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In this article, we present an automatic iterative abstraction-refinement methodology that extends
symbolic model checking. In our method, the initial abstract model is generated by an automatic anal-
ysis of the control structures in the program to be verified. Abstract models may admit erroneous (or
“spurious”) counterexamples. We devise new symbolic techniques that analyze such counterexamples
and refine the abstract model correspondingly. We describeaSMV, a prototype implementation of our
methodology in NuSMV. Practical experiments including a large Fujitsu IP core design with about
500 latches and 10000 lines of SMV code confirm the effectiveness of our approach.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design
Aids—verification; D.2.4 [Software Engineering]: Software/Program Verification—model checking;
F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—temporal logic

General Terms: Verification

Additional Key Words and Phrases: Abstraction, temporal logic, hardware verification, symbolic
model checking

1. Introduction

During the last two decades, temporal logic model checking [Clarke and Emerson
1981; Clarke et al. 1983] has become an important application of logic in computer
science. Temporal logic model checking is a technique for verifying that a sys-
tem satisfies its specification by (i) representing the system as a Kripke structure,
(ii) writing the specification in a suitable temporal logic, and (iii) algorithmically
checking that the Kripke structure is a model of the specification formula. Model
checking has been successfully applied in hardware verification, and is emerging
as an industrial standard tool for hardware design. For an extensive overview of
model checking, please refer to Clarke et al. [1999a].

The main technical challenge in model checking is thestate explosion problem
that can occur if the system being verified has components that make transitions
in parallel. A fundamental breakthrough was made in the fall of 1987 by Ken
McMillan, who was then a graduate student at Carnegie Mellon. He argued that
larger systems could be handled if transition relations were represented implicitly
with ordered binary decision diagrams (BDDs) [Bryant 1986]. By using the original
model checking algorithm with the new representation for transition relations, he
was able to verify some examples that had more than 1020 states [Burch et al.
1992; McMillan 1993]. He made this observation independently of the work by
Coudert et al. [1989] and [Pixley 1990; Pixley et al. 1991, 1992] on using BDDs
to check equivalence of deterministic finite-state machines. Since then, various
refinements of the BDD-based techniques by other researchers have pushed the
state count up to more than 10120 [Burch et al. 1991]. The widely used symbolic
model checker SMV [McMillan 1993] is based on these ideas. The results reported
in this paper have been implemented in NuSMV [Cimatti et al. 1998], a state-
of-the-art reimplementation of SMV.

Despite the success of symbolic methods, the state explosion problem remains
a major hurdle in applying model checking to large industrial designs. A number
of state reduction approaches have been proposed to reduce the number of states in
the model. State reduction techniques include symmetry reductions [Clarke et al.
1996; Emerson and Sistla 1996; Emerson and Trefler 1999; Ip and Dill 1996; Jensen
1996], partial order reductions [Godefroid et al. 1996; Peled 1993], and abstraction
techniques [Cousot and Cousot 1977; Graf and Sa¨ıdi 1997; Long 1993; Clarke
et al. 1994]. Among these techniques, abstraction is considered the most general
and flexible for handling the state explosion problem.
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Intuitively, abstraction amounts to removing or simplifying details as well as re-
moving entire components of the original design that are irrelevant to the property
under consideration. The evident rationale is that verifying the simplified (“ab-
stract”) model is more efficient than verifying the original model. The informa-
tion loss incurred by simplifying the model however has a price: verifying an
abstract model potentially leads to wrong results, at least if performed naively.
Consequently, abstraction techniques can be distinguished by how they control
the information loss.Over-approximation[Clarke et al. 1994; Kurshan 1994] and
under-approximationtechniques [Lee et al. 1996; Pardo and Hachtel 1998] keep
the error one-sided, that is, they admit only false negatives (erroneous counterex-
amples) and false positives, respectively. Over-approximation techniques system-
atically release constraints, thus enriching the behavior of the system. They es-
tablish a relationship between the abstract model and the original one such that
correctness at the abstract level implies correctness of the original system. In con-
trast, under-approximation techniques systematically remove irrelevant behavior
from the system so that a specification violation at the abstract level implies a
specification violation of the original system. Other techniques based on abstract
interpretation [Cousot and Cousot 1977; Dams et al. 1997a] or 3-valued logics
[McMillan 1999a; Bruns and Godefroid 1999; Sagiv et al. 1999] typically produce
both correct positives and correct negatives, but may terminate with an unknown or
approximate result. We refer the reader to Section 4.1 for an overview of additional
related work.

In practice, abstraction based methods have been essential for verifying de-
signs of industrial complexity. Currently, abstraction is typically a manual process,
which requires considerable creativity and insight. In order for model checking
to be used more widely in industry,automatictechniques are needed for generat-
ing abstractions.

This article describes a newcounterexample-guided abstraction techniquethat
extends the general framework ofexistential abstraction[Clarke et al. 1994]. The
new methodology integrates symbolic model checking and existential abstraction
into a unified framework. The method is efficient, fully automatic and based on
symbolic algorithms. Starting with a relatively small skeletal representation of
the system to be verified, we show how to compute increasingly precise abstract
representations of the system. The key step is to extract information from false
negatives due to over-approximation. Such artificial specification violations are
witnessed by what we call “spurious counterexamples”. Our method is complete
for an important fragment of ACTL?, precisely for the fragment of ACTL? that
admits counterexamples in the form of finite or infinite traces (i.e., finite traces
followed by loops).

In this article, we aim to give a complete picture of the counterexample-guided
refinement method, ranging from the theoretical foundations of the method to
implementation-related issues and practical experiments involving a large Fujitsu
IP core design.

1.1. TECHNICAL APPROACH. Throughout the article, we work in the framework
of existential abstraction. Existential abstraction computes an over-approximation
of the original model thatsimulatesthe original model. Thus, when a specifi-
cation in the temporal logic ACTL? is true in the abstract model, it will also
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be true in the concrete design. However, if the specification is false in the ab-
stract model, the counterexample may be the result of some behavior in the
approximation that is not present in the original model. When this happens, it
is necessary to refine the abstraction so that the behavior that caused the erro-
neous counterexample is eliminated. This gives rise to a sequence of increas-
ingly precise abstract models till the specification is either proved or disproved by
a counterexample.

This article shows how this general counterexample-guided abstraction frame-
work can be applied effectively to branching-time-symbolic model checking. The
following list emphasizes the main technical contributions of the article:

(1) We describe a method to extract abstraction functions from the program text;
in this method, the control flow predicates of the program are used to factor
the state space into equivalence classes that are acting as abstract states. While
reminiscent of predicate abstraction [Graf and Sa¨ıdi 1997], this method fits into
the existential abstraction framework proposed in Clarke et al. [1999b, 1994],
and is used to obtain the initial abstract model.

(2) For performance reasons, abstraction functions in the literature are often de-
fined only for individual variables, and the abstraction function is obtained
as a composition of individual abstraction functions. In contrast to this, we
use abstraction functions that are defined on finite tuples of variables called
variable clustersthat are extracted from the program code. This approach al-
lows one to express conditions involving several variables (such asx < y) in
the abstraction function, and thus helps to keep the size of the abstract state
space small.

(3) We introduce symbolic algorithms to assert whether abstract counterexamples
are spurious, or have corresponding concrete counterexamples. If a counterex-
ample is spurious, we identify the shortest prefix of the abstract counterex-
ample that does not correspond to an actual trace in the concrete model. The
last abstract state in this prefix (the “failure state”) needs to be split into less
abstract states by refining the equivalence classes in such a way that the spu-
rious counterexample is eliminated. Thus, a more refined abstraction function
is obtained.

(4) Note that there may be many ways of splitting the failure state; each determines
a different refinement of the abstraction function. It is desirable to obtain the
coarsest refinement which eliminates the counterexample because this corre-
sponds to thesmallestabstract model that is suitable for verification. We prove,
however, that finding the coarsest refinement is NP-hard. Because of this, we
use a symbolic polynomial-time refinement algorithm that gives a suboptimal
but sufficiently good refinement of the abstraction function. The applicability
of our heuristic algorithm is confirmed by our experiments.

Summarizing, our technique has a number of advantages:

—The technique is complete for an important fragment of the temporal logic
ACTL?.

—The initial abstraction and the refinement steps are efficient and entirely automatic
and all algorithms are symbolic.
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—In comparison to methods like the localization reduction [Kurshan 1994], we
distinguish more degrees of abstraction for each variable. Thus, the changes in
the refinement are potentially finer in our approach. The refinement procedure is
guaranteed to eliminate spurious counterexamples while keeping the state space
of the abstract model small.

1.2. PRACTICAL EXPERIMENTS. We have implemented a prototype toolaSMV
based on NuSMV [Cimatti et al. 1998] and applied it to a number of bench-
mark designs. In addition we have used it to debug a large IP core being de-
veloped at Fujitsu [1996]. The design has about 350 symbolic variables that cor-
respond to about 500 latches. Before using our methodology, we implemented
the cone of influence[Clarke et al. 1999a, Page 193] reduction in NuSMV
to enhance its ability to check large models. Neither our enhanced version of
NuSMV nor the recent version of SMV developed by Yang [Yang et al. 1998]
were able to verify the Fujitsu IP core design. However, by using our new tech-
nique, we were able to find a subtle error in the design.aSMV automatically ab-
stracted 144 symbolic variables and verified the design using just three refine-
ment steps.

1.3. RELATED WORK. Our method extends the existential abstraction frame-
work developed by Clarke et al. [1994]. This framework will be outlined in
Section 2. In our methodology,atomic formulasthat describes the model are au-
tomatically extracted from the program. The atomic formulas are similar to the
predicatesused for abstraction by Graf and Sa¨ıdi [1997]. However, instead of us-
ing the atomic formulas to generate an abstract global transition system, we use
them to construct an explicitabstraction function. The abstraction function pre-
serves logical relationships among the atomic formulas instead of treating them
as independent propositions. A more detailed comparison to predicate abstraction
will be provided in Section 4.2.2.

Using counterexamples to refine abstract models has been investigated by a
number of other researchers beginning with thelocalization reductionof Kurshan
[1994]. He models a concurrent system as a composition ofL-processesL1, . . . , Ln
(L-processes are described in detail in Kurshan [1994]). The localization reduction
is an iterative technique that starts with a small subset of relevantL-processes that
are topologically close to the specification in thevariable dependency graph. All
other program variables are abstracted away with nondeterministic assignments.
If the counterexample is found to be spurious, additional variables are added to
eliminate the counterexample. The heuristic for selecting these variables also uses
information from the variable dependency graph. Note that the localization re-
duction either leaves a variable unchanged or replaces it by a nondeterministic
assignment. A similar approach has been described by Balarin in Balarin and
Sangiovanni-Vincentelli [1993]. In our approach, the abstraction functions ex-
ploit logical relationships among variables appearing in atomic formulas that occur
in the control structure of the program. Moreover, the way we use abstraction
functions makes it possible to distinguish many degrees of abstraction for each
variable. Therefore, in the refinement step only very small and local changes to
the abstraction functions are necessary and the abstract model remains compara-
tively small.
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Another refinement technique has recently been proposed by Lind-Nielsen and
Andersen [1999]. Their model checker uses upper and lower approximations
in order to handle entire CTL. Their approximation techniques enable them to
avoid rechecking the entire model after each refinement step while guaranteeing
completeness. As in Balarin and Sangiovanni-Vincentelli [1993] and Kurshan
[1994], the variable dependency graph is used both to obtain the initial abstrac-
tion and in the refinement process. Variable abstraction is also performed in
a similar manner. Therefore, our abstraction-refinement methodology relates to
their technique in essentially the same way as it relates to the classical localiza-
tion reduction.

