Automatic verification of asynchronous
circuits using temporal logic

D.L. Dill, M.S., and E.M. Clarke, Ph.D.

Indexing terms: Circuit theory and design

Abstract: A method is presented for automatically verifying asynchronous sequential circuits using temporal
logic specifications. The method takes a circuit described in terms of Boolean gates and Muller elements, and
derives a slate graph that summarises al possible circuit executions resulting from any set of finite delays on the
outputs of the components. The correct behaviour of the circuit is expressed in CTL, a temporal logic. This
specification is checked against the state graph using a ‘model checker’ program. Using this method, a timing
error in a published arbiter design is discovered. A corrected arbiter is given and verified.

1 Introduction

Any sequential digital circuit built from nontrivial sub-
circuits must ensure that timing constraints among the
subcircuits are satisfied. The most widely used technique
for doing this is synchronous circuit design, where a global
signal (e.g. a clock) is shared among all the subcircuits. The
use of such a signal simplifies circuit design, as the speeds
of component circuits do not need to be considered, pro-
vided the clock is slow enough.

An alternative is to use asynchronous design. Instead of
a global signal, some other means is used to determine
when a subcircuit computation is complete. Asynchronous
design is more difficult than synchronous design and is
much less widely used.

This is unfortunate, Distributing a global clock signal
that must appear almost simultaneously at all parts of a
circuit becomes increasingly more difficult as more com-
ponents are packed onto VLSI chips. Asynchronous
designs can reduce this problem by being more moduiar:
for example, a subcircuit can provide an explicit com-
pletion signal only to the other circuits that use its
outputs.

Additionally, asynchronous circuits are sometimes
faster than synchronous circuits, Suppose that one circuit
computes a result that is used by another. In an asynchro-
nous design the second circuit can proceed immediately
when the result from the first circuit is available. In a syn-
chronous design the second circuit must wait for a clock
signal, which is timed to assume the worst-case delay for
the first circuit,

Why is asynchronous design so difficult? Because the
circuit may perform different sequences of actions depend-
ing on the relative delays of its components, delays that
may not be known or may even vary with time. When
even a few components are operating concurrently, the
circuit designer must consider a large number of cases to
be sure that the circuit works properly. This is a tedious,
counterintuitive and error-prone process.

Methods to debug and check combinational and
sequential circuits are not as helpful for asynchronous cir-
cuits. Building a working prototype does not adequately
assure correctness, as component delays in other instances
of the same circuit may differ from those of the prototype.
The same problems plague all existing simulators: They
can only simulate the circuit under a small set of assumed
delays in the components and input signals.

This paper describes a general method for verifying

Paper 4759E (E2), first received 25th April and in revised form 5th December 1985

The authors are with the Department of Computer Science, Carnegie-Mallon Uni-
versity. Pittsburgh PA 15213, USA

276

asynchronous circuits. We propose that the correct behav-
ior of a circuit be specified using temporal logic. The spe-
cification can be checked automatically against a gate-level
description of the circuit. If no violation of the specifi-
cation is detected, the circuit designer can be confident
that the circuit will perform according to the specification
for all relative gate delays. If the circuit fails to meet its
specification, the verifier provides a counter example to
help the designer isolate the problem,

We also describe an application of this technique to a
published design for an asynchronous arbiter. The verifier
discovered a set of relative delays which could cause the
circuit to fail. A corrected version of the same circuit has
been successfully verified using the same specification.

In Section 2 of this paper we describe the language for
specifying the correct behaviour of circuits, It is a proposi-
tional temporal logic, a logical system for reasoning about
the ordering of conditions in time. This Section also
describes a program, the model checker, that checks tempo-
ral logic formulas against a state graph.

Section 3 describes the functional behaviour of the
example arbiter. This Section also presents various parts of
the temporal logic specification of the arbiter and explains
them informally. For example, we specify that the arbiter
interfaces obey the four-cycle signalling convection, that
the arbiter provides proper mutual exclusion between two
uscrs and that the arbiter is responsive to requests.

