Programming Language Constructs for Which It Is Impossible
To Obtain Good Hoare Axiom Systems

EDMUND MELSON CLARKE JR.

Duke University, Durham, North Carolina

ABSTRACT Hoare axiom systems for establishing partial correctness of programs may fail to be complete because
of (a) incompleteness of the assertion language relative to the underlying interpretation or (b) mability of the
assertion language to express the invariants of loops Cook has shown that if there 1s a complete proof system for
the assertion language (1e all true formulas of the assertion language) and 1f the assertion language satisfies a
natural expressibility condition then a sound and complete axiom system for a large subset of Algol may be
devised We exhibit programming language constructs for which it 1s impossible to obtain sound and complete
sets of Hoare axioms even 1n this special sense of Cook’s These constructs include (1) recursive procedures with
procedure parameters 1n a programming language which uses static scope of identifiers and (1) coroutines 1 a
language which allows parameterless recurstve procedures Modifications of these constructs for which sound
and complete systems of axioms may be obtained are also discussed

KEY WORDS AND PHRASES Hoare axioms, soundness, relative completeness, procedure parameters, coroutines

CR CATEGORIES 4 2§, 524,527

1. Introduction

1.1 BACKGROUND. Many different formalisms have been proposed for proving
Algol-like programs correct. Of these probably the most widely referenced is the axiomatic
approach of Hoare [8, 9]. The formulas in Hoare’s system are triples of the form {P} §
{Q} where S 15 a statement in the programming language and P and Q are predicates in
the language of the first-order predicate calculus (the assertion language) The partial
correctness formula {P} S {Q} is true 1ff whenever P holds for the initial values of the
program variables and S 1s executed, then either S will fail to terminate or Q will be
satisfied by the final values of the program varables. A typical rule of inference is

(PAB} S (P}
(P} while bdo S {P A ~b}’

The axioms and inference rules are designed to capture the meanings of the individuat
statements of the programming language. Proofs of correctness for programs are con-
structed by using these axioms together with a proof system for the assertion language.
What 1s a “good” Hoare axiom system? One property a good system should have 1s
soundness [10, 6]. A deduction system 1s sound iff every theorem 1s actually true. Another
property 1s completeness [4], which means that every true formula is provable. From the
Godel incompleteness theorem we see that if the deduction system for the assertion
language is axiomatizable and if a sufficiently rich interpretation (such as number theory)

Permussion to copy without fee all or part of this matenal 1s granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copynght notice and the title of the publication and its
date appear, and notice 1s given that copying 1s by permission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specific permission

A large portion of this research was completed while the author was a graduate student at Cornell University
with the support of an IBM Research Fellowship

Author’s present address Center for Research in Computing Technology, Aitken Computation Laboratory,
Harvard Umversity, Cambndge, MA 02138

© 1979 ACM 0004-5411/79/0100-0129 $00 75

Journal of the Association for Computing Machinery, Vol 26, No 1, January 1979, pp 129-147

130 EDMUND M. CLARKE JR.

is used for the assertion language, then for any (sound) Hoare axiom system there will be
assertions {P} S {Q} which are true but not provable within the system. The question 1s
whether this incompleteness reflects some inherent complexity of the programming lan-
guage constructs or whether it is due entirely to the incompleteness of the assertion
language. For example, when dealing with the integers, for any consistent axiomatizable
proof system there will be predicates which are true of the integers but not provable within
the system. How can we talk about the completeness of a Hoare axiom system independ-
ently of its assertion language?

One way of answering this question was proposed by Cook [4]. Cook gives a Hoare
axiom system for a subset of Algol including the while statement and nonrecursive
procedures. He then proves that if there is a complete proof system for the assertion
language (1.¢. all true formulas of the assertion language) and if the assertion language
satisfies a natural expressibility condition, then every true partial correctness assertion will
be provable. Gorelick [7] extends Cook’s work to recursive procedures. Similar complete-
ness results are given by deBakker and Meertens [5] and by Manna and Pnuel [13].

