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1. Introduction

This paper describes the formalization and verification of the cache coherence protocol de-
scribed in the IEEE Futurebus+- standard (IEEE Standard 896.1-1991) [8]. We constructed
a precise model of the protocol in a hardware description language and then used temporal
logic model checking to show that the model satisfied a formal specification of cache co-
herence. In the process of formalizing and verifying the protocol, we discovered a number
of errors and ambiguities. We believe that this is the first time that formal methods have
been used to find nontrivial errors in a proposed IEEE standard. The result of our project
is a concise, comprehensible and unambiguous model of the cache coherence protocol that
should be useful both to the Futurebus+ Working Group members, who are responsible for
the protocol, and to actual designers of Futurebus+ boards. Our experience demonstrates
that hardware description languages and model checking techniques can be used to help
design real industrial standards.
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Futurebus+ is a bus architecture for high-performance computers. The goal of the
committee that developed Futurebus+ was to create a public standard for bus protocols that
was unconstrained by the characteristics of any particular processor or device technology
and that would be widely accepted and implemented by vendors. The cache coherence
protocol used in Futurebus+- is designed to insure consistency of data in hierarchical systems
composed of many processors and caches interconnected by multiple bus segments. Such
protocols are notoriously complex and, therefore, quite difficult to debug. Futurebus+ is,
in fact, the first bus standard to include this capability. Although development of the cache
coherence protocol began more than seven years ago, to the best of our knowledge all
previous attempts to validate the protocol have been based entirely on informal techniques
[7]. In particular, no attempt has been made to specify the entire protocol formally or to
analyze it using an automatic verification system.

In formalizing and verifying the protocol, we used SMV [10], a temporal logic model
checker based on binary decision diagrams (BDDs) [1]. SMV includes a built-in datafiow-
oriented hardware description language and accepts specifications expressed in the temporal
logic CTL [6]. The tool extracts a finite-state model from an SMV program and uses an
exhaustive state-space search algorithm [3, 4] to determine whether the model satisfies
the specifications. If the model does not satisfy some specification, SMV will produce an
execution trace that shows why the specification is false. SMV represents the transition
relation of the model using BDDs. This representation makes it possible to handle some
examples that have several hundred state variables and more than 10%° reachable states.

The biggest part of the project was using the textual description of the cache coherence
protocol in the standard to develop a formal model for the protocol and to derive CTL
specifications for its correctness. Our model for the cache coherence protocol consists of
2300 lines of SMV code (not counting comments). The model is highly nondeterministic,
both to reduce the complexity of verification (by hiding details) and to cover allowed design
choices (indicated in the standard using the word may). We believe that one of the most
important contributions of our project is the model of the bus bridges that connect bus
segments in hierarchical system configurations. These components are not specified in
detail in the standard. However, without modeling the bus bridges, it is impossible to
analyze hierarchical systems in which the most subtle and complex behaviors occur. By
using SMV and our model of the bridges, we were reable to find potential errors in the
hierarchical protocol. The largest configuration that we verified had three bus segments,
eight processors, and over 10°° states.

Our paper is organized as follows: Section 2 contains a brief description of the temporal
logic that we use for writing specifications. The basic ideas behind symbolic model checking
are also explained. Section 4 describes the SMV language and model checking tool. The
design of the Futurebus+ cache coherence protocol is discussed in Section 3. Several
examples are given to illustrate how the protocol is supposed to work. Section 5 describes
the model we constructed, and Section 6 explains how we were able to specify cache
coherence in temporal logic. In Section 7, we describe some of the errors that we found in
the protocol. The last section outlines some directions for future research.

2. Temporal logic model checking

Temporal logic is a method for expressing the ordering of events in time without introducing
time explicitly. A. Pnueli was the first to use temporal logic for reasoning about concurrent
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systems [12]. However, his correctness proofs were constructed by hand, and only very
small systems could be verified. The introduction of temporal logic model checking algo-
rithms in the early 1980’s allowed this type of reasoning to be automated [5, 6, 13]. Since
checking that a single model satisfies a formula is much easier than proving the validity
of a formula for all models, this technique can be implemented very efficiently. Unlike
proof-checker based methods, model checking is completely automatic. More importantly,
if a formula is not true of a model, a model checker can produce a concise execution trace
that shows why the formula is not satisfied.