Section 4 explains the gate-level circuit descriptions.
The circuit is written as a collection of primitive com-
ponents connected with wires. The predefined primitive
components are Boolean gates and two additional com-
ponents: Muller C and ME elements (the second provides
mutual exclusion). A flow-table semantics for these primi-
tives is described that allows for arbitrary finite delays on
the gate outputs. The state graph representing a circuit,
which can be used as input to the model checker of Section
2, is defined using these flow tables.

Section 5 describes the gate-level implementation of the
original arbiter. The verification of the arbiter and the
liming problem we discovered are discussed. We give a
corrected circuit that can be verified.

We conclude with a discussion of the role we envision
for this technique and some directions for future research.

2 Logic and model checker

To verify a circuit, we need a language in which to specify
the correct behaviour. We have chosen to use a proposi-
tional temporal logic called CTL. Propositional logic is well
established as a good formalism for specifying digital
systems. CTL is traditional propositional logic with addi-
tional connectives for talking about the future states of a

IEE PROCEEDINGS. Vol. 133, Pt. E. No. 5. SEPTEMBER 1986

circuit. Uhe additional connectives provide a means for
specifying sequential behaviour,

There is a program for checking CTL specifications
against a finite state graph, called EMC (extended model
checker). If the CTL formula is false in the state graph,
EMC will show a counterexample, if possible, in the form
of a sequence of states that violates it [3].

EMC is a general purpose CTL verifier. There are
several preprocessors that translate various special-
purpose representations into state graphs which are used
as input to EMC. There are translators for a CSP-like lan-
guage for describing finite-state programs, 4 language for
behavioural descriptions of synchronous sequential cir-
cuits. and a gate-level language for structural descriptions
of asynchronous circuits. The results reported here were
obtained using the last of these.

In this paper we use a subset of CTL and a somewhat
different notation from that actually used in the model
checker. We now describe the syntax and semantics of our
dialect. We assume the existence of an underlying set of
atomic propositions 4 P. The formulas of CTL are

{i) any atomic proposition p € AP is a CTL formula

(ii) if f and g are CTL formulas —f, fA g, fUq, Gf. and Ff
are CTL formulas.

The symbols 71 and A have their usual meanings. In addi-
tion to these formulas. we use the abbreviations [V ¢ and
f—y for (M fA—g) and T fATg). Intuitively, Uy
(read *f until ¢*) means that f must always be true until g
becomes true. 1t is permissible for g never to be true if f
remains true forever: this is a ‘weak’ rather than a ‘strong’
until. G/ means that /is true in every state (globally true).
and Ff means that f is eventually true somewhere along
every sequence of states (true at some future time).

The semantics of CTL are defined more precisely in
terms of truth in a structure. A CTL structure is a state
graph consisting of:

(i) a finite set of states S

(i) a function L € [S » #2(AP)]. which labels the states
with atomic propositions

(iii) a transition relation R e § x §

(1v) a start state. s;.

We require that every state have at least one successor.

A path from s. where 5, € S. is an infinite sequence of
states that starts with s; and in which R holds between
every stale and its successor. We define formally what it
means for a formula {to be rrue in a state s;. This is written
SES.

s;Epiffpe Lis) (forpe AP)

s;EfAg iff s;Ff and siky

e i sl

s;EfUy iff Tor every path from s, either (i) there exists a
state s, such that s,ky and for all states s; preceding s,.

s;Ef, or (i1} for all states s; on the paths, s;Ff

s;EGf iff for every state 5; on every path from s, s;F/f.

s;=Ff iff there exists a state s; on every path from s such
that s;F/.

A formula is true in a state graph iff the formula is true in

fug Gt Ff
Fig. 1 CTL formulas and state graphs in which they are true

JEE PROCEEDINGS. Vol 133. Pr. E. No. 5. SEPTEMBER 1956

sy. Fig. | shows some examples of CTL formulas and state
graphs in which they are true.