1.2 New ResuLTs OF THis PAPER Modern programming languages provide constructs
which are considerably more complicated than the while statement, and one might wonder
how well Hoare’s axiomatic approach can be extended to handle more complicated
statements. In this paper we will be interested in the question of whether there are
programmung languages for which 1t is impossible to obtain a good (i.e. sound and
complete) Hoare axtom system. This question is of obvious importance in the design of
programming languages whose programs can be naturally proved correct.

We first consider the problem of obtaining a sound and complete system of axioms for
an Algol-like programming language which allows precedure names as parameters in
procedure calls. We prove that in general it 1s impossible to obtain such a system of axioms
even if we disallow calls of the form *‘call P(..., P, ...)". (Calls of this form are necessary
to directly simulate the lambda calculus by parameter passing.) We then consider restric-
tions to the programming language which allow one to obtain a good axiom system.

The incompleteness result is obtained for a block-structured programming language
with the following features:

(i) procedure names as parameters of procedure calls,
(ii) recursion,
(iii) static scope,
(iv) global variables,

(v) internal procedures.

All these features are found in Algol 60 [14] and in PascaL [17]. We also show that a
sound and complete axiom system can be obtained by modifying any one of the above
features. Thus if we change from static scope to dynamic scope, a complete set of axioms
may be obtained for (i) procedures with procedure parameters, (ii) recursion, (1v) global
variables, and (v) internal procedures, or if we disallow internal procedures, a complete
system may be obtained for (i) procedures with procedure parameters, (1i) recursion, (iii)
static scope, and (iv) global variables. As far as we know, this is the first axiomatic
treatment of procedure parameters.

An independent source of incompleteness is the coroutine construct. If procedures are
not recurstve, there is a simple method for proving correctness of coroutines based on the
addition of auxiliary variables [15]. If, however, procedures are recursive, no such simple
method can give completeness. These observations generalize to languages with parallelism
and recursion.

Additional programming language constructs for which it is impossible to obtain good
axioms are discussed in Section 9

1.3 OuTLINE OF PAPER. The development of these results is divided into two parts; the
first deals with procedures as parameters and the second with the coroutine construct. In
Section 2 a formal description 1s given for a programming language with static scope,

Programming Language Constructs 131

global vanables, and procedures with procedure parameters. This is followed by a
discussion of Cook’s expressibility condition Modifications necessary to handle dynamic
scope are also discussed. In Section 3 we prove that it is impossible to obtain a sound and
complete axiom system for this language In Sections 4, 5, and 6 we discuss restrictions
sufficient to insure that good Hoare axioms can be found. Sections 7 and 8 are devoted to
completeness and incompleteness results for the coroutine construct and follow the same
outline as was used 1n the first part of the paper. The paper concludes with a discussion of
the results and remaining open problems.

2. A Simple Programming Language and Its Semantics

As in [4] we distinguish two logical systems involved 1n discussions of program correct-
ness—the assertion language L4 in which predicates describing a program’s behavior are
specified and the expression language Lg in which the terms forming the right-hand sides
of assignment statements and (quantifier-free) Boolean expressions of conditionals and
while statements are specified. Both L4 and Lg are first-order languages with equality
and L, 1s an extension of Lr The variables of Lg are called program identifiers
(PROG_ID) and are ordered by the positive integers. The vanables of L4 are called
variable identifiers (VAR _ID).

An 1nterpretation [for Ly consists of a set D (the domain of the interpretation), an
assignment of functions on D to the function symbols of La, and an assignment of
predicates on D to the predicate symbols of L,. We will use the notation || for the
cardinality of the domain of 1. Once an interpretation I has been specified, meanings may
be assigned to the variable-free terms and closed formulas of L4 (Lg).

Let T be an interpretation with domain D. A program state is an ordered list of pairs of
the form

(Vl-dl)(VZ da) s (Vn~dn),

where each v, 1s a variable identifier and each d, is an element of D. Thus a program state
is similar to the association list used in the definition of Lisp. If s is a program state and v
is a vanable 1dentifier then s(v) 1s the value associated with the first occurrence of v 1n s.
Similarly, ADD(s, v, d) is the program state obtained by adding the pair (v.d) to the head
of list 5, and DROP(s, v) is the program state obtained from s by deleting the first pair
which contains v. VAR(s) is the set of all variable identifiers appearing mn s.