The particular logic that we use for specifications is a branching-time temporal logic cailed
CTL (“Computation Tree Logic”) [6]. Formulas in CTL are built from three components:
atomic propositions, boolean connectives, and temporal operators. Atomic propositions
talk about the values of individual state variables. The boolean connectives are the standard
ones (A, V, —). Each temporal operator consists of two parts: a path quantifier (A or E)
and a temporal modality (F, G, X or U). The quantifier indicates whether the operator
denotes a property that should be true of all execution paths from a given state or whether
the property need only hold on some path. The modalities describe the ordering of events
in time along an execution path and have the following intuitive meanings:

1. Fy (“p holds sometime in the future™) is true of a path if there exists a state on the path
for which the formula ¢ is true. ’

2. Go (“¢ holds globally””) means that ¢ is true at every state on the path.

3. X¢ (“p holds in the next state’) means that ¢ is true in the second state on the path.

4. Uy (“¢ holds until ¥ holds”) means that there exists some state on the path for which
¥ is true, and for all states preceding this one, ¢ is true.

Each formula of the logic is either true or false in a given state. An atomic proposition is
true in a state if the state variable that it refers to has the appropriate value. The truth of a
formula built from boolean connectives depends on the truth of its subformulas in the usual
way. A formula whose top level operator is a temporal operator with a universal (existential)
path quantifier is true whenever all paths (some path) starting at the state have the property
required by the operator’s modality. A formula is true of a system if it is true for all the
initial states of the system. The following examples illustrate the expressive power of the
logic.

1. AG (req — AF ack): it is always the case that if the signal req is high, then eventually
ack will also be high.

2. AG AF enabled: enabled holds infinitely often on every computation path.

3. AGEF restart: from any state, it is possible to get to the restart state.

4. AG (send — A(send U recv)): it is always the case that if send occurs, then eventually
recv is true, and until that time, send must remain true.

There is a model checking algorithm for CTL that is linear in the size of the state space
of the system under consideration. However, the state space is usually exponential in
the number of components of the system. This state explosion is a major problem in all
methods based on exhaustive state exploration. For this reason, recent model checkers
use an implicit representation for finite-state systems based on binary decision diagrams
(BDDs) [1]. BDDs are a canonical form for boolean formulas that is often substantially
more compact than conjunctive or disjunctive normal form. Using this representation does
not alter the worst case complexity of the algorithm, but in practice, it makes the procedure
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much more efficient [2, 3, 4]. In a number of cases, we have found that verification time
scales polynomially with the number of components in the system.

Sets of states and transitions are represented with BDDs as follows. Let V' be the set of
state components of the system. (Here, we assume all components are boolean.) A state
is determined by an assignment of either 0 or 1 to each variable in V. Given such a truth
valuation, it is possible to write a boolean expression that is true for exactly that valuation.
For example, given V = {vg, vy, v} and the valuation {vg « 1, vy « L, v « 0}, we
obtain the boolean formula vg A vy A —v,. This formula can be represented using a BDD. In
general, a boolean formula may be true for many different truth valuations. If we adopt the
convention that a formula represents the set of all valuations that make it true, then we can
describe sets of states by boolean formulas and, hence, by BDDs. In addition to representing
sets of system states, we must be able to represent the transitions that the system can make.
To do this, we extend the previous technique. Let V' be another copy of the state variables.
A valuation for the variables in V and V'’ can be viewed as designating a starting state and
an ending state, i.e., a transition. We can represent sets of such valuations using BDDs as
above.