A number of other papers [Lee et al. 1996; Pardo 1997; Pardo and Hachtel
1998] have proposed abstraction-refinement techniques for CTL model checking.
However, these papers do not use counterexamples to refine the abstraction. We
believe that the methods described in these papers are orthogonal to our technique
and may even be combined with our article in order to achieve better performance.
A recent technique proposed by Govindaraju and Dill [1998] may be a starting
point in this direction, since it also tries to identify the first spurious state in an
abstract counterexample. It randomly chooses a concrete state corresponding to
the first spurious state and tries to construct a real counterexample starting with
the image of this state under the transition relation. The paper only talks about
safety properties and path counterexamples. It does not describe how to check
liveness properties with cyclic counterexamples. Furthermore, our method does
not use random choice to extend the counterexample; instead it analyzes the cause
of the spurious counterexample and uses this information to guide the refinement
process. Another counterexample-guided refinement approach supported by good
experimental results has been presented by Govindaraju and Dill [2000]. The ideas
presented in this paper are similar at a high level, but their work is restricted to
safety properties and uses overlapping projections as underlying approximation
scheme. A hamming distance heuristic is used to obtain the registers of the design
that are to be refined. In comparison to our work, we put specific emphasis on
the initial abstraction by predicate abstraction, and allow for a more general class
of specifications.

Many abstraction techniques can be viewed as applications of the abstract in-
terpretation framework [Cousot and Cousot 1977, 1999; Sifakis 1983]. Given an
abstract domain, abstract interpretation provides a general framework for automat-
ically “interpreting” systems on an abstract domain. The classical abstract inter-
pretation framework was used to prove safety properties, and does not consider
temporal logic or model checking. Bjorner et al. [1997] use abstract interpretation
to automatically generate invariants for infinite-state systems. Abstraction tech-
niques for various fragments of CTL? have been discussed in Dams et al. [1993,
1997a]. These abstraction techniques have been extended to theµ-calculus [Dams
et al. 1997b; Loiseaux et al. 1995].

Abstraction techniques forinfinite state systemsare crucial for successful verifi-
cation [Abdulla et al. 1999; Bensalem et al. 1992; Lesens and Sa¨ıdi 1997; Manna
et al. 1998]. In fact, Graf and Sa¨ıdi [1997] have proposed the above-mentioned
predicate abstractiontechniques to abstract an infinite state system into a finite
state system. Later, a number of optimization techniques have been developed
in Bensalem et al. [1998], Das et al. 1999; Das and Dill 2001. Sa¨ıdi and Shankar
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[1999] have integrated predicate abstraction into the PVS system, which could
easily determine when to abstract and when to model check. Variants of predicate
abstraction have been used in the Bandera Project [Dwyer et al. 2001] and the
SLAM project [Ball et al. 2001].

Colón and Uribe [1998] have presented a way to generate finite-state abstractions
using a decision procedure. Similar to predicate abstraction, their abstraction is
generated using abstract Boolean variables. One difference between our approach
and the predicate abstraction based approaches is that the latter tries to build an
abstract model on-the-fly while traversing the reachable state sets. Our approach
tries to build the abstract transition relation directly.

Wolper and Lovinfosse [1989] have verifieddata independentsystems using
model checking. In a data independent system, the data values never affect the
control flow of the computation. Therefore, the datapath can be abstracted away
entirely. Van Aelten et al. [1992] have discussed a method for simplifying the ver-
ification of synchronous processors by abstracting away the data path. Abstracting
away the datapath using uninterpreted function symbols is very useful for verifying
pipeline systems [Berezin et al. 1998; Burch and Dill 1994; Jones et al. 1998].
A number of researchers have modeled or verified industrial hardware systems
using abstraction techniques [Fura et al. 1993; Graf 1994; Ho et al. 1998; Hojati
and Brayton 1995]. In many cases, their abstractions are generated manually and
combined with theorem proving techniques [Rushby 1999; Rusu and Singerman
1999]. Dingel and Filkorn [1995] have used data abstraction and assume-guarantee
reasoning combined with theorem proving techniques to verify infinite state sys-
tems. Recently, McMillan [1996b] has incorporated a new type of data abstrac-
tion, assume-guarantee reasoning and theorem proving techniques in his Cadence
SMV system.

1.4. ORGANIZATION OF THE ARTICLE. This article is organized as follows:
Section 2 provides definitions, terminology and a formal background on model
checking. Section 3 reviews and adapts the existential abstraction framework. The
core of the article is Section 4, which describes the new approach and the algorithms
put forward in this article. The proofs of the complexity results are postponed to
Section 5. This is followed by Sections 6 and 7 which concentrate on practical per-
formance improvements, and experiments. Future research directions are discussed
in Section 8.

2. Fundamentals of Model Checking

2.1. KRIPKE STRUCTURES ANDTEMPORAL LOGIC. In model checking, the sys-
tem to be verified is formally represented by a finiteKripke structure, a directed
graph whose vertices are labeled by sets of atomic propositions. Vertices and edges
are calledstatesandtransitionsrespectively. One or more states are considered to
be initial states. Thus, a Kripke structure over a set of atomic propositionsA is
a tupleK = (S, R, L , I ) whereS is the set of states,R ⊆ S2 is the set of tran-
sitions, I ⊆ S is the nonempty set of initial states, andL : S→ 2A labels each
state by a set of atomic propositionsA. A path is an infinite sequence of states,
π = 〈s0, s1, . . . 〉 such that fori ≥ 0, (si , si+1) ∈ R. Given a pathπ , π i denotes the
infinite path〈si , si+1, . . . 〉we assume that the transition relationR is total, that is, all
states have positive out-degree. Therefore, each finite path can be extended into an
infinite path.
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CTL? is an extension of propositional logic obtained by addingpath quantifiers
andtemporal operators.

Path quantifiers:
A “for every path”
E “there exists a path”

Temporal Operators:
X p “ p holds next time”
Fp “ p holds sometime in the future”
Gp “ p holds globally in the future”
p Uq “ p holds untilq holds”
p R q “q is released whenp becomes false”

There are two types of formulas in CTL?: state formulas(which are evaluated on
states) andpath formulas(which evaluated on paths). The syntax of both state and
path formulas is given by the following rules:

—If p ∈ A, then p is a state formula.
—If f andg are state formulas, then¬ f , f ∧ g and f ∨ g are state formulas.
—If f is a path formula, thenE f andA f are state formulas.
—If f is a state formula, thenf is also a path formula.
—If f andg are state formulas, thenX f , F f , G f , f U g and f R g are path

formulas.

The semantics for CTL? is given in Appendix A.
ACTL? is the fragment of CTL? where only the path operatorA is used, and

negation is restricted to atomic formulas. An important feature of ACTL? is the
existence of counterexamples. For example, the specificationAF p denotes “on all
paths, p holds sometime in the future.” If the specificationAF p is violated, then
there exists an infinite path wherep never holds. This path is called a counterexam-
ple ofAF p. In this article, we focus on counterexamples which are finite or infinite
paths.

2.2. THE MODEL CHECKING PROBLEM. Given a Kripke structureM =
(S, R, I , L) and a specificationϕ in a temporal logic such as CTL?, the model
checking problemis the problem of finding all statess such thatM, s |= ϕ and
checking if the initial states are among these. An explicit state model checker is a
program which performs model checking directly on a Kripke structure.

THEOREM2.1 [CLARKE ET AL. 1983; CLARKE JR. ET AL. 1986]. Explicit state
CTL model checking has time complexity O(|M ||ϕ|).

CTL is a subfragment of CTL?, where each path quantifierA orE is immediately
followed by a temporal operator, for example,AF p is a CTL formula, butAFG p
is not. Model checking algorithms are usually fixed point algorithms that exploit
the fact that temporal formulas can be expressed by fixed point formulas. In prac-
tice, systems are described by programs in finite state languages such as SMV or
VERILOG. These programs are then compiled into equivalent Kripke structures.

Example2.2. In the verification system SMV, the state spaceS of a Kripke
structure is given by the possible assignments to the system variables. Thus, a
system with 3 variablesx, y, resetand variable domainsDx = Dy = {0, 1, 2, 3}
andDreset= {0, 1} has state spaceS= Dx × Dy × Dreset, and|S| = 32.
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The binary transition relationR is defined by transition blocks which for each
variable define possible values in the next time cycle, as in the following example:

init (reset) := 0;
next(reset) := {0, 1};

init (x) := 0;
next(x) := case

reset= 1 : 0;
x < y : x + 1;
x = y : 0;
else: x;

esac;

init (y) := 1;
next(y) := case

reset= 1 : 0;
(x = y) ∧ ¬(y = 2) : y+ 1;
(x = y) : 0;
else: y;

esac;

Here,next(reset) := {0, 1}means that the value ofresetis chosen nondeterministi-
cally. Such situations occur frequently whenresetis controlled by the environment,
or when the model of the system is too abstract to determine the values ofreset.
For details about the SMV input language, we refer the reader to McMillan [1993].

The main practical problem in model checking is the so-calledstate explosion
problemcaused by the fact that the Kripke structure represents thestate spaceof
the system under investigation, and thus its size is potentiallyexponentialin the
size of the system description. Therefore, even for systems of relatively modest
size, it is often impossible to compute their Kripke structures explicitly. In the rest
of this article, we will focus on a combination of two techniques,symbolic model
checkingandabstractionwhich alleviate the state explosion problem.

2.3. SYMBOLIC MODEL CHECKING. In symbolic model checking, the transition
relation of the Kripke structure is not explicitly constructed, but instead a Boolean
function is computed which represents the transition relation. Similarly, sets of
states are also represented by Boolean functions. Then, fixed point characterizations
of temporal operators are applied to the Boolean functions rather than to the Kripke
structure. Since in many practical situations the space requirements for Boolean
functions are exponentially smaller than for explicit representation, symbolic ver-
ification is able to alleviate the state explosion problem in these situations. These
Boolean functions are represented asordered binary decision diagrams(BDDs). A
short description on BDDs can be found in Section A.

A symbolic model checking algorithm is an algorithm whose variables denote
not single states, butsets of statesthat are represented by Boolean functions (usu-
ally as BDDs, see Clarke et al. [1999a, Chap. 5]). Therefore, symbolic algorithms
use only such operations on sets which can be translated into BDD operations. For
example, union and intersection of sets correspond to disjunction and conjunction
respectively. Binary Decision Diagrams have been a particularly useful data struc-
ture for representing Boolean functions; despite their relative succinctness they
provide canonical representations of Boolean functions, and therefore expressions
of the form S1 = S2, which are important in fixed point computations, can be
evaluated very efficiently.

Image computationis the task of computing for a given setSof states the set of
states

Img(S, R) := {t | ∃s.R(s, t) ∧ s ∈ S}.
Since all temporal operators can be expressed as a combination of fixed point
computations and image computations, image computation is central to verifica-
tion tasks. In contrast to the other operations, however, image computation is not
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a simple BDD operation, and therefore presents of the major bottlenecks in veri-
fication. Part of the reason for this, ironically, is the fact that it is in generalnot
feasibleto construct a single BDD for the transition relationR. Instead,R is rep-
resented as the conjunction of several BDDs [McMillan 1996]. In Section 3.1,
we shall address the problem of computing an abstraction ofR without actually
computingR.

Practical experiments show that the performance of symbolic methods is highly
unpredictable. This phenomenon can be partially explained by complexity the-
oretic results which state that BDD representation does not improve worst case
complexity. In fact, it has been shown [Feigenbaum et al. 1999; Veith 1998a]
that representing a decision problem in terms of exponentially smaller BDDs
usually increases its worst case complexity exponentially. For example, the prob-
lem of decidingEFp (reachability) is complete for nondeterministic logspace-
NL, while in BDD representation it becomes complete for PSPACE. Similar
results can be shown for other Boolean formalisms and are closely tied to
principal questions in structural complexity theory [Gottlob et al. 1999; Veith
1997, 1998b].

2.4. SIMULATION AND PRESERVATION OFACTL?. Given two Kripke structures
M andM ′ with A ⊇ A′, a relationH ⊆ S× S′ is asimulation relationbetweenM
andM ′ if and only if for all (s, s′) ∈ H , the following conditions hold.

(1) L(s) ∩ A′ = L ′(s′).
(2) For each states1 such that (s, s1) ∈ R, there exists a states′1 with the property

that (s′, s′1) ∈ R′ and (s1, s′1) ∈ H .