EMC is a program that checks whether a formula is
true in a state graph. The algorithm processes a formula
bottom up. checking the shortest subformulas before
checking the subformulas that contain them. When it
checks each subformula f; it labels every state in the graph
with [if [is true in the state. Thus. when EMC is pro-
cessing a formula it can treat the subformulas as atomic
propositions. Processing any of the modal or propositional
connectives requires at most a single depth-first traversal
of the state graph, so the time to check a formula is pro-
portional to the size of the state graph and size of the
formula. In practice. EMC can check formulas on graphs
with several hundred states in less than 10 seconds.

Frequently. we want to consider only fair execution
sequences. For example. we may wish to consider only
those executions in which some process that is contin-
uously enabled eventually fires. The semantics of CTL
have been modified slightly to allow this. The user can
provide a set of fairness constraints, each of which is an
arbitrary CTL formula. A path is defined to be pair with
respect to a set of fairness constraints if each constraint
holds infinitely often along the states of the path. The path
quantifiers are restricted to fair paths. The addition of fair-
ness constraints does not significantly reduce the speed of
EMC [3]. In Section 4, we use fairness constraints to limit
the fair paths to those in which all gates exhibit finite
switching delays.

3 Specification of the arbiter

This Section explains the function of the arbiter and gives
a temporal logic specification for it. An arbiter grants a
resource to no more than one of several ‘users’ in case they
request the resource simultancously. A typical use of such
a device is to negotiate access to a memory shared among
several processors. The arbiter design given here was orig-
inally proposed by Seitz [8]. Seitz’s design was later speci-
fied with temporal logic and verified by hand by
Bochmann [1], who found some potential timing errors
resulting from misprints in the original paper. The design
we present inciudes Bochman's modifications to correct
these problems.

The arbiter is intended to co-ordinate two users (see
Fig. 2). When it grants the resource to one of the two
users, it first activates a ‘transfer module’ associated with
that user. The transfer module prepares parameters for a
single ‘resource module’ (representing the shared resource)
which is activated after the transfer module has finished.

Many of the verification conditions which follow appear
in some form in the Bochman paper mentioned before.
There is no direct correspondence because different logics
and circuit semantics are used.

We only require that the arbiter meet its specification
when it is properly used. In particular, all circuits con-
nected to the arbiter must conform to a specific signaling
convention. Each module explicitly signals requests and
completion by use of four-cycle signalling (also called
Muller signalling). There are five four-cycle interfaces in the
block diagram of Fig. 2.

In this protocol, two wires, r (request) and a
(acknowledge), are used to connect a client module to a
server module. (These are generic signal names; we leave it
to the reader to substitute the actual signal names for each
of the interfaces.) Initially the signal on both wires is 0. The
client makes a request by raising r. Eventually the server
acknowledges the request by raising a. The client then

277

lowers r and the server lowers a. At this point the interface
is back in the original state awaiting a request from the
user (see Fig. 3).

TR1 TA1
UR1
Ut fyas
SA
RBITER
ARBITE spi 8
UR2
U2 fyaz
&
TR2 | TA2
T2
Fig. 2 Arbiter block diagram
request

acknowledge

Fig. 3 Four-cycle timing diagram

We do not require the user modules, Ul and U2, to
make a request, but we do require that they respond to an
acknowledge: When the server raises a in response to r
going high, the user must inevitably lower r. The server
modules, T1, T2 and S, must inevitably raise and lower a
in response to the raising and lowering of r.

When the arbiter acts as a server (as it does for Ul and
U2), it must satisfy

Gla— (aU—r)] (1)
and
G[a— (— alr)] (2)

When it is acting as a client (as with T1, T2, and S), it must
satisfy

G[r— (rUa)] (3)
and
G[—r— (—rU—a)] 4)

We also wish to ensure that once the arbiter has acknowl-
edged a request, or has had a request acknowledged, the
rest of the four-cycle convention will inevitably be carried
out:

G[{r/\a)ﬂF(ﬁr/_la)] (5)

In the remainder of this Section, we sometimes omit trail-
ing 1s and 2s on signal names. Any formula with such
names represents (wo formulas: one in which 1 has been
appended to all the short names and one in which 2 has
been appended.