The symbolic model checking algorithm for CTL takes a formula ¢ and determines the
set of states (represented as a BDD) where each subformula of ¢ (including ¢ itself) is true.
It does this in a bottom up fashion starting from the atomic propositions in the formula.
Handling atomic propositions and logical connectives is straightforward. For the formula
v = EXgp, we want to find those states having a successor for which ¢ is true. This is
done using an image computation {2, 3]. For a formula such as EFyp, we use a fixed point
characterization of the temporal operator:

EFp = ¢ vV EXEFo.

The fixed point is computed by iterating, starting from the empty set of states. Other
temporal operators are handled in similar ways.

3. SMV

SMV (“Symbolic Model Verifier”) is a tool for checking that finite-state systems satisfy
specifications given in CTL. It uses a BDD-based symbolic model checking algorithm
(3, 4]. The hardware description language built into SMV has the following features.

Modules: The user can structure the description of complex systems into modules. In-
dividual modules can be instantiated multiple times, and modules can reference variables
declared in other modules. Standard visibility rules are used for naming variables in hierar-
chically structured designs. Modules can have parameters, which may be state components,
expressions, or other modules. We used the module facility heavily when modeling the
Futurebus+ protocol; each type of device described in the standard is represented by a

separate module.

Synchronous and interleaving composition: Individual finite-state machines given as SMV
modules can be composed either synchronously or using interleaving. In a synchronous
composition, a single step in the composition corresponds to a single step in each of the
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components. With interleaving, a step of the composition represents a step by exactly one
component. If the keyword process precedes an instance of a module, interleaving is
used; otherwise synchronous composition is assumed. We used both types of composition
in our model of the Futurebus+ protocol. The devices on a single bus run synchronously,
while separate buses are composed with interleaving.

Nondeterministic transitions: The state transitions in a model may be either deterministic
or nondeterministic. Nondeterminism can reflect actual choice in the actions of the system
being modeled, or it can be used to describe a more abstract model where certain details are
hidden. The ability to specify nondeterminism is missing from many hardware description
languages, but it is crucial when making high-level models. Some of the ways we used this
ability are described in Section 5.

Transition relations:  The transition relations of modules can be specified either explicitly
in terms of boolean relations on the current and next state values of state variables, or
implicitly as a set of parallel assignment statements. The parallel assignment statements
define the values of variables in the next state in terms of their values in the current state.

Fairness constraints: A module may contain fairness constraints. These constraints are
used to rule out certain infinite executions. For example, suppose we have constructed an
abstract model of a device that nondeterministically responds to a request on one of its
inputs. We wish to ensure that the device must eventually respond to requests. To do this,
we add a fairness constraint that specifies that infinitely often, if a request is present then
an acknowledgment must be given. The execution where a request is always present but is
never acknowledged is eliminated since it does not satisfy this constraint.

One of the most important features of SMV is its counterexample facility. If the given
model does not satisfy one of its specifications, then SMV produces an execution trace
illustrating why the specification is false. These counter examples are extremely useful for
debugging. Moreover, for models of moderate complexity, they are generally produced
within a few minutes.

We will not provide a formal syntax or semantics for the language here; these can be
found in McMillan’s thesis [10]. Instead, we consider a small example illustrating part of
a hand-shaking protocol (Figure 1). Comments begin with “- -” and continue until the end
of the line.

Module definitions begin with the keyword MODULE. The module main is the top-
level module. The modules sender and receiver have the formal parameter input.
Variables are declared using the keyword VAR. In the example, st robe is aboolean variable,
while state is a variable whose value is one of ready, sendingorwaiting. The VAR
statement is also used to instantiate other modules as shown on lines 3 and 4. In this case,
modules sender and receiver are instantiated with names snd and rec, respectively.
A module can be instantiated multiple times with different names.