We say thatM ′ simulates M(denoted byM ¹ M ′) if there exists a simulation
relation H such that for every initial states0 in M there exists an initial state
s′0 in M ′ for which (s0, s′0) ∈ H . It is easy to see that the simulation relation¹
is a preorder on the set of Kripke structures. The following classic result is
one of the cornerstones of the abstraction refinement framework [Clarke et al.
1994a, 1999].

THEOREM 2.3. For every ACTL? formula ϕ over atomic propositions A′, if
M ¹ M ′ and M′ |= ϕ, then M |= ϕ.

3. Abstraction

Intuitively speaking, existential abstraction amounts to partitioning the states of a
Kripke structure into clusters, and treating the clusters as new abstract states (see
Figure 1).

Formally, an abstraction functionh is described by a surjectionh : S→ Ŝwhere
Ŝ is the set ofabstract states. The surjectionh induces an equivalence relation≡h
on the domainS in the following manner: letd, e be states inS, then

d ≡h e iff h(d) = h(e).

Since an abstraction can be represented either by a surjectionh or by an equivalence
relation≡h, we sometimes switch between these representations. When the context
is clear, we often write≡ instead of≡h.
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FIG. 1. Existential Abstraction.M is the original Kripke structure, and̂M the abstracted one. The
dotted lines inM indicate how the states ofM are clustered into abstract states.

The abstract Kripke structurêM = (Ŝ, Î , R̂, L̂) generated by the abstraction
functionh is defined as follows:

(1) Î (d̂) iff ∃d(h(d) = d̂ ∧ I (d)).
(2) R̂(d̂1, d̂2) iff ∃d1∃d2(h(d1) = d̂1 ∧ h(d2) = d̂2∧R(d1, d2)).
(3) L̂(d̂) =⋃h(d)=d̂ L(d).

Sometimes we writêM = M̂h = (Ŝh, Î h, R̂h, L̂h) to emphasize that̂M is generated
by h.

Next we introduce a condition for abstraction functions which guarantees that
for a given specification, no false positives are possible on the abstract model.
(Formally, this will be stated in Theorem 3.3 below.)

An abstraction functionh is appropriatefor a specificationϕ if for all atomic
subformulasf of ϕ and for all statesd ande in the domainS such thatd ≡h e
it holds thatd |= f ⇔ e |= f . If ϕ is understood from the context, we just say
that h is appropriate.h is appropriate for a setF of formulas if h is appropriate
for all f ∈ F . Let d̂ be an abstract state.̂L(d̂) is consistent, if all concrete states
corresponding tôd satisfy all labels in̂L(d̂), that is, collapsing a set of concrete
states into an abstract state does not lead to contradictory labels. The following
proposition is an immediate consequence of the definitions:

PROPOSITION 3.1. If h is appropriate forϕ, then (i) all concrete states in an
equivalence class of≡h share the same labels; (ii) the abstract states inherit all
labels from each state in the respective equivalence classes; (iii) the labels of the
abstract states are consistent.

In other words,d ≡h d′ impliesL(d) = L(d′), h(d) = d̂ implies L̂h(d̂) = L(d),
andL̂h(d) is consistent.

It is easy to see that̂M contains less information thanM . Thus, model checking
the structurêM potentially leads to incorrect results. The following theorem shows
that at least for ACTL?, specifications which are correct for̂M are correct forM
as well.
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FIG. 2. Abstraction of a US traffic light.

FIG. 3. The abstract path in̂M (indicated by the thick arrows) is spurious. To eliminate the spurious
path, the abstraction has to be refined as indicated by the thick line inM .

LEMMA 3.2. Let h be appropriate for theACTL? specificationϕ and M be
defined over the atomic propositions inϕ. Then M¹ M̂h.

PROOF. Choose the simulation relationH to be{(s, h(s)) | s ∈ S}. Then the
definition is trivially satisfied.

We conclude that in the existential abstraction framework presented here, there
are no false positives:

THEOREM 3.3. Let h be appropriate for theACTL? specificationϕ. ThenM̂h |=
ϕ implies M |= ϕ.

PROOF. Immediately from Theorem 2.3 and Lemma 3.2

On the other hand, the following example shows that if the abstract model inval-
idates an ACTL? specification,the actual model may still satisfy the specification.

Example3.4. Assume that for a US traffic light controller (see Figure 2), we
want to proveψ = AG AF (state= red) using the abstraction functionh(red) = r̂ed
andh(green) = h(yellow) = ĝo. It is easy to see thatM |= ψ while M̂ 6|= ψ . There
exists an infinite abstract trace〈r̂ed, ĝo, ĝo, . . . 〉 that invalidates the specification.

If an abstract counterexample does not correspond to some concrete counterex-
ample, we call itspurious. For example,〈r̂ed, ĝo, ĝo, . . . 〉 in the above example is
a spurious counterexample.

Let us consider the situation outlined in Figure 3. We see that the abstract path
does not have a corresponding concrete path. Whichever concrete path we follow,
we will end up in stateD, from which we cannot go any further. Therefore,D
is called adeadend state. On the other hand, thebad stateis stateB, because it
made us believe that there is an outgoing transition. In addition, there is the set of



764 E. CLARKE ET AL.

irrelevant statesI that are neither deadend nor bad, and it is immaterial whether
states inI are combined withD or B. To eliminate the spurious path, the abstraction
has to be refined as indicated by the thick line.

3.1. APPROXIMATION FOREXISTENTIAL ABSTRACTION. As argued above, it is
usually computationally too expensive to compute existential abstraction directly
[Long 1993]. Instead of buildinĝMh directly, approximation is often used to reduce
the complexity. If a Kripke structurẽM = (Sh, Ĩ , R̃, L̂h) satisfies

(1) Î h ⊆ Ĩ and
(2) R̂h ⊆ R̃,

then we say that̃M approximateŝMh. Intuitively, if M̃ approximateŝMh, thenM̃ is
moreabstract than̂Mh, that is,M̃ has more behaviors than̂Mh. (In the terminology
of Section 1,M̃ is an over-approximation.)

THEOREM 3.5. Let h be appropriate for theACTL? specificationϕ. ThenM̃
simulatesM̂h, that is,M̂h ¹ M̃.

PROOF. A simulation relation is given by the identity mapping that maps each
state inM to the same state in̂Mh – note that the sets of states inM and M̂h
coincide.

Remark3.6. As the proof shows, approximation is much simpler than existen-
tial abstraction, because it does not affect the set of states. By approximating the
set of transitions from above, we trade complexity against more spurious behavior.

Since¹ is a preorder,M ¹ M̂h ¹ M̃ in accordance with Theorem 3.3 and
Theorem 3.5. Clarke et al. [1994] define a practical transformationT calledearly
approximationthat applies the existential abstraction operation directly to variables
at the innermost level of the formula. This transformation generates a new structure
M̃T as follows. Assume thatR= R1∧· · ·∧Rn where eachRi defines the transition
relation for a single variable. Then, we apply abstraction to eachRi separately,
that is,

T (R) = (R1)h ∧ · · · ∧ (Rn)h

and analogously forI . Finally, M̃T is given by (Sh, T (I ), T (R), L̂h). As a simple
example, consider a systemM , which is a synchronous composition of two systems
M1 andM2, or in other wordsM = M1‖M2. Both M1 andM2 define the transition
of one variable. In this case,̃MT is equal tô(M1)h‖̂(M2)h. Note that the existential
abstraction operation is applied to each process individually. SinceT is applied at
the innermost level, abstraction can be performed before building the BDDs for the
transition relation. This abstraction technique is usually fast and easy to implement.
However, it has potential limitations in checking certain properties. SinceM̃T is a
coarse abstraction, there exist many properties that cannot be checked onM̃T but
can still be verified using a finer approximation. The following small example will
highlight some of these problems.

Example3.7. Consider a Kripke structure for a simple traffic light exam-
ple, where variablet describes the three possible valuesDt = {r, g, y} (red,
green, yellow) of the traffic light, and variablec describes the two possible values
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Dc = {s, d} (stop, drive) of the car. The transition relation is described by the
following two transition blocks:

init (t) := r ;
next(t) := case

t = r : {r, g};
t = g : {g, y};
t = y : {y, r };

esac;

init (c) := s;
next(c) := case

t = g : {s, d};
t 6= g : s;

esac;

The traffic light example is illustrated in Figure 4. First, two Kripke struc-
turesMt andMc are constructed from the transition blocks.1 The Kripke structure
for the system is obtained by composingMt and Mc, yielding the Kripke struc-
ture Mt ‖ Mc.

The safety property we want to prove is that when the traffic light is red, the
automobile should not be driving. This can be written in ACTL as follows:

ϕ ≡ AG[¬(t = r ∧ c = d)]

It is easy to see that the propertyϕ is true overMt ‖ Mc.
Let us consider an abstraction function abs which maps the valuesg andd to w

(such as in “walk”). If we apply this abstractionafter composingMt andMc, the
state (r, d) remains unreachable, and the propertyϕ still holds. If however, we
use the transformationT , which applies abstractionbeforewe composeMt and
Mc, propertyϕ does not hold as (r, d) is reachable. We see that when we first
abstract the individual components and then compose we may introduce too many
spurious behaviors.

It is desirable to obtain an approximation structureM̃ which is more precise than
the structureM̃T obtained by the technique proposed in Clarke et al. [1994]. All the
transitions in the abstract structurêMh are included in bothM̃ andM̃T . Note that
the state sets of̂Mh, M̃ andM̃T are the same andM ¹ M̂h ¹ M̃T . In summary,
M̂h is intended to be built but is computationally expensive.M̃T is easy to build
but extra behaviors are added into the structure. Our aim is to build a modelM̃
which is computationally easier but a more refined approximation ofM̂h thanM̃T ,
that is,

M ¹ M̂h ¹ M̃ ¹ M̃T .

4. Counterexample-Guided Abstraction Refinement

4.1. OVERVIEW. For a programP and an ACTL? formulaϕ, our goal is to check
whether the Kripke structureM corresponding toP satisfiesϕ. Our methodology
consists of the following steps:

(1) Generate the initial abstraction.We generate an initial abstractionh by exam-
ining the transition blocks corresponding to the variables of the program. We

1 Note that in the figure a transition ofMc is labelled by a condition (g) referring to the status
of Mt required to perform the transition onMc, that is, green light is required for driving. This
notation reflects the fact that the transition block forMc refers to the status variable ofMt . WhenMt

andMc are composed, no more synchronization between the transition blocks is necessary, and the
labels vanish.
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FIG. 4. Traffic light example.
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FIG. 5. A generic transition block for a concurrent program.

consider the conditions used in thecasestatements and construct variable clus-
ters for variables which interfere with each other via these conditions. Details
can be found in Section 4.2.2.

(2) Model-check the abstract structure.Let M̂ be the abstract Kripke structure
corresponding to the abstractionh. We check whether̂M |= ϕ. If the check is
affirmative, then we can conclude thatM |= ϕ (see Theorem 3.3). Suppose the
check reveals that there is a counterexampleT̂ . We ascertain whether̂T is an
actual counterexample, that is, a counterexample in the unabstracted structure
M . Since the model is finite, this can be achieved by “simulating” the coun-
terexample on the actual model. IfT̂ turns out to be an actual counterexample,
we report it to the user; otherwise,̂T is a spurious counterexample, and we
proceed to step (3).

(3) Refine the abstraction.We refine the abstraction functionh by partitioning a
single equivalence classof≡ so that after the refinement the abstract structure
M̂ corresponding to the refined abstraction function does not admit the spurious
counterexamplêT . We will discuss partitioning algorithms for this purpose in
Section 4.4. After refining the abstraction function, we return to step (2).