278

We require that every request to T1 or T2 be properly
motivated by a request from Ul or U2; it is unacceptable
for there to be an activation of T1 or T2 without a request
from the corresponding user module, or for there to be
multiple activations of Tl and T2 to service a single
request. Furthermore, we require that the users wait if they
have not been granted the resource; the arbiter must not
acknowledge a user unless the arbiter has committed to
activating the corresponding T module.

G[(ur A—aa)— —er] (6)

G[tr—(— trlur)] (7)

Gllur N tr)— [trU(—trU— ur)]} (8)
and

G[(ur A—ua)— (Mua Utr)]. (9)

The first formula says that tr is 0 if there is no user request
in progress. The second requires that tr stay 0 until there is
a user request. (At first, it may appear that this formula is
implied by the first formula. It is not: The second formula
covers the case where ua is high because a previous request
has not been completely processed.) The third formula
states that if tr has gone to 1 in response to ur going to |,
then tr will not go to 0 and to | again until after ur has
gone to 0 (at most one request to the appropriate T
module for each user request). The final condition requires
the arbiter not to acknowledge the user until tr has been
raised (ie. the resource has been granted to the user).
(These four properties are not given in the Bochman
paper.)

We assume that the T modules compute inputs for S,
and that the arbiter must wait until T has finished comput-
ing these signals before sending a request to S. We also
assume that the T modules signal the completion of the
parameter computation by raising ta and that T will keep
the parameters stable until ¢r is lowered. Hence, the arbiter
must raise tr, wait until T raises ta, raise sr and wait until
S raises sa before lowering tr. These conditions are
expressed by

G{msr— [TsrUtal V ta2)]) e
and
Glir— (1rUsa)] "

These conditions also imply that requests to S cannot
occur without a request to T1 or T2, and that a new
request to T1 or T2 cannot occur until S has dealt with the
previous request on that module.

The essential property of the arbiter is that at most one
of Ul and U2 may be granted the resource at the same
time. We write this as

Glrrl — [r2Uerl A—sa)]) (12)
and
G{tr2 — [CtrlU(—tr2 A1 sa)]) (13)

With the exception of the last four-cycle condition, none of
the properties so far requires the arbiter to make progress
at any point in processing a request; they merely require
that if the arbiter does attempt to respond to a request, it
does so correctly. We would like to be able to show that
every user request will eventually be acknowledged

G[(ur A—ua)— Fua) (14)

Unfortunately, it seems that proving this property for arbi-
ters similar to this example requires stricter timing

IEE PROCEEDINGS, Vol. 133, Pt. E. No. 5,SEPTEMBER 1986

assumptions than we use. [t always appears to be possible
for one user to be denied service forever because the
arbiter choses to process repeated requests from the other
user. It may be able to verify this property using another
circuit model (c.g. a model that gives explicit delays for
various components), but for this model we must be satis-
fied with the weaker requirement that one of the requesting
users will inevitably be served

Gil{url A—uab)V(ur2 A—ua2)} — Flual vV wa2)} (15)

Coupled with the four-cycle convention and the require-
ment that a user not be acknowledged until it is served,
this guarantees that some user will inevitably be served.
Note that if U2 stops making requests after being served,
requests from U1l will inevitably be served. Thus, pre-
emption by U2 is the only way that Ul can be per-
manently denied service.

4 Circuit semantics

This Section discusses the formal model of gate-level cir-
cuits used in the verification technique. Our model is a
modified version of the flow tables traditionally used in the
analysis of asynchronous sequential circuits.

At any time a circuit has a set of input values, an inter-
nal state and a set of output values. If the input values
change, the circuit may change to another state after an
aribtrary delay. The output signals reflect the internal state
immediately. Thus, Boolean gates act like Boolean func-
tions with arbitrary nonzero delays on the outputs.

The input to the circuit-to-state-graph translator is a
syntactic description of the circuit. The description gives
the names of the wires and gates and indicates how the
wires are connected to the inputs and outputs of the gates.
Each of the gates has a prototypical flow table which is
instantiated by substituting the actual wire names for the
appropriate inputs and outputs. This process is straightfor-
ward and is not discussed further. The Aow tables are then
‘glued together’ into a global state graph.