If t 1s a term of L4 with variables x;, x2, ... , x» and s 15 a program state, then we will use
the notation #(s) to mean

t{s(x1)/x1, S(xXn)/ %2},

1.e. the term obtained by simultaneous substitution of s(x;) for xi, ..., 5(x,) for x,.

Likewise we may define P(s) where P is a formula of L4. It is frequently convenient to
identify a formula P with the set of all program states which make P true, i.e. with the set
{s|I[P(s)] = true} If this identification is made, then false will correspond to the empty
state set and true will correspond to the set of all program states.

We consider a simple programming language which allows assignment, procedure calls,
while, compound, and block statements. Procedure declarations have the form “proc
q(x:p); K(x, p) end” where g is the name of the procedure, x is the list of formal variable
parameters, p 15 the list of formal procedure parameters, and K(x, p) is a statement involving
the parameters x and p. A procedure call has the form “call g(a:P)” where a is the list of
actual variable parameters and P is the list of actual procedure parameters. To simplify the
treatment of parameters we restrict the entries in a to be simple program identifiers. We
further require that procedure names be declared before they appear in procedure calls.
An environment e is a finite set of procedure declarations which does not contain two
different declarations with the same name. If 7 1s a procedure declaration, then
ADD[e, 7] is the environment obtained from e by first deleting all procedure declarations
which have the same name as =, and then adding 7.

132 EDMUND M CLARKE JR.

Meanings of statements are specified by a meaning function M = M; which associates
with statement S, state s, and environment e a new state 5. Intuitively s* is the state
resulting if S is executed with initial state s and initial environment e. The definition of M
is given operationally 1n a rather nonstandard manner which makes extensive use of
renaming. This type of defimition allows static scope of identifiers without the introduction
of closures to handle procedures. The definition of M[S](e, s) is by cases on §:

(1) S is “begin new x; B(x) end” — DROP(M|[begin B{x') end](e, '), x') where ¢ is the
index of the first program 1dentifier not appearing in S, e, or VAR(s) and s = ADD(s, x',
o). (ao15 a special domain element which is used as the initial value of program identifiers.)

(2) S is “begin proc g(x p); K(x, p, q¢) end; B(g) end” — M{begin B(q') end](¢’, 5)
where 7 15 the 1ndex of the first procedure 1dentifier not occurring 1 B{(g) or e and ¢ =
ADD(e, “proc ¢'(x:p); K(x, p, ') end”).

(3) S s “begin B,; B; end” — M[begin B; end](e, M[Bi](e, 3)).

(4) S1s “begin end” — s

(5) S1s“x:= 1’ — s where s’ = ADD(DROP(s, x), x, I[(s)]).

M[Bi](e,s) ifs€E b,
MI(B;](e, s) otherwise.

MI[b = Bl(e, M[B](e, 5)) if s€ b,
s otherwise

{6) (conditional) S is “b — B,, B,” — {

(7) (while) Sis “b * B” — {

M[K(a, P)](e, s) if “proc q(x.p); K(x, p) end” E e,

— p\» length(a) = length(x), and
il g(a:P 8
(®) Sis “eall g(a:P)” - length(p) = length(P),
undefined otherwise.

Sometimes it will be easier to work with computation sequences than with the definition
of M directly. A computation sequence C of the form

C = (So, €0, $5) =+ (S, €, 5,) -

gives the statement, environment, and program state during the ith step in the computation
of M[So](eo, 50). Since the rules for generating computation sequences may be obtained in
a straightforward manner from the definition of M, they will not be mncluded here.

The meaning function M may be easily modified to give dynamic scope of identifiers.
With dynamic scope when an 1dentifier 1s referenced, the most recently declared active
copy of the 1dentifier 15 used. This will occur with our model if we omit the renaming of
variables which 1s used in clauses (1) and (2) in the definition of M. Thus, for example,

M{begin new x; B end](e, s) = DROP(Mbegin B end](e, s'), x) where s’ = ADD(s, x, ao)

Unless explicitly stated we will always assume static scope of identifiers in this paper.

Partial correctness assertions will have form {P} S {Q}/e where S is a program
statement, P and Q are formulas of L4, and e is an environment.