4.2. GENERATING THEINITIAL ABSTRACTION

4.2.1. Concurrent Programs. We describe a simple syntactic framework to for-
malize guarded concurrent programs. Common hardware description languages like
Verilog and VHDL can easily be compiled into this language. Aprogram Phas a
finite set of variablesV = {v1, . . . , vn}, where each variablevi has an associated
finite domainDvi . The set of all possible states for programP is Dv1 × · · · × Dvn ,
which we denote byD. Expressionsare built from variables inV , constants in
Dvi , and function symbols in the usual way, for example,v1+ 3. Atomic formulas
are constructed from expressions and relation symbols, for example,v1 + 3 < 5.
Similarly, predicatesare composed of atomic formulas using negation (¬), con-
junction (∧), and disjunction (∨). Given a predicatep, Atoms(p) is the set of
atomic formulas occurring in it. Letp be a predicate containing variables from
V , andd = (d1, . . . ,dn) be an element fromD. Then we writed |= p when
the predicate obtained by replacing each occurrence of the variablevi in p by the
constantdi evaluates to true. Each variablevi in the program has an associated
transition block, which defines both the initial value and the transition relation for
the variablevi , as shown in Figure 5. Here,Ii ⊆ Dvi is the initial expression for the
variablevi , each control flow conditionC j

i is a predicate, andAj
i is an expression

(see Example 2.2). The semantics of the transition block is similar to the semantics
of thecasestatement in the modeling language of SMV, that is, find the leastj such
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that in the current state conditionC j
i is true and assign the value of the expression

Aj
i to the variablevi in the next state.
With each programP we associate an ACTL? specificationϕ whose atomic for-

mulas are constructed from expressions and relation symbols as above. For each
transition blockBi let Atoms(Bi ) be the set of atomic formulas that appear in the
conditions. Let Atoms(ϕ) be the set of atomic formulas appearing in the specifica-
tion ϕ. Atoms(P) is the set of atomic formulas that appear in the specification or
in the conditions of the transition blocks.

Each programP naturally corresponds to a labeledKripke structure M =
(S, I , R, L), whereS = D is the set of states,I ⊆ S is a set of initial states,
R ⊆ S× S is a transition relation, andL: S→ 2Atoms(P) is a labelling given by
L(d) = { f ∈ Atoms(P) | d |= f }. Translating a program into a Kripke structure
is straightforward and will not be described here (see Clarke et al. [1999a]) We use
both D andS to refer to the set of states depending on the context.

4.2.2. Initial Abstraction Function. The rationale behind the abstraction
function we shall define is that we identify two states if they can be distinguished
neither by

(a) atomic subformulas of the specifications, nor by
(b) control flow conditions in the program.

Intuitively, clause (a) will guarantee that the abstraction function is appropriate
for the specification, and clause (b) guarantees that the abstraction function does
not destroy the branching structure of the program. Thus, the initial abstraction
represents a “control flow skeleton” of the original system.

Formally, we define the initial abstraction function as a special case of a slightly
more general definition.

Definition 4.1. LetF be a set of formulas. Given two statesd, e∈ D, d ande
areF-equivalent(d ≡F e) if eandd cannot be distinguished by the formulas inF ,
that is, for all f ∈ F we haved |= f iff e |= f . The corresponding abstraction
function is calledhF .

It is easy to give a general criterion for appropriate abstraction functions:

PROPOSITION 4.2. Letϕ be anACTL? specification, andF ⊇ Atoms(ϕ) be a
set of formulas. Then hF is appropriate forϕ.

PROOF. Suppose thatd ≡F e, but d |= f ande 6|= f , where f ∈ Atoms(ϕ).
Since Atoms(ϕ) ⊆ F , this contradicts the definition of≡F .

The initial abstraction function is constructed in accordance with the intuition
explained above:

Definition 4.3. LetP be a program andϕ be an ACTL? specification. Then the
initial abstraction functioninit is given byhAtoms(P).

Combining this with the definition given in Section 3, we obtain an initial
abstraction function init satisfying

d ≡init e iff hAtoms(P)(d) = hAtoms(P)(e) iff
∧

f ∈Atoms(P)

d |= f ⇔ e |= f.
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COROLLARY 4.4. The abstraction functioninit is appropriate forϕ.

Remark4.5

(i) It follows from Proposition 4.2 that defining init := hAtoms(P) is a de-
sign decisionrather than a technical necessity. If the abstract space ob-
tained in this way is too large, it is possible to replacehAtoms(P) by some
hX whereX is a different superset of Atoms(ϕ). In particular,X may be
derived in accordance with a different strategy than the one mentioned in
clause (b) above. It is even possible to use not only atomic formulas as in
Atoms(P), but also more complicated conditions involving, say, first order
logic. Since we work in finite and typically small domains, such an extension
is feasible.

(ii) Technically, the initial abstraction function described here can be also described
as a predicate abstraction similar to Graf and Sa¨ıdi [1997] in which the abstract
space contains tuples of Boolean variables (b1, . . . ,bN) where Atoms(P) =
{ f1, . . . , fN} and init(d) = (b1, . . . ,bN) iff

∧
1≤i≤N bi ⇔ (d |= fi ). Predicate

abstraction for software, however, typically uses fewer predicates because the
value of eachbi needs to be determined by a decision procedure that can have
very high complexity. Moreover, the symbolic algorithms presented later do
not fit well into the predicate abstraction framework.

4.2.3. Fine Structure of Abstraction Functions.As Example 2.2 shows, the set
of statesSof a Kripke structure is typically obtained as the productD1× · · · × Dn
of smaller domains. A simple way to define abstraction functions is by surjections
hi : Di → D̂i , such thath(d1, . . . ,dn) is equal to (h1(d1), . . . , hn(dn)), and Ŝ is
equal toD̂1 × · · · × D̂n. In this case, we writeh = (h1, . . . , hn), and say thath is
acomposite abstraction functionwith componentsh1, . . . , hn.

The equivalence relations≡i corresponding to the componentshi relate to
the equivalence relation≡h over the entire domainS = D1 × · · · × Dn in the
obvious manner:

(d1, . . . ,dn) ≡h (e1, . . . ,en) iff d1 ≡1 e1 ∧ · · · ∧ dn ≡n en

Remark4.6. Previous work on existential abstraction [Clarke et al. 1994] used
composite abstraction functions that are defined separately for each variable do-
main. Thus,Di in the above paragraph was chosen to beDvi , whereDvi is the set of
possible values for variablevi . Unfortunately, many abstraction functionsh cannot
be described in this simple manner. For example, letD = {0, 1, 2} × {0, 1, 2}, and
D̂ = {0, 1} × {0, 1}. Then there are 49 = 262144 functionsh from D to D̂. Next,
considerh = (h1, h2). Since there are 23 = 8 functions from{0, 1, 2} to {0, 1},
there are only 64 functions of this form fromD to D̂. Thus, the approach of Clarke
et al. [1994] does not exhaust the full power of abstraction functions.

It is easy to see however that the initial abstraction function init defined in
Section 4.2.2 mayin principle exhaust all combinatorial possibilities. Thus, the
initial abstraction function is more general than in Clarke et al. [1994]. As argued
above, it cannot always be represented as a composite abstraction function, and
may therefore become intractable in practice.

It is therefore important to represent the abstraction functions we use as com-
posite abstraction functions to the extent this is possible. To this end, we define
the initial abstraction function in a different way based on the syntactic structure
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of the program, and show then in Theorem 4.8 that this composite abstraction is
equivalent to the abstraction function init defined in Section 4.2.2. In Remark 4.2.3
at the end of this section, we discuss what to do in cases where the abstraction
function cannot be represented as a composite abstraction function.

Assume that we are given a programP with n variablesV = {v1, . . . , vn}.
We partition the setV of variables into sets of related variables calledvariable
clusters VC1, . . . ,VCm, where each variable clusterVCi has an associated domain
DVCi :=∏v∈VCi

Dv. Consequently,D = DVC1 × · · · × DVCm. We define composite
abstraction functions as surjections on the domainsDVCi . If the variable clusters are
singletons, we obtain the composite abstraction functions of Clarke et al. [1994] as
special cases.

Given an atomic formulaf , letvar( f ) be the set of variables appearing inf , e.g.,
var(x = y) is{x, y}. Given a set of atomic formulasU ,var(U ) equals

⋃
f ∈U var( f ).

In general, for any syntactic entityX,var(X) will be the set of variables appearing in
X. We say that two atomic formulasf1 and f2 interfereiff var( f1) ∩ var( f2) 6= ∅.
Let ≡I be the equivalence relation on Atoms(P) that is the reflexive, transitive
closure of the interference relation. The equivalence class of an atomic formula
f ∈ Atoms(P) is called theformula clusterof f and is denoted by [f ]. Let f1 and
f2 be two atomic formulas. Thenvar( f1) ∩ var( f2) 6= ∅ implies that [f1] = [ f2].
In other words, a variablevi cannot appear in formulas that belong to two different
formula clusters. Moreover, the formula clusters induce an equivalence relation≡V
on the set of variablesV in the following way:

vi ≡V v j if and only if vi andv j appear in atomic formulas that belong
to the same formula cluster.

The variable clusters are given by the equivalence classes of≡V . Let
{FC1, . . . ,FCm} be the set of formula clusters and{VC1, . . . ,VCm} the set of
corresponding variable clusters. We construct a composite abstraction functionh
with componentsh1, . . . , hm, where eachhi is defined onDVCi =

∏
v∈VCi

Dv, the
domain corresponding to the variable clusterVCi .

The component abstraction functionshi are defined as follows:

hi (d1, . . . ,dk) = hi (e1, . . . ,ek) iff
∧

f ∈FCi

(d1, . . . ,dk) |= f ⇔ (e1, . . . ,ek) |= f.

In other words, two values are in the same equivalence class if they cannot
be distinguished by atomic formulas appearing in the formula clusterFCi . The
following example illustrates how we construct the abstraction functionh.

Example4.7. Consider the programP with three variablesx, y ∈ {0, 1, 2},
andreset∈ {TRUE,FALSE} shown in Example 2.2. The set of atomic formulas is
Atoms(P) = {(reset= TRUE), (x = y), (x < y), (y = 2)}. There are two formula
clusters,FC1 = {(x = y), (x < y), (y = 2)} and FC2 = {(reset= TRUE)}.
The corresponding variable clusters are{x, y} and{reset}, respectively. Consider
the formula clusterFC1. Values (0, 0) and (1, 1) are in the same equivalence class
because for all the atomic formulasf in the formula clusterFC1 it holds that
(0, 0) |= f iff (1 , 1) |= f . It can be shown that the domain{0, 1, 2} × {0, 1, 2} is
partitioned into a total of five equivalence classes by this criterion. We denote these
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classes by the natural numbers 0, 1, 2, 3, 4, and list them below:

0 = {(0, 0), (1, 1)},
1 = {(0, 1)},
2 = {(0, 2), (1, 2)},
3 = {(1, 0), (2, 0), (2, 1)},
4 = {(2, 2)}.

The domain {TRUE,FALSE} has two equivalence classes—one containing
FALSE and the other TRUE. Therefore, we define two abstraction functions
h1: {0, 1, 2}2 → {0, 1, 2, 3, 4} and h2: {TRUE,FALSE} → {TRUE,FALSE}.
The first functionh1 is given by h1(0, 0) = h1(1, 1) = 0, h1(0, 1) = 1,
h1(0, 2) = h1(1, 2) = 2, h1(1, 0) = h1(2, 0) = h1(2, 1) = 3, h1(2, 2) = 4.
The second functionh2 is just the identity function, that is,h2(reset) = reset.

THEOREM 4.8. M̂h is isomorphic toM̂ init .

PROOF. It is sufficient to show that≡h and≡init are equivalent. LetπV Ci be
the projection function which maps a tupled ∈ D to the subtuple corresponding to
VCi . For eachf ∈ FCi it holds thatd |= f iff πVCi (d) |= f because by definition
all f ∈ FCi depend only on elements ofVCi . Since the formula clusters ofFCi
form a partition of Atoms(P), we obtain

d ≡init e iff∧
f ∈Atoms(P)

d |= f ⇔ e |= f iff∧
1≤i≤m

∧
f ∈FCi

πVCi (d) |= f ⇔ πVCi (e) |= f iff

d ≡h e

by combining the respective definitions.