Given a finite set W of names of wires, a flow table
consists of

(@) a set of input wires [= W

(b) a set of output wires O = W

(c) aset of states C

{d) a transition function T e [[I— {0, 1}] x C—2(O)]

(e) a stability predicate P e [[I— {0, 1}] x C— {t,f}]

(f) an output function N e [C— [0 — {0. 1}]].

For every x € [1 — {0, 1}] and every y € C we require that
y € T(x, y). This provides the arbitrary delay property as
the circuit always has the option of staying in its current
state.

Flow tables can be summarised in diagrams such as
those in Fig. 4, which gives the complete set of flow tables
used in the arbiter example. The left-hand box in each
diagram represents the transition function: Input assign-
ments are labelled on the top, and states (numbered
arbitrarily) are labelled on the left side. Each square in this
box contains the set of possible successor states, given the
current state and input values corresponding to the square
(every state is implicitly a successor to itself). There is a
circle in a square if the stability predicate is true for that
input assignment and state. The output box has states
along the left-hand side and outputs along the top.

These differ from traditional How tables in the meaning
of the stability predicate. A particular combination of an
input assignment and a state is stable if and only if the

[EE PROCEEDINGS. Vol. 133. Pt. E.Neo. 5. SEPTEMBER 1986

circuit is allowed to stay in that configuration forever. If a
configuration is not stable, the circuit may stay in that
configuration arbitrarily long, but the delay must be finite.

AB
00011011 C
ol |1 i
stote | [5000 =t
A8 OR
00011011 C
state OOOA m AdD—DC
1o]ofoD) B
AND
AB
00 01 10 11 %
ol OO0 1 | [0 4
state 1[0 OOO lu BI)—DC
C
AB
00011011 C D
o0l 22| [olo] A é
state 1010020 [1]0
200100101 [o]1] B o
ME
A 1 R Ro 1 a
oI AiD olO1] [o R:D
oo [R 1e A
USER SERVER
Fig. 4 Flow tables

Hence, a configuration which has no exiting transitions is
necessarily stable. A configuration with exiting transitions
may or may not be stable. If it is not stable, the circuit
must eventually take one of these transitions unless the
input changes; if the configuration is stable, the circuit is
allowed either to stay in it forever or to exit.

The stability predicate is needed to enforce reasonable
circuit behaviour. For example, an AND gate with inputs
00 and output 1 must change values eventually; otherwise
many obvious circuit properties are impossible to verify.

Another novel aspect of this flow-table model is that it
allows simultaneous signal changes in inputs and outputs.
Most discussions of asynchronous circuits assume that
only one signal can change at any time. Although it is
unreasonable for the correct behaviour of an asynchro-
nous circuit to depend on two signals changing simulta-
neously, a general verification technique should be able to
discover failures that can only occur in the case of simulta-
neous signal changes.

In Fig. 4, the tables for AND and OR gates should be
self-explanatory. The C element is often used in asynchro-
nous circuits to wait for the completion of all of several
concurrent operations before proceeding to the next oper-
ation. The circuit exhibits hysteresis: When the inputs dis-
agree, the circuit holds its current output and does not
change until all of the inputs have values opposite to the
output.

The heart of the arbiter is the ME element (mutual
exclusion element, also called an interlock). This circuit
never allows both of its outputs to be high. When the
inputs are both low, so are the outputs. When one of the
inputs is high, the corresponding output will eventually go
high. When an input and the corresponding output are
both high, the output stays high until the input goes low.
Most interestingly, when both inputs are high and the
outputs are both low, the ME element has the option of
raising cither. but not both, of the outputs. This is an addi-
tional source of non-determinism in the arbiter besides the

279

varying speeds of the gates. Also, note that the outputs of
the ME element can go to either 00 or 0] when the inputs
go from 10 to 01.

Another interesting circuit is the USER. This circuit
simulates the most general behaviour of a user module. We
can verify a USER circuit only when the interfaces behave
reasonably (in this case, they must obey the four-cycle
protocol). Unlike the others, this circuit has a transition
leaving a stable state. With this table, the USER can either
gencrate a request or not (note that the user musr even-
tually lower the request if it has been acknowledged). Aside
from the stability predicate, this table is identical to that
for an inverter.