Modules can refer to variables defined in other modules by prefixing the variable name
with the name of its module. For example, rec.ack refers to the variable ack defined
in the module instance rec. The modules in this example are composed in a synchronous
manner, but we could use interleaving composition by instantiating them as follows:
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1 MODULE main -- Handshaking protocol example

2 VAR
snd: sender{(rec.ack);
4 rec: receiver(snd.strobe);

5 SPEC
6 AG (snd.strobe -> AF rec.ack)

7 MODULE sender(input)

8 VAR

9 strobe: boolean;

10 state: {ready, sending, waiting}; -- An enumerated type
11 DEFINE

12 busy := state 1in {sending, uaiting};

13 ASSIGN

14 init(state) := ready;

15 next(state) :=

16 case

17 state=ready: {ready, sending}; -- Nondeterministic choice
18 state=sending & 'input: state;

19 state=sending & input: state union waiting;

20 input: waiting;

21 1: state union ready;

22 esac;

23 init(strobe) := 0;
24 next(strobe) := state=sending;

25 FAIRNESS
26 !(state=sending & input) -- If input stays 1, eventually don’t send

27 MODULE receiver(input)
28

Figure 1. SMV code for a simple handshaking protocol.

VAR
snd: process sender (rec.ack);
rec: process receiver (snd.strobe);

The ASSIGN statement is used to define the initial states and transitions of the model.
In this example, the initial value of the variables state and strobe are ready and 0
respectively. The next-state value of the variable state is given by a case statement
(lines 16-22). The value of a case statement is determined by evaluating the clauses
within the statement in sequence. Each clause consists of a condition and an expression,
which are separated by a colon. If the condition in the first clause holds, the value of the
corresponding expression determines the value of the case statement. Otherwise, the next
clause is evaluated.
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Expressions may represent sets of values. Sets can be written explicitly, as shown on line
17, or can be constructed using the union operator, as shown on line 19. When a setexpres-
sion is assigned to a variable, the value of the variable is chosen nondeterministically from °
the set. The DEFINE statement can be used to define abbreviations for expressions. In the
example, busy is defined as an abbreviationforstate in {sending, waiting}. This
expression is true if the value of state is an element of the set {sending, waiting}.
Fairness constraints are given by FAIRNESS statements, and properties to be verified are
given as SPEC statements.

4. Overview of the protocol

The IEEE Futurebus+ Logical Protocol Specification is a technology-independent protocol
for several generations of single- and multiple-bus multiprocessor systems. Part of this
standard is a cache coherence protocol designed to work in a hierarchically structured
multiple-bus system. Under the protocol, coherence is maintained on individual buses by
having the individual caches snoop, or observe, all bus transactions. Coherence across
buses is maintained using bus bridges. Special agents at the ends of the bridges represent
remote caches and memories. In order to increase performance, the protocol uses split
transactions. When a transaction is split, its completion is delayed and the bus is freed;
at some later time, an explicit response is issued to complete the transaction. This facility
makes it possible to service local requests while remote requests are being processed.

As an example of how the protocol works, we consider some example transactions for a
single cache line in the two processor system shown in Figure 2. A cache line is a series
of consecutive memory locations that is treated as a unit for coherence purposes. Initially,
neither processor has a copy of the line in its cache; they are said to be in the invalid state.
Processor P1 issues a read-shared transaction to obtain a readable copy of the data from
memory M. P2 snoops this transaction, and may, if it wishes, also obtain a readable copy;
this is called snarfing. If P2 snarfs, then at the end of the transaction, both caches contain
a shared-unmodified copy of the data. Next, P1 decides to write to a location in the cache
line. In order to maintain coherence, the copy held by P2 must be eliminated. P1 issues an
invalidate transaction on the bus. When P2 snoops this transaction, it purges the line from
its cache. At the end of the invalidate, P1 now has an exclusive-modified copy of the data.
The standard specifies the possible states of the cache line within each processor and how
this state is updated during each possible transaction.