Remark4.9. Throughout this article, we will use composite abstraction func-
tions based on variable clusters. For actual hardware designs, our experiments have
shown that this approach optimally combines feasibility and expressiveness. Some
comments are in order at this point:

(i) The variable clusters are an artifact of the way we chose to define Atoms(P).
By virtue of Proposition 4.2, we may construct variable clusters based on
supersets of Atoms(ϕ) different from Atoms(P).

(ii) If a variable cluster becomes too big, we may choose to remove formulas from
Atoms(P) \ Atoms(ϕ) in order to split variable clusters. For instance, if we
have a variable cluster{u, v,w, x} obtained from control atomsu = v, v <
w,w = x, we may choose to disregardv < w in order to obtain two variable
clusters{u, v}, {w, x}.

(iii) It is possible to represent this problem by a hypergraph whose vertices are
the variablesV , and whose edges are given by{var( f )| f ∈ Atoms(P)}, that
is, by the variables occurring in the atomic formulas we consider. (In case of
binary relation symbols, the hypergraph will be a graph.) In this setting, the
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problem of finding suitable atoms to split variable clusters amounts to finding
small cuts in the hypergraph.

4.3. MODELCHECKING THEABSTRACTMODEL. Given an ACTL? specification
ϕ, an abstraction functionh (assume thath is appropriate forϕ), and a program
P with a finite set of variablesV = {v1, . . . , vn}, let M̂ be the abstract Kripke
structure corresponding to the abstraction functionh. We use standard symbolic
model checking procedures to determine whetherM̂ satisfies the specificationϕ. If
it does, then by Theorem 3.3 we can conclude that the original Kripke structure also
satisfiesϕ. Otherwise, assume that the model checker produces a counterexample
T̂ corresponding to the abstract modelM̂ . In the rest of this section, we focus on
counterexamples which are either(finite) pathsor loops.

4.3.1. Identification of Spurious Path Counterexamples.First, we tackle the
case when the counterexamplêT is a path〈ŝ1, . . . , ŝn〉. Given an abstract state
ŝ, the set of concrete statess such thath(s) = ŝ is denoted byh−1(̂s), that is,
h−1(̂s) = {s|h(s) = ŝ}. We extendh−1 to sequences in the following way:h−1(T̂)
is the set of concrete paths given by the following expression{

〈s1, . . . , sn〉
∣∣∣∣∣ n∧

i=1

h(si ) = ŝi ∧ I (s1) ∧
n−1∧
i=1

R(si , si+1)

}
.

We will occasionally writeh−1
path to emphasize the fact thath−1 is applied to a

sequence. Next, we give asymbolicalgorithm to computeh−1(T̂). Let S1 =
h−1(ŝ1) ∩ I and R be the transition relation corresponding to the unabstracted
Kripke structureM . For 1 < i ≤ n, we defineSi in the following manner:
Si := Img(Si−1, R) ∩ h−1(ŝi ). In the definition ofSi , Img(Si−1, R) is the for-
ward image ofSi−1 with respect to the transition relationR. The sequence of sets
Si is computed symbolically using OBDDs and the standard image computation
algorithm. The following lemma establishes the correctness of this procedure.

LEMMA 4.10. The following are equivalent:

(i) The patĥT corresponds to a concrete counterexample.

(ii) The set of concrete paths h−1(T̂) is nonempty.
(iii) For all 1≤ i ≤ n, Si 6= ∅.

PROOF

(i) → (ii). Assume thatT̂ corresponds to a concrete counterexampleT =
〈s1, . . . , sn〉. From the definition of̂T , h(si ) = ŝi andsi ∈ h−1(ŝi ) for 1 ≤ i ≤ n.
SinceT is a trace in the concrete model, it has to satisfy the transition relation
and start from initial state, that is,R(si , si+1) ands1 ∈ I . From the definition of
h−1(T̂), it follows thatT ∈ h−1(T̂).
(ii) → (i). Assume thath−1(T̂) is nonempty. We pick a trace〈s1, . . . , sn〉 from
h−1(T̂). Then〈h(s1), . . . , h(sn)〉 = T̂ , and thereforêT corresponds to a concrete
counterexample.
(ii)→ (iii). Assume thath−1(T̂) is not empty. Then there exists a path〈s1, . . . , sn〉
whereh(si ) = ŝi ands1 ∈ I . Therefore, we haves1 ∈ S1. Let us assume that
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FIG. 6. An abstract counterexample.

si ∈ Si . By the definition ofh−1(T̂), si+1 ∈ Img(si , R) and si+1 ∈ h−1(ŝi+1).
Therefore,si+1 ∈ Img(Si , R) ∩ h−1(ŝi+1) = Si+1. By induction, Si 6= ∅,
for i ≤ n.
(iii) → (ii). Assume thatSi 6= ∅ for 1 ≤ i ≤ n. We choose a statesn ∈ Sn and
inductively construct a trace backward. Assume thatsi ∈ Si . From the definition
of Si , if follows thatsi ∈ Img(Si−1, R) ∩ h−1(ŝi ) andSi−1 is not empty. Selectsi−1
from Si−1 such that (si−1, si ) ∈ R. There is such andsi−1 since every state insi is
a successor of some state inSi−1. From the definition ofSi−1, Si−1 ⊆ h−1(ŝi−1).
Hence,si−1 ∈ h−1(ŝi−1). By induction,s1 ∈ S1 = h−1(ŝ1) ∩ I . Therefore, the
trace〈s1, . . . , sn〉 that we have constructed satisfies the definition ofh−1(T̂). Thus,
h−1(T̂) is not empty.

Suppose that condition (iii) of Lemma 4.10 is violated, and leti be the largest
index such thatSi 6= ∅. Thenŝi is called thefailure stateof the spurious counterex-
ampleT̂ .

Example4.11. Consider a program with only one variable with domainD =
{1, . . . ,12}. Assume that the abstraction functionh mapsx ∈ D to b(x−1)/3c+1.
There are four abstract states corresponding to the equivalence classes{1, 2, 3},
{4, 5, 6}, {7, 8, 9}, and {10, 11, 12}. We call these abstract states1̂, 2̂, 3̂, and4̂.
The transitions between states in the concrete model are indicated by the arrows in
Figure 6; small dots denote nonreachable states. Suppose that we obtain an abstract
counterexamplêT = 〈̂1, 2̂, 3̂, 4̂〉. It is easy to see that̂T is spurious. Using the
terminology of Lemma 4.10, we haveS1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {9}, and
S4 = ∅. Notice thatImg(S3, R) and thereforeS4 are both empty. Thus,̂s3 is the
failure state.

It follows from Lemma 4.10 that ifh−1(T̂) is empty (i.e., if the counterexample
T̂ is spurious), then there exists a minimali (2 ≤ i ≤ n) such thatSi = ∅. The
symbolic AlgorithmSplitPATH in Figure 7 computes this number and the set of
statesSi−1; the states inSi−1 are calleddead-endstates. After the detection of the
dead-end states, we proceed to the refinement step (see Section 4.4). On the other
hand, if the conditions stated in Lemma 4.10 are true, thenSplitPATH will report
a “real” counterexample and we can stop.

4.3.2. Identification of Spurious Loop Counterexamples.Now we consider
the case when the counterexamplêT includes a loop, which we write as
〈ŝ1, . . . , ŝi 〉〈ŝi+1, . . . , ŝn〉ω. The loop starts at the abstract statêsi+1 and ends at
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FIG. 7. SplitPATH checks if an abstract path is spurious.

FIG. 8. A loop counterexample, and its unwinding.

ŝn. Since this case is more complicated than the path counterexamples, we first
present an example in which some of the typical situations occur.

Example4.12. We consider a loop〈ŝ1〉〈ŝ2, ŝ3〉ω as shown in Figure 8. In or-
der to find out if the abstract loop corresponds to concrete loops, we unwind the
counterexample as demonstrated in the figure. There are two situations where cy-
cles occur. In the figure, for each of these situations, an example cycle (the first
one occurring) is indicated by a fat dashed arrow. We make the following impor-
tant observations:

(i) A given abstract loop may correspond to several concrete loops ofdifferent
size.

(ii) Each of these loops may start at different stages of the unwinding.
(iii) The unwinding eventually becomes periodic (in our caseS0

3 = S2
3), but only

after several stages of the unwinding. The size of the period is the least common
multiple of the size of the individual loops, and thus, in generalexponential.

We conclude from the example that a naive algorithm may have exponential time
complexity due to an exponential number of loop unwindings. The following the-
orem however shows that a polynomial number of unwindings is sufficient. (In
Section 6, we indicate further practical improvements.) Let min be the minimum
size of all abstract states in the loop, that is, min= mini+1≤ j≤n|h−1(ŝj )|. T̂unwind

denotes the finite abstract path〈ŝ1, . . . , ŝi 〉〈ŝi+1, . . . , ŝn〉min+1, that is, the path ob-
tained by unwinding the loop part of̂T min times.

THEOREM 4.13. The following are equivalent:

(i) T̂ corresponds to a concrete counterexample.
(ii ) h−1

path(T̂unwind) is not empty.
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PROOF. We start with some easy observations. LetT̂ = 〈ŝ1, . . . , ŝi 〉
〈ŝi+1, . . . , ŝn〉ω be an abstract loop counterexample. For an indexj , let j+ de-
note its successor index in the counterexample, that is,j+ = j + 1 for j < n, and
n+ = i + 1.

Recall thatR is the transition relation of the Kripke structure. By definition, the
elements ofh−1(T̂unwind) are all the finiteR-pathsP of the form〈

a1, . . . ,ai , b1
i+1, . . . ,b

1
n, . . . ,b

min+1
i+1 , . . . ,bmin+1

n

〉
(∗)

for which the following two properties hold:

(i) aj ∈ h−1(ŝj ) for all j ∈ [1, i ], and

(ii) bk
j ∈ h−1(ŝj ) for all ( j, k) ∈ [i + 1, n] × [1,min+ 1].

Each such pathP has lengthL := i + (min+1)× (n− i ), and we can equivalently
write P in the form

〈d1, . . . ,dL〉 (∗∗)
with the properties

(i) d1 ∈ h−1(ŝ1), and
(ii) for all j < L, if dj ∈ h−1(ŝk), thendj+1 ∈ h−1(ŝk+).

Recall that min was defined to be the size of the smallest abstract state in the loop,
that is, min{|h−1(ŝi+1|, . . . , |h−1(ŝn)|}, and letM be the index of an abstract state
ŝM such that,|h−1(ŝM )| = min. (Such a state must exist, because the minimum
must be obtained somewhere.)

(i)→ (ii). Suppose there exists a concrete counterexample. Since the counterex-
ample contains a loop, there exists aninfinite R−path I = 〈c1, . . . , 〉 such that
c1 ∈ h−1(ŝ1), and for all j , if cj ∈ h−1(ŝk), thencj+1 ∈ h−1(ŝk+). In accordance
with (∗∗), the finite prefix〈c1, . . . , cL〉 of I is contained inh−1

path(T̂unwind), and thus,
h−1

path(T̂unwind) is not empty.

(ii) → (i). Suppose thath−1
path(T̂unwind) contains a finiteR-pathP.

CLAIM . There exists a state that appears at least twice in P.

PROOF OFCLAIM . Suppose P is in form (∗). Consider the states
b1

M , b
2
M , . . . ,b

min+1
M . By (∗), all bk

M are contained inh−1(ŝM ). By definition
of M , however,h−1(ŝM ) contains only min elements, and thus there must be at
least one repetition in the sequenceb1

M , b
2
M , . . . ,b

min+1
M . Therefore, there exists a

repetition in the finiteR-pathP, and the claim is proved.

Let us now writeP in form (∗∗), that is,P = 〈d1, . . . ,dL〉, and let a repetition
be given by two indicesα < β, such thatdα = dβ . Because of the repetition,
there must be a transition fromdβ−1 to dα, and therefore,dα is the successor
state ofdβ−1 in a cycle. We conclude that〈d1, . . . ,dα−1〉〈dα, . . . ,dβ−1〉ω is a
concrete counterexample.