Definition 2.1. {P} S {Q}/e s true with respect to I (F; {P} S {Q}/e) ff ¥V s, S'[sE P
A M[Ske, s) = s = s’ € Q] and every procedure which is global to S or to some procedure
declaration in e is contained in e. If I" is a set of partial correctness assertions and every
assertion in I' is true with respect to I, then we write F=; T

To discuss the completeness of an axiom system independently of 1ts assertion language
we mtroduce Cook’s notion of expressibility.

Definition 2.2. La 1s expressive with respect to Le and [iff for all S, @, e there is a
formula of L4 which expresses the weakest precondition for partial correctness WP(S, e, Q)
= {s|M{S](e, s) 1s undefined or M[S](e, s) € Q). (Note that we could have alternatively
used the strongest postcondition SP(S, e, P) = {M[S](e, s)|s € P})

If L4 15 expressive with respect to Lz and J, then mvariants of while loops and recursive
procedures will be expressible by formulas of L4. Not every choice of La, Le, and I gives

Programming Language Constructs 133

expressibility. Cook demonstrates this in the case where the assertion and expression
languages are both the language of Presburger Arithmetic. Wand [16] gives another
example of the same phenomenon. More realistic choices of Ly, Lg, and I do give
expressibility. If Ly and Lg are both the full language of number theory and I 1s an
interpretation 1 which the symbols of number theory receive their usual meanings, then
La 1s expressive with respect to Le and I. Also, if the domain of 7 1s finite, expressibility
15 assured.

LemMma 2.1. If La, Lg are first-order languages with equality and the domain of I is
finite, then L4 is expressive with respect to Lg and 1.

PROOF. Let D be the domain of I and suppose that | D| < . Let S be a statement, ¢ an
environment, and Q a formula of L. Suppose that x,, . ., x, are the variables that occur
free in Q, global to S, or global to some procedure in e. Since D 1s fimte, there exists a
finite set of n-tuples I' = {(a4, ..., ah)|l <j =< m} such that s € WP(S, e, Q) iff for some
n-tuple (a4, ..., a%) m I"' we have s(x,) = affor l si=nIfR=Vigem xi=a{A xpy =
a% A\ <+ N\ Xn = a}, then it is not difficult to show that R expresses WP(S, e, Q).

If H is a Hoare axiom system and T is a proof system for the assertion language L,
(relative to I), then a proof in the system (H, T') will consist of a sequence of partial
correctness assertions {P} S {Q}/e and formulas of L, each of which is either an axiom
(of H or T) or follows from previous formulas by a rule of inference (of H or T'). If {P)
S {Q)}/e occurs as a line 1n such a proof, then we write k-7 {P} S {Q}/e. In a similar
manner, we may define I' -n 7 A where I and A are sets of partial correctness assertions.

Definition 2.3. A Hoare axiom system H for a programmng language PL 1s sound and
complete (in the sense of Cook) \ff for all T, L4, Lg, and I, such that (a) L, is expressive
with respect to Lz and [and (b) T 1s a complete proof system for L, with respect to 7,

Far {P} S {Q}/ e Fr {P}) S{Q}/e.

3. Recursive Procedures with Procedure Parameters

In this section we prove:
THEOREM 3.1. It is impossible to obtain a system of Hoare axioms H which 1s sound and
complete in the sense of Cook for a programming language which allows:

(1) procedures as parameters of procedure calls,
(it) recursion,
(ui) static scope,
(1v) global variables,
(v) internal procedures.

Remark. In Section 4 we show that 1t 1s possible to obtain a sound, complete system of
Hoare axioms by modifying any one of the above features. To obtan the incompleteness
result, only procedure identifiers are needed as parameters of procedure calls The
completeness proof allows, in addition, variable parameters which are passed by direct
syntactic substitution.

In order to prove the theorem we need the following lemma.

LEMMA 3.1. The Halting Problem is undecidable for programs in a programnung lan-
guage with features (i)-(v) above for all finite interpretations I with |I| = 2.