To verify a circuit, we must be able to combine the
behaviours of the primitive components of the circuit into
a state graph. We are given a description of the circuit as a
set of primitive components (in this case the components
of Fig. 4). The connections between the components are
encoded in the input and output sets for each component:
Inputs and outputs that are wired together have the same
name. In a well-formed circuit one gate output at most can
be connected to a set of inputs, although any number of
inputs can be connected.

To build the state graph, we further require that every
input be connected to an output. Any circuit can be con-
verted to this form by adding circuits to simulate input
sources. We provide circuits to simulate Ul, U2, T1, T2
and S in our example.

We define a large state graph from which we remove
irrelevant states to give the actual state graph. We index
the k component circuits by | < i < &, In general, we refer
to the parts of component i by subscripting their names
(e.g. the transition function for component i is T;).

We define a state vector to be a vector of length k which
has a member of C, as its ith element, for all i, We take the
set of states S of the state graph to be the set of all state
vectors. A vector of component states is designated to rep-
resent the start state, s, (the user determines an initial state
for the circuit).

Given a function f € [S— T, we write the restriction of
JtoS cSasfig. Letsbe any state vector, and let s; be its
ith element (a member of C). s determines
re[W—10.1}] such that tlg, = Nids) for all
components i. This represents the combined outputs of the
component circuits. v is unique because every wire is con-
nected to an output. The state is labelled with the names of
the wires to which v assigns 1.

We can use the wire values ¢ and the transition func-
tions T; for the individual components to find the suc-
cessors in the global state graph. Formally, v|,, gives an
input assignment for each component i. The set of suc-
cessors to s 1s the set of all state vectors s’ such that, for all
i, ;€ T{vl;, s;), where 5; is the ith element of s'. This
defines R, the transition relation for the state graph,

This state graph has many irrelevant states. The final
equivalent, and much smaller, state graph is obtained by
restricting it to the states reachable from o

Remember that each flow-table state is a successor of
itself. In any state there is a set of active components that
have the option of changing state. Because of the nature of
the computation of R there is a successor state vector for
every combination of components that changes state and
every component that stays in the same state. In this way
the state graph represents all possible relative delays
between changes of component states.

The algorithm to build the state graph starts with an
initial state vector, then builds the graph in a recursive,
depth-first manner. As each state is created it is stored with

280

ils state vector in a hash table. For cach new state the
algorithm finds the combined output function (v, above),
the successor states for each component and the set of
state vectors for the successors.

There is one additional problem in the state graph.
Every state has itself as a successor (from the case where
all component circuits stay in the same state). If we want
to be able to verify properties such as the last formula of
Section 3, we need to force the model checker not to con-
sider paths in which a component stays in an unstable
configuration forever, For this we find fairness constraints
to be necessary.

For each state in each component machine i we invent
a unique label . Let s be the state vector for any state, let
5; be its ith element, and let » be the combined output func-
tion, as defined above. We label s with I'if and only if
P,-(l’i;l., si) :f

We then supply a fairness constraint to the model
checker that requires / to be Jalse infinitely often. In this
way, the fair paths are those in which 4 gate must leave an
unstable state infinitely often. The model checker will only
consider these paths when checking a formula,

We have recently become aware of work by Muller in
which a similar notion of fairness, using generalised
regular expressions, is used to capture the semantics of
arbitrary yet finite delays in infinite circuit executions
(although the term “fairness’ is not used) [7]. Our solution
is somewhat more general than Muller’s, as it allows in-
finite delays in states that have outgoing transitions (such
as the USER element) and applies to circuit elements other
than Boolean gates (such as the C and ME elements). Of
course, the application to circuit verification is new.

5 Implementation and verification of the arbiter

In this Section, we present and explain the implementation
of the arbiter from Boolean gates and Muller elements,
describe the verification of the circuit and the problem it
detected and present a corrected circuit,

The circuit shown in Fig. 5 was originally presented by
Seitz. with some errors in transcription [8]. The errors
were detected by a verification attempt by Bochmann [17,
and the corrections were described there. This circuit
incorporates the corrections described by Bochmann.