We conclude that loop counterexamples can be reduced to path counterexam-
ples. In Figure 9, we describe the algorithmSplitLOOP which is an extension of
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FIG. 9. SplitLOOP checks if an abstract loop is spurious.

FIG. 10. Three setsSD,SB, andSI .

SplitPATH . In the algorithm,̂Tunwind is computed by the subprogramunwind. The
subprogramLoopIndex( j ) computes the index of the abstract state at positionj
in the unwound counterexamplêTunwind, that is, for j ≤ n, LoopIndex outputs j ,
and for j > n, LoopIndex outputs [(j − (i + 1) mod (n− i )] + (i + 1).

If the abstract counterexample is spurious, then the algorithmSplitLOOP outputs
a setSprev and indicesk, p, such that the following conditions hold (see Figure 10):

(1) The states inSprev correspond to the abstract statêsp, that is,Sprev⊆ h−1(ŝp).

(2) All states inSprev are reachable fromh−1(ŝ1) ∩ I .
(3) k is the successor index ofp within the loop, that is, ifp = n thenk = i + 1,

and otherwisek = p+ 1.
(4) There is no transition from a state inSprev to h−1(ŝk), that is,Img(Sprev, R) ∩

h−1(ŝk) is empty.
(5) Therefore,̂sp is the failure state of the loop counterexample.

Thus, the final situation encountered is indeed very similar to the case of path
counterexamples. Note that the nontrivial feature of the algorithmSplitLOOP is
the fact that only min unwindings of the loop are necessary.

Remark4.14. While the procedure of this section gives an exact picture of the
situation to be solved, more efficient algorithms are used in our practical imple-
mentation (see Section 6).

4.4. REFINING THE ABSTRACTION. In this section, we explain how to refine
an abstraction to eliminate the spurious counterexample. Recall the discussion
concerning Figure 3 in Section 3 where we identified deadend states, bad states,
and irrelevant states.

First, we will consider the case when the counterexampleT̂ = 〈ŝ1, . . . , ŝn〉 is a
path. Let us return to a previous example for a closer investigation of failure states.
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Example4.15. Recall that in the spurious counterexample of Figure 6, the
abstract statê3 was thefailure state. There are three types of concrete states in the
failure statê3:

(i) Thedead-end state9 is reachable, but there are no outgoing transitions to the
next state in the counterexample.

(ii) The bad state7 is not reachable but outgoing transitions cause the spurious
counterexample. The spurious counterexamples is caused by the bad state.

(iii) The irrelevant state 8 is neither dead-end nor bad.

The goal of the refinement methodology described in this section is to refineh
so that the dead-end states and bad states do not correspond to thethe sameabstract
state. Then the spurious counterexample will be eliminated.

If T̂ does not correspond to a real counterexample, by Lemma 4.10 (iii) there
always exists a setSi of dead-end states, that is,Si ⊆ h−1(ŝi ) with 1 ≤ i < n
such thatImg(Si , R) ∩ h−1(ŝi+1) = ∅ and Si is reachable from initial state set
h−1(ŝ1) ∩ I . Moreover, the setSi of dead-end states can be obtained as the output
Sprev of SplitPATH . Since there is a transition from̂si to ŝi+1 in the abstract model,
there is at least one transition from abadstate inh−1(ŝi ) to a state inh−1(ŝi+1) even
though there is no transition fromSi to h−1(ŝi+1), and thus the set of bad states is
not empty. We partitionh−1(ŝi ) into three subsetsSD, SB, andSI as follows:

Name Partition Definition
dead-end states SD Si

bad states SB {s ∈ h−1(ŝi )|∃s′ ∈ h−1(ŝi+1).R(s, s′)}
irrelevant states SI h−1(ŝi ) \ (SD ∪ SB)

Intuitively, SD denotes the set of dead-end states, that is, states inh−1(ŝi ) that
are reachable from initial states.SB denotes the set of bad states, that is, those
states inh−1(ŝi ) that are not reachable from initial states, but have at least one
transition to some state inh−1(ŝi+1). The setSB cannot be empty since we know
that there is a transition fromh−1(ŝi ) to h−1(ŝi+1). SI denotes the set of irrelevant
states, that is, states that are not reachable from initial states, and do not have a
transition to a state inh−1(ŝi+1). SinceSB is not empty, there is a spurious transition
ŝi → ŝi+1. This causes the spurious counterexampleT̂ . Hence in order to refine the
abstractionh so that the new model does not alloŵT , we need a refined abstraction
function which separates the two setsSD andSB, that is, we need an abstraction
function, in which no abstract state simultaneously contains states fromSD and
from SB.

It is natural to describe the needed refinement in terms of equivalence relations:
Recall thath−1(ŝi ) is an equivalence class of≡ which has the formE1× · · ·× Em,
where eachEi is an equivalence class of≡i . Thus, the refinement≡′ of ≡ is
obtained by partitioning the equivalence classesEj into subclasses, which amounts
to refining the equivalence relations≡ j . Formally, we say that≡′ is a refinement
of ≡ if for all j ∈ [1,m] it holds that≡′j⊆≡ j , and write≡′⊆≡ in this case. We
assume that all refining relations are supersets of the equality relation= given by
{(s, s) | s ∈ S}.
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FIG. 11. Two possible refinements of an Equivalence Class.

Thesize of the refinementis the number of new equivalence classes. Ideally, we
would like to find the coarsest refinement that separates the two sets, that is, the
separating refinement with the smallest size.

Example4.16. Assume that we have two variablesv1, v2. The failure state
corresponds toone equivalence class E1 × E2, whereE1 = {3, 4, 5} and E2 =
{7, 8, 9}. In Figure 11, dead-end statesSD are denoted by 0, bad statesSB by 1, and
irrelevant states byx.

Let us consider two possible partitions ofE1× E2 :

—Case (a) :{(3, 4), (5)} × {(7), (8), (9)} (6 classes)
—Case (b) :{(3), (4, 5)} × {(7, 9), (8)} (4 classes)

Clearly, case (b) generates a coarser refinement than case (a). It can be easily
checked that no other refinement is coarser than (b).

In general, the problem of finding the coarsest refinement problem is computa-
tionally intractable. The proof of the following result is given in Section 5.

THEOREM 4.17. The problem of finding the coarsest refinement is NP-hard.

We therefore need to obtain a good heuristics for abstraction refinement. Inspect-
ing the proof of Theorem 4.17, we see that the hardness proof heavily exploits the
existence of irrelevant states. We will therefore first consider the case whenSI is
empty.

In this case, we show that there exists a unique coarsest refinement which can
be computed in polynomial time by a symbolic algorithm. Consider the algorithm
PolyRefineof Figure 12. The algorithm assumes a composite abstraction function
with equivalence relations≡1, . . . ,≡m over domainS = D1 × · · · × Dm. States
are described bym-tuples (d1, . . . ,dm). Given a setX ⊆ S, an index j ∈ [1,m],
and an elementa ∈ Dj , the projection set proj(X, j,a) is given by

proj(X, j,a) = {(d1, . . . ,dj−1, dj+1, . . . ,dm) |
(d1, . . . ,dj−1, a, dj+1, . . . ,dm) ∈ X}.
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FIG. 12. The algorithmPolyRefine.

The special cases ofj = 1 and j = m are defined in the obvious way. The algo-
rithm computes new equivalence relations≡′1, . . . ,≡′j . Here, we view equivalence
relations as sets of pairs of states, as subsets ofS× S.

The following lemma shows that the condition proj(SD, j,a) 6= proj(SD, j, b)
in the algorithm isnecessary.

LEMMA 4.18. Suppose thatSI = ∅. If there exist a, b ∈ Dj such that
proj(SD, j,a) 6= proj(SD, j, b), then every refinement≡′⊆≡ must distinguish a
and b, that is, a6≡′j b.

PROOF. We show the following equivalent statement: If there exista, b ∈
Dj such that proj(SD, j,a) 6= proj(SD, j, b) and a ≡′j b, then ≡′ does
not separateSD and SB. Without loss of generality, assume that there exists
(d1, . . . ,dj−1, dj+1, . . . ,dm) ∈ proj(SD, j,a)\proj(SD, j, b). According to the def-
inition of proj(SD, j,a), s1 = (d1, . . . ,dj−1,a, dj+1, . . . ,dm) ∈ SD and s2 =
(d1, . . . ,dj−1, b, dj+1, . . . ,dm) 6∈ SD. SinceSI = ∅, it follows thats2 ∈ SB.

It is easy to see thats1 ≡′ s2 becausea ≡′j b by assumption, anddi ≡′i di for
all i . We conclude that≡′ does not separateSD andSB.

Next we show that indeed the necessary condition is also sufficient to obtain
a refinement.

LEMMA 4.19. WhenSI = ∅, the relation≡′ computed byPolyRefine is an
equivalence relation which refines≡ and separatesSD andSB.

PROOF. The algorithmPolyRefinecomputes

≡′j = ≡ j −{(a, b) : proj(SD, j,a) 6= proj(SD, j, b)

= {(a, b) : a ≡ j b∧ proj(SD, j,a) = proj(SD, j, b)}
= {(a, b) : a ≡ j b∧ ∀d1, . . . ,dm.

(d1, . . . ,dj−1,a, dj+1, . . . ,dm) ∈ SD ↔
(d1, . . . ,dj−1, b, dj+1, . . . ,dm) ∈ SD}

Using the last identity of this equation, reflexivity, symmetry and transitivity of
each≡′j can be easily observed. Hence≡′ is an equivalence relation.

Now, we show that≡′ is a correct refinement, that is, that for all dead-end states
d ∈ SD and bad statesb ∈ SB it holds thatd 6≡′ b. Let b andd be such states, and
assume towards a contradiction, thatb ≡′ d. Recall thatb andd correspond to the
same abstract failure statêsi , henceh(b) = h(d) = ŝi , andb ≡ d.

By construction,b andd have the formb = (b1, . . . ,bm), d = (d1, . . . ,dm)
where for alli ∈ [1,m], bi anddi are inDi . Consider the sequencex1, . . . , xm+1
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of states constructed as follows:

x1 = (b1, b2, . . . ,bm) = b
x2 = (d1, b2, . . . ,bm)

...
xm = (d1, . . . ,dm−1, bm)

xm+1 = (d1, . . . ,dm) = d.

All xi are concrete states corresponding to the failure state, because by as-
sumption h(b) = h(d), hencehi (bi ) = hi (di ) for all 1 ≤ i ≤ m. Thus,
h(xj ) = (h(b1), . . . , h(bm)) = ŝi . In particular, allxi are equivalent with respect
to≡.

Let us considerb = x1 and x2. Sinceb ≡′ d, we know thatb1 ≡′1 d1. By
definition of≡′1, this means that proj(SD, 1, b1) = proj(SD, 1, d1), that is, for all
d2, . . . ,dm it holds that

x1 = (b1, b2, . . . ,bm) ∈ SD iff x2 = (d1, b2, . . . ,bm) ∈ SD.

Analogously, let us now consider any two neighboring statesxi , xi+1 in this
sequence. Then the statesxi andxi+1 only differ in theiri th component. As above,
we conclude that proj(SD, i, bi ) = proj(SD, i, di ), and therefore

xi ∈ SD iff xi+1 ∈ SD.

By this chain of equivalences it follows thatb = x1 ∈ SD iff d = xm+1 ∈ SD. This
contradicts our assumption thatb ∈ SB andd ∈ SD.

COROLLARY 4.20. For SI = ∅, the equivalence relation≡′ computed by
PolyRefineis the coarsest refinement of≡ which separatesSD andSB.

PROOF. By Lemma 4.19, we know that≡′ is a correct refinement. By
Lemma 4.18, all correct refinements are refinements of≡′.