We now consider a two-bus example to illustrate how the protocol works in hierarchical
systems; see Figure 3. Initially, both processor caches are in the invalid state. If processor
P2 issues a read-modified to obtain a writable copy of the data, then the memory agent
MA on bus 2 must split the transaction, since it must get the data from the memory on bus
1. The command is passed down to the cache agent CA, and CA issues the read-modified
on bus 1. Memory M supplies the data to CA, which in turn passes it to MA. MA now
issues a modified-response transaction on bus 2 to complete the original split transaction.
Suppose now that P1 issues a read-shared on bus 1. CA, knowing that a remote cache has
an exclusive-modified copy, intervenes in the transaction to indicate that it will supply the
data, and splits the transaction, since it must obtain the data from the remote cache. CA
passes the read-shared to MA, which issues it on bus 2. P2 intervenes and supplies the data
to MA, which passes it to CA. The cache agent performs a shared-response transaction
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which completes the original read-shared issued by P1. The standard contains an English
description of the hierarchical protocol, but does not specify the interaction between the

cache agents and memory agents.

5. Modeling the protocol

The IEEE Standard for Futurebus+—Logical Protocol Specification [8] contains two sec-
tions dealing with the cache coherence protocol. The first, a description section, is written
in English and contains an informal and readable overview of how the protocol operates,
but it does not cover all scenarios. The second, a specification section, is intended to be the
real standard. This section is written using attributes. An attribute is essentially a boolean
variable together with some rules for setting and clearing it. The attributes are more precise,
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but they are difficult to read. The behavior of an individual cache or memory is given
in terms of roughly 300 attributes, of which about 45 deal with cache coherence. As an
example, one attribute for cache modules is SHARED_UNMODIFIED:

SHARED_UNMODIFIED. A CACHE or CACHE_AGENT shall set
SHARED_UNMODIFIED and clear

INVALID v EXCLUSIVE_UNMODIFIED v EXCLUSIVEMODIFIED if
MASTER A (INVALID_STATUS A ~ADDRESS_ONLY A
(READ_SHARED v READ_MODIFIED) v KEEP_COPY A (COPY_BACK v
SHARED_RESPONSE)) v CACHED A (REQUESTER_SHARED A
SHARED _RESPONSE A INVALID_STATUS A —ADDRESS_.ONLY A
TRANSACTION_FLAG_STATUS v SNARF_DATA A -ADDRESS_ONLY v
REQUESTER_EXCLUSIVE A MODIFIED RESPONSE A
—ADDRESS_ONLY A SPLIT_STATUS v —~INVALID_STATUS A
KEEP_.COPY A (READ_SHARED v READ_INVALID)).

A CACHE or CACHE_AGENT may set SHARED_UNMODIFIED and clear
EXCLUSIVE_UNMODIFIED if EXCLUSIVE_UNMODIFIED.

A CACHE or CACHE_AGENT shall not allow modify access to the data in
a cache line if SHARED _UNMODIFIED is set. A CACHE or
CACHE_AGENT may allow read access to the data in a cache line if
SHARED_UNMODIFIED is set.

Note that even in the specification section, some aspects of a module’s allowed behavior are
described informally. For example, the above attribute specifies a processor’s read-write
permissions in English. In addition, some aspects of the protocol, such as the bus bridges,
are not completely specified using attributes.

Because of the large number of attributes needed to describe even one module, verifying
a fully detailed model at the level of the attributes would not be practical. Thus, we used the
English language description as the basis for an abstract model. Situations where the English
was ambiguous or incomplete were resolved by referring to the attributes. The abstractions
that we made while constructing the model are listed below. For each abstraction, we
briefly describe either how it would be justified, or what aspects of the protocol are omitted.
Generally, we tried to make the verification conservative by adding behaviors to the model
during each simplification. Our goal was to have an abstract model that could simulate
anything that a real implementation could do. This ensures that checking correctness of the
abstract model is enough to imply correctness of an implementation.

1. The standard specifies how modules should respond to exceptional situations, such as
detection of a parity error during a data transfer. In our model, we assumed that these
cases do not occur. Similarly, the standard describes power-up, reset, and configuration
protocols. We modeled only the case of steady-state operation. These simplifications
represent omissions.