TR1 TAY

TR2 TAZ

Fig. 5 Original arbiter implementation

IEE PROCEEDINGS. Vol. 133, Pt E. No. 3. SEPTEMBER 1986

Initially, the verification of this circuit ran into diffi-
culties because the global state graph was very large.
When the program ran out of memory. there were more
than 10000 states in the partially constructed state graph.

Before abandoning this approach, we tried to verify the
model with only Ul making requests, by substituting a
dummy circuit for U2, Any failure detected under these
conditions would be a failure under the more general situ-
ation where both users make requests. The resulting state
graph was manageable (160 states). To our surprise. the
model checker detected a failure in the circuit even under
these conditions.

The error is a violation of the four-cycle interface with
T1. Suppose that the arbiter starts in the state where all
nodes are 0 and responds to a request from Ul. After the
arbiter has almost completed processing this request, it is
possible for it to be in the state where all nodes are low
except meol. which remains high (due to a long delay in
the ME element). If at this point Ul raises url again,
ANDI! will raise tr1. Now, if meil has not yet risen in
response to url (because of a long delay in OR1), it is pos-
sible for meol to fall and for ANDI to respond by lower-
ing trl. But tal never goes high! EMC detects a sequence
of states exhibiting this behaviour, and gives it as a
counterexample to formula 3 (G[r — (rUa)]).

Charles Seitz has indicated to us that the arbiter was
designed with the assumption that the delay between ua
going high and ur going low would be long relative to the
internal signals of the arbiter. This assumption was not
stated in the original paper due to an oversight. Although
we have not attempted to verify the arbiter with this con-
straint, we believe that it would meet our specifications.

How did Bochmann successfully verify this circuit? He
used a more forgiving circuit model: Boolean gates were
assumed to respond immediately to their inputs, and the
output of the ME gate was assumed to fall immediately
when its input falls, Under these assumptions our failing
scenario does not occur because meol could not be high
when url is raised again. (In fact. the CTL versions of veri-
fication conditions given by Bochmann are true in the
state graph he gives for the circuit.) Our model is more
strict: for this design it is not toe strict because the design
was intended to be speed independent.

Seitz has supplied us with several alternative designs
that are correct according to our specifications. The circuit
of Fig. 6 is the simplest of these. This simplicity is gained

TR1 TAl
UAl
SA
AND1
URY MEN MEO1
-— |
uaz SR
ME OR3 —
UR2 MEI2 MEO2 UAl
T Q—L
[

TR2 TA3
Correct arbiter

Fig. 6

IEE PROCEEDINGS, Vol 133, Pr. £E. No. 5. SEPTEMBER 1986

at the cost of some concurrency (and probably also speed):
The “return to zero' transitions of the four-cycle interfaces
with the T! or T2 and S modules are intended to be con-
current in the first circuit. but in this circuit tal must go to
zero before sr does. The gates ANDI and AND2 prevent
the arbiter from triggering both T modules in some cir-
cumstances. Consider the case where Ul has requested the
resource. Eventually, the arbiter will reach a state where
ual has been raised (tal and sa will be high). If url goes
low and wr2 goes high before ual goes low, AND2 pre-
vents tr2 from being signalled. This prevents a variety of
unfortunate events. including, possibly, a violation of the
four-cycle interface with the S module.

The modified circuit has been fully verified using the
techniques here. Interestingly, even with both users intact,
the state graph for the second circuit consists of only 62
states. EMC required about 3 s to check formula 15. It is
interesting to note that correct arbiters with more com-
ponents than the original have state graphs with fewer
than 200 states [4]; we have often noticed that correct cir-
cuits have state graphs of quite reasonable size, whereas
incorrect circuits have enormous state graphs.

It took less than a minute to construct the global state
graph from the circuit description; we believe that this
could be improved considerably by eliminating low-level
implementation inefficiency (e.g. our Lisp system calls a
procedure for every array access).