Remark4.21. Note that in symbolic presentation, the projection operation
proj(SD, j,a) amounts to computing a generalized cofactor, which can be eas-
ily done by standard BDD methods. Given a functionf : D → {0, 1}, a gen-
eralized cofactor off with respect tog = (

∧q
k=p xk = dk) is the function

fg = f (x1, . . . , xp−1, dp, . . . ,dq, xq+1, . . . , xn). In other words, fg is the pro-
jection of f with respect tog. Symbolically, the setSD is represented by a function
fSD: D → {0, 1}, and therefore, the projection proj(SD, j,a) of SD to valuea of
the j th component corresponds to a cofactor offSD.

Let us now return to the general case whereSI is not empty.

COROLLARY 4.22. If SI is not empty, the relation≡′ computed byPolyRefine
is an equivalence relation refining≡ which separatesSD andSB ∪ SI .

This gives rise to the following heuristic relaxation that we use in our
implementation:

REFINEMENTHEURISTICS. We use the algorithmPolyRefineto find the coarsest
refinement that separates the setsSD andSB∪SI . The equivalence relation computed
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byPolyRefinein this manner is in general not optimal, but it is a correct refinement
which separatesSD andSB, and eliminates the spurious counterexample.

Remark4.23. While this heuristic has given good results in our practical ex-
periments, there is some flexibility here how to use the states inSI . In particular,
one can also separateSD∪SI fromSB, or associate the elements ofSI heuristically
to eitherSD or SB.

Since in accordance with Theorem 4.13, the algorithmSplitLOOP for loop
counterexamples works analogously toSplitPATH , the refinement procedure for
spurious loop counterexamples works analogously, that is, it usesSplitLOOP to
identify the failure state, andPolyRefineto obtain a heuristic refinement.

Our refinement procedure continues to refine the abstraction function by par-
titioning equivalence classes until a real counterexample is found, or the ACTL?

property is verified. The partitioning procedure is guaranteed to terminate since each
equivalence class must contain at least one element. Thus, our method is complete.

THEOREM 4.24. Given a model M and anACTL? specificationϕ whose coun-
terexample is either path or loop, our algorithm will find a modelM̂ such that
M̂ |= ϕ ⇔ M |= ϕ.

5. Complexity of Optimal Abstraction Refinement

Recall that, in Figure 11, we have visualized the special case of two variables and
two equivalence relations in terms of matrices. In order to formally capture this
visualization, let us define theMatrix Squeezingproblem.

Definition 5.1. Matrix Squeezing. Given a finite matrix with entries 0, 1, x
and a constant0, is it possible to construct a matrix with≤ 0 entries by iterating
the following operations:

(1) Merging two compatible rows.
(2) Merging two compatible columns.

Two columns arecompatible, if there is no position, where one column contains
1 and the other column contains 0. All other combinations are allowed, that is,x
does not affect compatibility.Merging two compatible columns means replacing
the columns by a new one which contains 1 at those positions where at least one
of the two columns contained 1, and 0 at those positions, where at least one of the
two columns contained 0. For rows, the definitions are analogous.

Since this is a special case of the refinement problem, it is sufficient to show
NP-hardness forMatrix Squeezing. Then it follows that the refinement problem
is NP-hard, too, and thus Theorem 4.17 is proved.

As mentionedMatrix Squeezing is easy to visualize: If we imagine the symbol
x to be transparent, then merging two columns can be thought of as putting the
two (transparent) columns on top of each other.Column Squeezingis a variant of
Matrix Squeezing, where only columns can be merged:

Definition 5.2. Column Squeezing.Given a finite matrix with entries 0, 1, x
and a constant1, is it possible to construct a matrix with≤ 1 columnsby iterated
merging ofcolumns?
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The proof will be by reduction from problem GT15 in Garey and Johnson [1979]:

Definition 5.3. Partition Into Cliques. Given an undirected graph (V, E) and
and a numberK ≥ 3, is there a partition ofV into k ≤ K classes, such that each
class induces a clique on (V, E)?

THEOREM5.4 [KARP 1972]. Partition Into Cliques is NP-complete.

THEOREM 5.5. Column Squeezingis NP-complete.

PROOF. Membership is trivial. Let us consider hardness. We reducePartition
Into Cliques to Column Squeezing. Given a graph (V, E) and a numberK , we
have to construct a matrixM and a number1 such thatM can be squeezed to
size≤ 1 iff ( V, E) can be partitioned in≤ K cliques.

We construct a (|V |, |V |) matrix (ai, j ) which is very similar to the adjacency
matrix of (V, E):

ai, j =


1 if i = j
0 if (i, j ) 6∈ E, i 6= j
x if ( i, j ) ∈ E, i 6= j

Assume without loss of generality thatV = {1, . . . ,n}. Then it is not hard to
see that for alli, j ∈ V , columnsi and j are compatible iff (i, j ) ∈ E, since by
construction we included 0 in the matrix only to forbid merging of columns.

By construction, (V, E) contains a cliqueC with verticesc1, . . . , cl , if the
columnsc1, . . . , cl can all be merged into one. (Note however that compatibility is
not a transitive relation. The existence of a clique only guarantees that all positions
in all columns in the clique are compatible with the corresponding positions in the
other columns in the clique.)

Thus, (V, E) can be partitioned into≤ K cliques, iff the columns of (ai, j ) can
be merged into≤ K columns. Setting1 = K concludes the proof.

THEOREM 5.6. Matrix Squeezing is NP-complete.

PROOF. Membership is trivial. We show hardness by reducingColumn
Squeezingto Matrix Squeezing. For an integern, let |bin(n)| denote the size
of the binary representation ofn. Given an (n,m) matrix M and a number1, it is
easy to construct an (n+ 1,m+ |bin(m− 1)|) matrix B(M) by adding additional
columns toA in such a way that

(i) all rows of B(M) become incompatible, and
(ii) no new column is compatible with any other (new or old) column.

An easy construction to obtain this is to concatenate the rows ofM with the
binary encodings of the numbers 0, . . . ,m− 1 over alphabet{0, 1}, such that the
i th row is concatenated with the binary encoding of the numberi − 1. Since any
two different binary encodings are distinguished by at least one position, no two
rows are compatible. In addition, we add ann+1st row that contains 1 on positions
in the original columns, and 0 on positions in the new columns. Thus, in matrices
of the formB(M), only columns that already appeared inM (with an additional 0
symbol below) can be compatible.

It remains to determine0. We set0 := (1+ |bin(m− 1)|)× (n+ 1). The term
|bin(m− 1)| takes into account that we have added|bin(m− 1)| columns, and the
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FIG. 13. An instance ofPartition into Cliques , and its reduction images.

factor (n+ 1) takes into account that1 is counting columns, while0 is counting
matrix entries.

Example5.7. Figure 13 demonstrates how a graph instance is reduced to a
matrix instance. Note for example that{1, 2, 3} is a clique in the graph, and therefore,
the columns 1, 2, 3 of the Column Squeezingproblem are compatible. In the
Matrix Squeezing Instance, Columns 7, 8, 9 enforce that no rows can be merged.
Row 7 guarantees that columns 7, 8, 9 can not be merged with columns 1, . . . ,6 or
with themselves.

Remark5.8. It is highly unlikely that there are PTIMEapproximationalgo-
rithms for computing the size of an optimal abstraction refinement. [Bellare et al.
2003] have shown that no polynomial time algorithm can approximate the chro-
matic number of a graph (V, E) within |V |1/7−ε for anyε > 0 unless P= NP. It is
easy to see that there is a metric reduction between the chromatic number problem
and the problem of computing the size of an optimal abstraction refinement for two
variable clusters. (Note thatPartition Into Cliques is reducible toGraph Coloring
by a trivial reduction which maps a graph to its complement.) Thus, nonapproxima-
bility of optimal abstraction refinement follows. Under the assumption that coRP
is different from RP, an even stronger nonapproximability result for computing
chromatic number has been shown by Feige and Kilian [1996]. A rigorous proof of
these observations exceeds the scope of this article and is omitted. Since there are
no approximation algorithms, we have to rely on heuristics to solve the abstraction
refinement problem.
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FIG. 14. A spurious loop counterexample〈̂1, 2̂〉ω.

6. Performance Improvements

The symbolic methods described in Section 4.2.3 can be directly implemented
using BDDs. Our implementation uses additional heuristics that are outlined in this
section.

Two-phase Refinement Algorithms.Consider the spurious loop counterexample
T̂ = 〈̂1, 2̂〉ω of Figure 14. AlthougĥT is spurious, the concrete states involved in
the example contain an infinite path〈1, 1, . . . 〉which is a potential counterexample.
Since we know that our method is complete, such cases could be ignored. Due to
practical performance considerations, however, we came to the conclusion that the
relatively small effort to detect additional counterexamples is justified as a valuable
heuristic. For a general loop counterexampleT̂ = 〈 ŝ1, . . . , ŝi 〉〈 ŝi+1, . . . , ŝn〉ω, we
therefore proceed in two phases:

(i) We restrict the model to the state spaceSlocal := (
⋃

1≤i≤n h−1(ŝi )) of the coun-
terexample and use the standard fixpoint computation for temporal formulas
(see, e.g., Clarke et al. [1999a]) to check the property on the Kripke structure
restricted toSlocal. If a concrete counterexample is found, then the algorithm
terminates.

(ii) If no counterexample is found, we useSplitLOOP andPolyRefineto compute
a refinement as described above.

This two-phase algorithm is slightly slower than the original one if we do not
find a concrete counterexample; in many cases, however, it can speed up the search
for a concrete counterexample. An analogous two phase approach is used for finite
path counterexamples.

Approximation. Recall from the discussion on early approximation in Sec-
tion 3.1 that the transition relationR of a large model is often partitioned [Clarke
et al. 1999a] into transition relationsR1, . . . , Rn, where eachRi is the transition
relation for a single variable in the system. The abstract transition relation is over-
approximated by the relation

T (R) = (R1)h ∧ · · · ∧ (Rn)h ⊇ Rh,

yielding a Kripke structureM̃T . The transitions in the set differenceT − Rh are
calledvirtual transitions.

As illustrated by Example 3.7, the disadvantage of early approximation is that
the virtual transitions inM̃T may obscure important behavior, cf. also Clarke et al.
[1999].

Recall from Section 4.2.3 that in our approach the composite abstraction function
is defined for each variable cluster independently. Therefore, we can use a heuristic
to determine for each variable clusterVCi , if early approximation should be applied
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or if the abstraction function should be applied in an exact manner. Our method has
the advantage that it balances over-approximation and memory usage. Moreover, the
overall method presented in our paper remains complete with this approximation.

Assume that we havek variable clustersVC1, . . . ,VCk, and thatT1, . . . , Tk are
the transition relations corresponding to the variable clusters.

Let Tcombined
i be the abstraction ofTi according to the heuristics, that is, if we

do not abstractVCi , then Tcombined
i = Ti , otherwise, we setTcombined

i = (Ti )h,
and defineT combined(R) = (T1)combined∧ · · · ∧ (Tk)combined. We call this abstraction
combined approximation. The proof of the following lemma is transparent.

LEMMA 6.1. Combined approximation is intermediate between existential ab-
straction and early approximation, that is,

R⊆ T combined(R) ⊆ T (R).

Our method remains complete, because during the symbolic simulation of the
counterexample the algorithmsSplitPATH andSplitLOOP treat both forms of
over-approximations, that is, virtual transitions and spurious transitions, in the
same way.

Abstractions for Distant Variables.In addition to the methods of Section 4.2.2,
we completely abstract away variables whose distance from the specification in the
variable dependency graphis greater than a user-defined constant. Note that the
variable dependency graph is also used for this purpose in the localization reduc-
tion [Balarin and Sangiovanni-Vincentelli 1993; Kurshan 1994; Lind-Nielsen and
Andersen 1999] in a similar way. However, the refinement process of the localiza-
tion reduction [Kurshan 1994] can only turn a completely abstracted variable into a
completely unabstracted variable, while our method uses intermediate abstraction
functions.

A user-defined integer constantfar determines which variables are close to the
specificationϕ. The setNEAR of near variables contains those variables whose
distance from the specification in the dependency graph is at mostfar, andFAR =
var(P)− NEAR is the set of far variables. For variable clusters without far variables,
the abstraction function remains unchanged. For variable clusters with far variables,
their far variables are completely abstracted away, and their near variables remain
unabstracted. Note that the initial abstraction for variable clusters with far variables
looks similar as in the localization reduction.