2. A fairly complex protocol is used to arbitrate for the bus and issue a transaction. In our
model, a complete arbitration/transaction cycle is modeled as a single state transition.
Given an actual implementation, we would use abstraction via observers [9] to justify
this type of simplification. An observer abstraction basically corresponds to composing
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the implementation with a set of finite-state machines that watch the implementation
state and output an appropriate abstract state. The implementation state is then hidden.
An abstract-level specification can be combined with the observers to pull it back to
the implementation level. A successful verification at the abstract level implies that the
real implementation satisfies this low-level image of the specification. In this case, our
observer processes would watch the low-level arbitration and handshaking, and would
output in one step the high-level indication of which module was selected as master and
which transaction it issued.

3. We modeled only the transactions involving one cache line. This type of simplification
can be justified using abstraction via observers and symbolic parameters [9]). Symbolic
parameters can be used to check an entire class of properties simultaneously. In this case,
we essentially want to prove a property about every cache line in the implementation.
Suppose that the implementation cache line under consideration is the one beginning at
address a. Also assume that this cache line, plus its associated tag bits and attributes, is
stored at some location b in the cache RAM, where b depends on a. The relevant part of
the cache can be described in terms of the symbolic parameters a and b. Our observer
process then looks at the location b to determine whether the cache line is in fact in the
cache, and if so, what its state is. The observer outputs this state at the abstract level, or
outputs invalid if the line is not stored in the cache at location b.

4. The data in the cache line is modeled as a single bit instead of 64 bytes. We could use
another symbolic parameter ¢ to perform this abstraction. The bit can be thought of as
representing whether the value in the line is the 64 byte value ¢, or whether it is some
other value. This equality relationship is sufficient to express all of the abstract-level
properties that we are interested in. We refer to this type of collapsing as a symbolic
abstraction [9].

5. Components such as processors nondeterministically issue reads and writes to the se-
lected cache line. To justify this abstraction, we simply hide the internal state of the
processor. In this case, the processor model is completely nondeterministic, so it can
simulate whatever a real processor would do.

6. Responses to split transactions are issued after arbitrary delays. This would be justified
in essentially the same way as the previous abstraction.

7. The bus bridge model is highly abstracted. In our model of a bus bridge, the cache agent
and memory agent share a small amount of internal state. There are ten possible internal
states, representing a generalization of the possible states of a cache line in a processor
cache. The cache agents and memory agents choose commands nondeterministically
based only on the internal bridge state. There is no explicit passing of commands between
the two agents. The main disadvantage of this model is that there is no guarantee of
progress. The.advantage is that the bridge model is relatively simple. Further, it
can simulate a wide variety of possible implementations. For example, a bridge that
detected sequential accesses and attempted to prefetch cache lines would be covered
by this model. The abstractions used in constructing the model can be justified using
abstraction via observers plus hiding.

8. The standard specifies some types of transactions that are intended mainly for peripheral
devices doing I/O. Cache coherence is generally not maintained when these instructions
are used, so we assumed that they would not be issued for the cache line that we modeled.
This represents an omission.
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1 next(state) :=
2 case
3 CMD=none:
4 case
5 state=shared-unmodified:
6 case
7 requester=exclusive: shared-unmodified;
8 1: {invalid, shared-unmodified}; -- Can kick line out of cache
9 esac;
10 state=exclusive-unmodified: {invalid, shared-unmodified,
11 exclusive-unmodified, exclusive-modified};
12 1: state;
13 esac;
14
15 master:
16 case
17 CMD=read-shared: -- Cache issues a read-shared
18 case
19 state=invalid:
20 case
21 'SR & 'TF: exclusive-unmodified;
22 !SR: shared-unmodified;
23 1: invalid;
24 esac;
25 ..
26 esac;
27
28 esac;
29 ...
30 CMD=read-shared: -- Cache observes a read-shared
31 case
32 state in {invalid, shared-unmodified}:
33 case
34 'tf: invalid;
35 'SR: shared-unmodified;
36 1: state;
37 esac;
38
39 esac;
40 e
41 esac;

Figure 4. A portion of the processor cache model.