6 Conclusions and future research

We have presented a practical method for assuring the
correctness of small speed-independent circuits. We believe
that being able to verify small circuits is valuable in its
own right. As we hope to have demonstrated with the ari-
biter example, small circuits can both be useful and diffi-
cult. Furthermore, a likely approach for larger circuits is
multilevel verification. which would have verification of
small gate-level subcircuits as one component.

Perhaps a more orthodox approach would have been to
use temporal logic to describe the circuit components (in
addition to using it as a specification language). We prefer
our approach for two reasons: first, although temporal
logic is appropriate for specifications of large circuits, we
feel that flow tables provide a more natural way to
describe the operation of small circuit elements than tem-
poral logic. Secondly. the relevant decision procedures for
temporal logic are substantially more complicated that the
algorithms for constructing and checking models. and,
consequently, are likely to be slower in practice.

However. it would be desirable to use the same formal-
ism for describing circuit components and for specifi-
cations. This would simplify hicrarchical verification of .
large, modular circuits: Once the ‘important’ properties of
a circuit had been verified, the circuit could be treated as a
primitive in larger circuits, using its specification as its
description. We arc currently investigating the use of
automata for circuit descriptions and for specifications. We
hope that this work will eventually yield a more uniform,
compositional formalism, perhaps in the spirit of CCS [5].

Another area for further work is that of alternative
timing models. The arbitrary gate delay model is very con-
servative. The use of more liberal timing models could
result in more economical circuits, both in time and area.
One such model is the ‘almost equal delay’ model, in
which a ratio is specified between the delay of the slowest
gate and the delay of the fastest gate [2].

Finally, there is the problem of assuring the correctness
and completeness of a specification. We see no full solution

281

to this problem, although we hope that some guidelines for
important properties to check will emerge when there has
been more experience with this type of verification. As we
hope our example has demonstrated, automatic verifica-
tion can be a powerful debugging technique even when
there is no guarantee of the correctness of the logical spe-
cification.

7 Acknowledgments

We would like to thank Chuck Seitz for providing several
examples of correct arbiters and for comments on our veri-
fication results. Randy Bryant and Mary Sheeran provided
valuable comments on earlier drafts of this paper. We are
also grateful to Chris Hanna for technical editing of an
earlier version of this paper.

This research was supported by NSF Grant Number
MCS-82-16706.

8 Refarences

| BOCHMANN, G.V.: ‘Hardware specification with temporal logic: an
example’, 1EEE Trans., 1982, C-31,(3), pp. 223-231

282

e

wn

(=)}

-~

w

BRZOZOWSKI, J.A., and YOELIL M.: 'Digital networks’ (Prentice-
Hall, 1976)

CLARKE, E. M., EMERSON. E. A, and SISTLA, A. P.: *Automatic
verification of finite-state concurrent systems using temporal logic spe-
cifications: a practical approach’, Tenth ACM Symposium on Prin-
ciples of Programming Languages, Austin, Texas, January 1983, pp.
117-126

DILL, D.L., and CLARKE, E.M.: ‘Automatic verification of asynchro-
nous circuits using temporal logic’, 1985 Chapel Hill Conference on
VLSI, pp. 127-143

MILNER, R.A.: ‘Calculus of communicating systems’, Lecture Notes
in Computer Science 92 (Springer-Verlag, 1980)

MISHRA, B., and CLARKE, E. M.: ‘Automalic and hierarchical verifi-
cation of asynchronous circuits using temporal logic’, CMU-CS-83-
155, Department of Computer Science, Carnegie-Mellon University,
September 1983

MULLER, D.E.: ‘The general synthesis problem for asynchronous
digital networks’, Conference Record of the Eighth Annual Symposium
on Switching an Automata Theory, 1967, pp. 71-82

SEITZ, C.L.: ‘Ideas about arbiters’, LAM BDA, First Quarter, 1980, pp.
10-14

WOLPER, P.: ‘Temporal logic can be more expressive’, Proceedings of
the 22nd Symposium on Foundations of Computer Science, October
1981, pp. 340-348

IEE PROCEEDINGS, Vol. 133, Pt. E, No. 5, SEPTEMBER 1986