7. Experimental Results

We have implemented our methodology in NuSMV [Cimatti et al. 1998] which uses
the CUDD package [Somenzi 2003] for symbolic representation. We performed two
sets of experiments. One set includes four benchmark designs and three industrial
designs from Synopsys. The other was performed on an industrial design of a
multimedia processor from Fujitsu [1996]. All the experiments were carried out on
a 200 MHz PentiumPro PC with 1 GB RAM memory using Linux.

7.1. EXPERIMENTS ON BENCHMARK CIRCUITS. The first benchmark set in-
cludes four publicly available designs and three industrial designs. Properties of
these designs are described in Table I. In the table, the second column (#Var) shows
the number of symbolic variables in the designs, while the third column (#Reg)
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TABLE I. PROPERTIES OF THEGIVEN

BENCHMARK DESIGNS

Design #Var #Reg #Spec
gigamax 10 16 1
guidance 40 55 8
waterpress 6 21 8
PCI bus 50 89 15
ind1 72 72 1
ind2 101 101 1
ind3 190 190 1

TABLE II. RUNNING RESULTS FOR THEBENCHMARK DESIGNS

Design NuSMV+COI NuSMV+ABS
#COI Time |TR| |MC| #ABS Time |TR| |MC|

gigamax 0 0.3 8346 1822 9 0.2 13151 816
guidance 30 35 140409 30467 34–39 30 147823 10670
waterpress 0–1 273 34838 129595 4 170 38715 3335
PCI bus 4 2343 121803 926443 12–13 546 160129 350226
ind1 0 99 241723 860399 50 9 302442 212922
ind2 0 486 416597 2164025 84 33 362738 624600
ind3 0 617 584815 2386682 173 15 426162 364802

shows the corresponding number of the Boolean variables. For example, a sym-
bolic variable whose domains has size eight corresponds to three Boolean variables.
Therefore, the number of Boolean variables is always larger or equal to the number
of symbolic variables. Overall, 37 specifications are considered in this benchmark.

The results for these designs are listed in Table II. Note that average time and
space usage per design are reported in this table. In the table, the performance for an
enhanced version of NuSMV with cone of influence reduction (NuSMV + COI )
and our implementation (NuSMV + ABS) are compared. The columns #COI and
#ABS contain the number of symbolic variables which have been abstracted using
the cone of influence reduction (#COI), and our initial abstraction (#ABS). The
column “Time” denotes the accumulated running time to verify all #Prop properties
of the design.|TR| denotes the maximum number of BDD nodes used for building
the transition relation.|MC|denotes the maximum number ofadditionalBDD nodes
used during the verification of the properties. Thus,|TR| + |MC| is the maximum
BDD size during the total model checking process. For the larger examples, we use
partitioned transition relations by setting the BDD size limit to 10000.

We also report the relative time and space difference between our approach
and traditional cone of influence reduction in Figure 15 and Figure 16. In the
figures, thex axis corresponds to the number of properties andy axis corresponds
to the relative time and space difference respectively (Time(COI)/Time(Abs) and
Space(COI)/Space(Abs)). Although our approach uses less than 50% more memory
than the traditional cone of influence reduction tobuild the abstract transition
relation, it requires one order of magnitude of memory less duringmodel checking.
This is an important achievement since the model checking process is the most
difficult task in verifying large designs. More significant improvement is further
demonstrated by the Fujitsu IP core design.
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FIG. 15. The Relative Time (Time(COI)/Time(ABS)) Improvement.

FIG. 16. The Relative Space (Space(COI)/Space(ABS)) Improvement.

7.2. DEBUGGING AMULTIMEDIA PROCESSOR. As another example, we verified
a multimedia assist (MMA-ASIC) processor developed by Fujitsu [1996]. The
system configuration of this processor is shown in Figure 17 [Takayama et al.
1998]. A dashed line represents a chip boundary. MM-ASIC is connected to a host
CPU and external I/O units via “Bus-H”, and to SDRAMs via “Bus-R”. MM-ASIC
consists of a co-processor for multimedia instructions (MMA), a graphic display
controller (GDC), peripheral I/O units, and five bus bridges (BBs).
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FIG. 17. Configuration of MMA-ASIC.

FIG. 18. Control signals on “Bus-M”.

It is one of the characteristics of a system-on-chip that the design contains bus
bridges, because the components of the system may have different interface pro-
tocols or different frequencies of operation. Bus bridges are used to construct a
bus hierarchy according to the locality of transactions. MM-ASIC consists of the
following five bus bridges.

—“BB-I” and “BB-H”. These separate Bus-M from Bus-H and Bus-I, since the
bus frequency of Bus-M is different from that of Bus-H and Bus-I.

—“BB-S”. This separates the transactions between GDC and SDRAM from those
between MMA and host CPU, since they are major transactions in MM-ASIC.

—“BB-R”. This resolves the difference between the protocols of Bus-R and Bus-S.
—“Bus-M”. This separates Bus-M from the local bus of MMA.

The RTL implementation of MM-ASIC is described in Verilog-HDL. The total
number of lines of code is about 61,500. The verification is targeted to verify the
correctness of the bus transactions. Therefore, three operational units, peripheral
I/Os, MMA, and GDC are omitted. After this elimination of the units, the number
of registers is reduced to about 4000. Fujitsu engineers then abstracted away the
data path which is not useful for our verification task. The final description contains
about 500 latches.

Figure 18 shows some control signals and controllers within bus bridges. BB-H,
BB-I and BB-M contains a DMA controller “DMAC” which controls a DMA
transfer between SDRAM and a component, such as an external/internal IO and
MMA. BB-H contains another controller “HSTC” which controls a data transfer
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between a host and all components except the external IOs. BB-R asserts “FreeS”
when it can accept a request from Bus-S. BB-S asserts “FreeW” (“FreeR”) when it
can accept a write (read) request from Bus-M. A bus transaction on Bus-M consists
of the following four phases.

—Arbitration phaseis the first cycle when a bus master asserts a request signal.
When more than one master requests, only the master with the highest priority
goes into request phase in the next cycle. “ReqS”, “ReqM”, and “ReqI” are
request signals on Bus-M for DMA transfer from/to SDRAM. The signals are
asserted by BB-H, BB-M, and BB-I respectively. “ReqH” is a request asserted by
BB-H for normal (non-DMA) data transfer. The requests are ordered by priority
as follows:ReqM≺ ReqI≺ ReqS= ReqH.

—Request phaseis the next cycle after the arbitration phase. A bus master passes
the address and other control signals to a bus slave.

—Ready phaseis the cycle were the data is ready to be transferred. “DenO” (“DenI”)
is asserted when the write (read) data is ready to transfer in the next cycle.

—Transfer phaseis the next cycle after the ready phase. “Pack” is asserted when
the data is transferred between BB-H and a bus bridge, such as BB-M and BB-I,
in the next cycle. Data is transferred between a master and a slave.

In Takayama et al. [1998], the authors verified this design using a “navigated”
model checking algorithm in which state traversal is restricted by navigation con-
ditions provided by the user. Therefore, their methodology is not complete, that
is, it may fail to prove the correctness even if the property is true. Moreover, the
navigation conditions are usually not automatically generated. Since our model
checker can only accept the SMV language, we translated this abstracted Verilog
code into 9,500 lines of SMV code.

In order to compare our model checker to others, we tried to verify this design
using two state-of-the-art model checkers—Yang’s SMV [Yang et al. 1998] and
NuSMV [Cimatti et al. 1998]. We implemented the cone of influence reduction for
NuSMV, but not for Yang’s SMV. Both NuSMV+COI and Yang’s SMV failed to
verify the design.On the other hand, our system abstracted144symbolic variables
and using three refinement steps was successfully able to verify the design. During
the verification, we discovered a bug that had not been discovered before.

8. Conclusion and Future Work

We have presented a novel abstraction refinement methodology for symbolic model
checking. The advantages of our methodology have been demonstrated by experi-
mental results. We are currently applying our technique to verify other large exam-
ples. We believe that our technique is general enough to be adapted to other forms
of abstraction.

There are many interesting avenues for future research: Our current work con-
centrates on two directions: First, we are extending the refinement methodology
to full ACTL. This requires to extend the notion of counterexamples beyond paths
and loops. Results in this direction are reported in Clarke et al. [2001]. Since the
symbolic methods described in this paper are not tied to representation by BDDs,
we are also investigating how they can be applied to recent work on symbolic model
checking without BDDs [Biere et al. 1999].
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Appendix

A. Background Material

If f is a state formula, the notationM, s |= f means thatf holds at states in the
Kripke structureM . Similarly, if f is a path formula,M, π |= f means thatf holds
along pathπ in M . The relation|= is defined recursively as follows (assuming that
f1 and f2 denote state formulas andg1 andg2 denote path formulas):

M, s |= p ⇔ p ∈ L(s);
M, s |= ¬ f1 ⇔ M, s 6|= f1;
M, s |= f1 ∧ f2 ⇔ M, s |= f1 andM, s |= f2;
M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2;
M, s |= E g1 ⇔ there existsπ = 〈s, . . . 〉 such thatM, π |= g1;
M, s |= A g1 ⇔ for everyπ = 〈s, . . . 〉 it holds thatM, π |= g1;
M, π |= f1 ⇔ π = 〈s, . . . 〉 andM, s |= f1;
M, π |= ¬g1 ⇔ M, π 6|= g1;
M, π |= g1 ∧ g2 ⇔ M, π |= g1 andM, π |= g2;
M, π |= g1 ∨ g2 ⇔ M, π |= g1 or M, π |= g2;
M, π |= X g1 ⇔ M, π1 |= g1;
M, π |= F g1 ⇔ ∃k ≥ 0, such thatM, πk |= g1;
M, π |= G g1 ⇔ ∀k ≥ 0,M, πk |= g1 holds
M, π |= g1 U g2 ⇔ ∃k ≥ 0, such thatM, πk |= g2 and∀0≤ j < k, it holds

that M, π j |= g1.

M, π |= g1 R g2 ⇔ ∀ j ≥ 0, if for every i < j , M, π i 6|= g1 then
that M, π j |= g1.

An ordered binary decision diagram(BDD) is an efficient data-structure for
representing boolean functions, and moreover, BDDs support all the operations that
can be performed on boolean functions. LetA be a set of propositional variables,
and≺ a linear order onA. Formally, an ordered binary decision diagramO over
A is an acyclic graph (V, E) whose nonterminal vertices (nodes) are labeled by
variables fromA, and whose edges and terminal nodes are labeled by 0, 1. Each
nonterminal nodev has out-degree 2, such that one of its outgoing edges is labeled
0 (thelow edgeorelse-edge), and the other is labeled 1 (thehigh edgeor then-edge).
If v has labelai and the successors ofv are labeledaj , ak, thenai ≺ aj andai ≺ ak.
In other words, for each path, the sequence of labels along the path is strictly
increasing with respect to≺. Each BDD nodev represents a Boolean functionOv.
The terminal nodes ofO represent the constant functions given by their labels. A
non-terminal nodev with labelai whose successors at the high and low edges are
u andw respectively, defines the functionOv := (ai ∧ Ou) ∨ (¬ai ∧ Ow). The
size of a BDD is the number of nodes of the BDD. The size of a BDD in general
depends on the variable order≺, and may be exponential in|A|. However, it is well-
known [Bryant 1986; Bryant 1991] that for every variable order≺ and Boolean
function f there exists aunique minimalBDD O over A which represents the
Boolean functionf . Given any BDD for f which respects≺,O can be computed
in polynomial time. Note thatO contains at most two terminal nodes, and no two
nodes ofO describe the same Boolean function. In practice,shared BDDsare used
to represent several Boolean functions by different nodes in the graph. Effective
algorithms for handling BDDs have been described in the literature [Bryant 1986]
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and highly effective BDD libraries such as CUDD [Somenzi 2001] have been
developed.
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