Figure 4 shows a part of the SMV program used to model the processor caches. This
code determines how the state of the cache line is updated. Within this code, state com-
ponents with upper-case names (CMD, SR, TF) denote bus signals visible to the cache, and
components with lower-case names (state, t £) are under the control of the cache. The
first part of the code (lines 3—13)specifies what may happen when an idle cycle occurs
(CMD=none) . If the cache has a shared-unmodified copy of the line, then the line may
be nondeterministically kicked out of the cache unless there is an outstanding request to
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change the line to exclusive-modified. If a cache has an exclusive-unmodified copy of the
line, it may kick the line out of the cache or change it to exclusive-modified.

The second part of the code (lines 15-26) indicates how the cache line state is updated
when the cache issues a read-shared transaction (master and CMD=read-shared). This
should only happen when the cache does not have a copy of the line. If the transaction is not
split (! SR), then the data will be supplied to the cache. Either no other caches will snarf the
data (! TF), in which case the cache obtains an exclusive-unmodified copy, or some other
cache snarfs the data, and everyone obtains shared-unmodified copies. If the transaction is
split, the cache line remains in the invalid state.

The last piece of code (lines 30-39) tells how caches respond when they observe another
cache issuing a read-shared transaction. If the observing cache is either invalid or has a
shared-unmodified copy, then it may indicate that it does not want a copy of the line by
deasserting its t £ output. In this case, the line becomes invalid. Alternatively, the cache
may assert t £ and try to snarf the data. In this case, if the transaction is not split (! SR), the
cache obtains a shared-unmodified copy. Otherwise, the cache stays in its current state.

6. Specifying cache coherence

In this section, we discuss the specifications used in verifying the protocol. More exhaustive
specifications are obviously possible; in particular, we have only tried to describe what cache
coherence is, not how it is achieved. The first class of properties is used to check that no
device ever observes an illegal combination of bus signals or an unexpected transaction.
Each device model includes two flags bus-error and error that are used to signal these
conditions. The flag bus-error becomes true when an illegal combination of bus signals (as
defined in Section 8.1.6 of the standard) is seen; error becomes true when a device observes
a transaction which should not occur given its internal state. For example, if a processor
cache has a shared-unmodified copy of a cache line, and a read-shared is issued, then no
other cache should intervene in that transaction. If another cache does intervene (which
can only happen when it has an exclusive-modified copy), the error flag in the first cache
becomes true. Thus, we have the following formula for every device d:

AG(—d .bus-error A —d.error).

The next class of properties states that if a cache has an exclusive-modified copy of some
cache line, then all other caches should not have copies of that line. The specification
includes the formula

AG(pl.writable — —p2.readable)

for each pair of caches p1 and p2. Here, pl.writable is given in a DEFINE statement and is
true when p1 is in the exclusive-modified state. Similarly, p2.readable is true when p2 is

not in the invalid state.
Consistency is described by requiring that if two caches have copies of a cache line, then

they agree on the data in that line:

AG(pl.readable A p2.readable — pl.data = p2.data).
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Similarly, if memory has a copy of the line, then any cache that has a copy must agree
with memory on the data.

AG(p.readable A ~m.memory-line-modified — p.data = m.data).

The variable m.memory-line-modified is false when memory has an up-to-date copy of
the cache line.

The final class of properties is used to check that it is always possible for a cache to get
read or write access to the line.

AG EF p.readable A AG EF p.writable

We would like to give a stronger specification: if a cache issues a read or write request, it
eventually obtains a readable or writable copy. Unfortunately, the model does not guarantee
progress. This is due to the heavy use of nondeterminism, especially in the bus bridges.
We could try to make a more precise model that would ensure progress (by adding fairness
constraints or rewriting parts of the code), but this would be at the expense of an increase
in verification time. Note that because of the EF operators, checking that the abstract
model satisfies these properties is not enough to guarantee that an implementation would as
well. However, abstract-level deadlocks found by checking these properties do represent
deadlocks in any implementation, since an implementation would have fewer behaviors than
the abstract model. In later work, we were able to check some stronger progress properties
that would necessarily be satisfied in an implementation. In the process, we also discovered
a potential livelock [9].

