparing = 1

swap = (x < right)

wait

if swap = 1

y=x

x = right

sorted ,= O

else

y = right

endif

wait

else

wait

wait
x = left

sorted = leftsorted

endif

comparmg ,= ?comparmg

1 wait

endloop

than or equal to c, and this condition holds invariantly from that point

on; and

(2) for every c, the number of the x outputs that are less than c is invariant
except when elements are being swapped.

The first property implies that the array is eventually sorted. The second

implies that the final values of the x outputs form a permutation of the initial

values.

We performed the verification by abstracting all of the 16-bit variables in

the program as described above. The temporal formulas corresponding to the

two properties are

VFVG(X1< CVX2>C)A. .. A(X7 <C VX8>C)

and

(;(XC<C)=7Z ) [[+’v’G ;(XL<C)=n
~=1 5=1 iv7s’ablel

Here, x, is the value of the variable x in the ith cell of the array. The

summation notation denotes the number of formulas x, < c that are true,

and stable is an atomic proposition that is true when every cell is executing

the statement labeled 1.7 Verifying these properties required just under five

7 We also verified the property VG tfF stable to check that the cells mamtam lockstep,
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minutes of CPU time. In addition, checking these properties on the unab-

stracted program was not feasible due to space limitations.

We also used symbolic abstractions to verify a simple pipeline circuit. This

circuit is shown in Figure 8 and is described in detail elsewhere [Burch et al.

1990; 1991]. It performs three-address arithmetic and logical operations cm

operands stored in a register file.

We used two independent abstractions to perform the verification. First,

the register addresses were abstracted so that each address was either one of

three symbolic constants (ra, rb, or rc) or some other value. This abstraction

made it possible to collapse the entire register file down to only three

registers, one for each constant. The second abstraction involved the individ-

ual registers in the system. In order to verify an operation, say, addition, we

create symbolic constants ca and cb, and allow each register to be either ca,

cb, ca + cb, or some other value. As part of the specification, we verified that

the circuit’s addition operation works correctly. This property is expressed by

the temporal formula

VG(srcaddrl = ra) ~ (srcaddr2 = rb) A (destaddr = rc) ~ ~ stall

- VXVX((regra = ca) A (regrb = cb) ~ VX(regrc + ca + cb)).

This formula states that, if the source address registers are ra and rb, the

destination address register is rc, and the pipeline is not stalled, then the

values in registers ra and rb two cycles from now will sum to the value in

register rc three cycles from now. The reason for using the values of registe rs

ra and rb two cycles in the future is to account for the latency in the pipeline.

The largest pipeline example we tried had 64 registers in the register file,

and each register was 64 bits wide. This circuit has more than 4,000 state

bits and over 101300 reachable states, The verification required slightly less

than 6 1/2 hours of CPU time. In addition, the verification times scale

linearly in both the number of registers and the width of the registers. For

comparison, the largest circuit verified by Burch et al. [ 1991] had 8 registers,

each 32 bits, and the verification required about 4 1/2 hours of CPU time cm

a Sun 4. In addition, the verification times there were growing quadratically

in the register width and cubicly in the number of registers. We also note that

the complexity of verifying systems like this can be further reduced using a

techruque that we call symbolic compositions. Symbolic compositions have

the same flavor as symbolic abstractions, but are designed to take advantage

of the compositional verification properties of VCTL* [ Grumberg and Long

1991]. By combining symbolic compositions with symbolic abstractions, we

were i~ble to verify the system with 64 registers, each 64 bits, in less than 25

minutes of CPU time on a SUN 3/60, and with verification times that scale

polylogarithmically in the number of registers and linearly in the width of

registers. We discuss these techniques in more detail elsewhere [Long 1993].

7. CONCLUSION

We have described a simple but powerful method for using abstraction to
simphfy the problem of model checking. There are two parts to this method.

First, we have shown how to extract abstract finite-state machines directly
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Flg 8 Plpelme cmcult block diagram.

Read ports Write port

Bypass cmxutm

from finite-state programs, using techniques similar to those involved in

abstract interpretation. The process guarantees that the actual state machine

for the program is a refinement of the extracted state machine. Second, we

have examined when satisfaction of a formula by an abstract machine implies

satisfaction by the actual machine. For formulas given in the logic VCTL*,

this is always the case. We have also implemented a symbolic verification

system based on these ideas and used it to verify a number of nontrivial

examples. In the process of doing these examples, we have found a number of

useful abstractions. Our work on generating abstract systems could be used

with other verification methodologies, such as testing language containment.

There are a number of possible directions for future work. One problem

with using our current approach with logics like CTLW, which can express the

existence of a path, is in ensuring the strict exactness conditions. By using a

more complex finite-state model such as AND/OR graphs, it should be

possible to extend the techniques and to obtain a conservative model-check-

ing algorithm for such Iogics. We also wish to explore thoroughly the problem

of generating abstractions for infinite-state systems. The important step in

doing this is to determine abstract versions of the primitive relations. Some of

the techniques and results from automated theorem proving, term rewriting,
abstract interpretation, and algebraic specification of abstract data types

should prove useful for this problem. Similar techniques would be useful for

studying the flow of data in a system. Data items might be represented as

terms in the Herbrand universe, and functional transformations on the data

would correspond to building new terms from the input terms. Given an

equivalence relation of finite index on terms, we would derive abstract

primitive relations for the operations and use these to produce an abstract

version of the system.
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