7. Some errors found during verification

In this section, we describe some of the errors that we found while trying to verify the
protocol. The first is an error in the single bus protocol. Consider the system shown in
Figure 5. The following scenario is not excluded by the standard. Initially, both caches
are invalid. Processor P1 obtains an exclusive-unmodified copy. Next, P2 issues a read-
modified, which P1 splits for invalidation. The memory M supplies a copy of the cache
line to P2, which transitions to the shared-unmodified state. At this point, P1, still having
an exclusive-unmodified copy, transitions to exclusive-modified and writes the cache line.
P1 and P2 are now inconsistent. This bug can be fixed by requiring that P1 transition to the
shared-unmodified state when it splits the read-modified for invalidation. The change also
fixes a number of related errors.

Next, we consider an error in a hierarchical configuration (Figure 6). P1, P2, and P3
all obtain shared-unmodified copies of the cache line. P1 issues an invalidate transaction
that P2 and MA split. P3 issues an invalidate that CA splits. The bus bridge detects that
an invalidate-invalidate collision has occurred. That is, P3 is trying to invalidate P1, while
P1 is trying to invalidate P3. When this happens, the standard specifies that the collision
should be resolved by having the memory agent invalidate P1. When the memory agent
tries to issue an invalidate for this purpose, P2 sees that there is already a transaction in
progress for this cache line and asserts a busy signal on the bus. MA observes this and
acquires the requester-waiting attribute. When a module has this attribute, it will wait
until it sees a completed response transaction before retrying its command. P2 now finishes
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invalidating and issues a modified-response. This is split by MA since P3 is still not invalid.
However, MA still maintains the requester-waiting attribute. At this point, MA will not
issue commands since it is waiting for a completed response, but no such response can
occur. The deadlock can be avoided by having MA clear the requester-waiting attribute
when it observes that P2 has finished invalidating.

We checked configurations with up to three buses and eight processors. The number of
boolean state variables in our models ranged from about 75 to 250, with a corresponding
number of reachable states between 100 and 10°°. The number of BDD nodes needed to
represent the model was about 150,000 nodes in the largest models that we tried. In terms of
asymptotic performance, the number of nodes needed to represent the system grew linearly
with the number of components on a bus, and quadratically with the number of buses.
Verification times ranged from about a minute to an hour, depending on the configuration.
The most important point is that for models of moderate size, feedback from the verifier
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could be obtained in a matter of minutes. This made it possible to find bugs and try possible
fixes very quickly.

8. Conclusions

All formal verification involves making a model of the system under consideration. Saying
that the system is correct is really a claim that this model satisfies the specifications. We
have attempted-to make as detailed a model of the Futurebus+ cache coherence protocol
as possible and to check as many system configurations as possible. Nevertheless, more
remains to be done; for example, by combining model checking with induction, it should be
possible to verify arbitrary configurations. McMillan used this technique when verifying
the cache coherence protocol for the Encore Gigamax [10, 11]. We plan to try to use
induction with the Futurebus+ protocol, although this protocol is much more complex than
the Gigamax protocol.

We believe that work on other standards would benefit by collaboration with experts in
specification and automated verification throughout the design process. Use of a formal
language to state requirements should result in significantly faster development of correct
designs. Such a strategy would no doubt result in lower cost implementations by vendors
as well. Finally, model checking is not limited to finite-state models arising from hardware.
Formalization and analysis of other types of systems, such as telecommunications protocols,
should also be possible using SMV. Researchers must keep in mind that the ultimate test
of a new formal verification technique is whether it can handle real examples like the

Futurebus+ protocol.
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