The proof of the lemma uses a modification of a result of Jones and Muchmick [12].
Note that the lemma 1s not true for flowchart schemes or while schemes. In each of these
cases 1f | | < oo the program may be viewed as a finite state machine, and we may test for
termination (at least theoretically) by watching the execution sequence of the program to
see whether any program state 1s repeated. In the case of recursion one might expect that
the program could be viewed as a type of pushdown automaton (for which the Halting
Problem 1s decidable). This 1s not the case if we allow procedures as parameters. The static
scope execution rule, which states that procedure calls are elaborated 1n the environment
of the procedure’s declaration rather than 1n the environment of the procedure call, allows

134 EDMUND M. CLARKE JR.

the simulation program to access values normally buried in the runtime stack without first
“popping the top™ of the stack.

Formally we show that it is possible to simulate a queue machine which has three types
of instructions: (A) enqueue x—add the value of x to the rear of the queue; (B) dequeue
x—remove the front entry from the queue and place in x; and (C) if x = y then go to L—
conditional branch. Since the Halting Problem for queue machines is undecidable, the
desired result follows.

The queue is represented by the successive activations of a recursive procedure sim with
the queue entries being maintained as values of the variable top which is local to sim. Thus
an addition to the rear of the queue may be accomplished by having sim call itself
recursively. Deletions from the front of the queue are more complicated. sim also contains
a local procedure up which is passed as a parameter during the recursive call which takes
place when an entry is added to the rear of the queue. In deleting an entry from the front
of the queue, this parameter is used to return control to previous activations of sim and
mspect the values of top local to those activations. The first entry in the queue will be
indicated by marking (e.g. negating) the appropriate copy of top. Suppose that the queue
machine program to be simulated is given by

Q = 1:INST;; - K:INSTy;

then the simulation program (in the language of Section 2) has the form

proc sim(.back),
begin new fop, bottom, progress,
(declaration of local procedure up)

progress =1,
while progress = 1 do
begin

if prog__counter = 1 then “INST\” else
I prog__counter = 2 then “INST,” else

if prog__counter = K then “INST,” else progress =0
end
end
end

end sim;
prog__counter = 1,
empty__queue = 1,
call sim(loop)

The variable empty__queue tells whether the queue contains any elements. prog__counter
15 the instruction counter for the program being simulated. If the size of the queue program
is greater than the number of elements in the domain of the interpretation, then
prog__counter may be replaced by a fixed number of new variables which hold its binary
representation. progress 1s used to indicate when control should be returned to the previous
activation of the procedure sim. The procedure loop diverges for all values of its parameters;
it will be called when an attempt is made to remove an entry from the empty queue.
Declarations for empty__queue, prog._ counter, progress, loop, and the program variables
for the queue machine are omitted from the outline of the simulation program.

The appropriate encoding for queue machine nstructions 1s given by the following
cases:

(A) If INST, is if x, = x,, then go to n replace by
begin

if X, = Xm

then prog__counter = n,

else prog__counter = prog__counter + 1
end

(B) If INST, is j:enqueue A then replace by

Programming Language Constructs 135

begin
if empty__queue # | then top = A4,
else begin top = —A,
empty__queue =0
end
prog__counter = prog__counter + 1,
call sim(up),
progress =0
end

Note that we are assuming that the first instruction 1n any queue program will be an
enqueue instruction. Note also that 1f progress ever becomes 0, the simulation program will
eventually terminate.

(C) If INST, is “j:dequeue x” then replace by
begin

if empty__queue = 1 then call loop (),

call back (x, bottom),

if bottom = 1 then empty__queue = 1,

X =—X,
prog__counter = prog__counter + 1
end

If the queue is not empty, back will correspond to the local procedure up declared in the
previous activation of sim. On return from the call on back the first parameter x will
contain the value of tgp in the first activation of sim.

Finally, we must describe the procedure up which is used by sim in determining the
value of the first element in the queue and deleting that element:
proc up (front__of__queue, first),

iftop<0
then begin
front__of _queue = top,
first =1
end
else begin
call back (front__of __queue, first),
if first = 1 then begin top = —top,
first =0
end
end
end up,

After a call on up, the parameter front__of _queue will contain the value of top in the first
activation of sim. The parameter first 15 used in marking the queue element which will
henceforth be first in the queue.

This completes the description of the simulation program. Contour diagrams [11]
describing the simulation of the queue program ‘“enqueue 5; dequeue x” are given in
Figures 1 and 2. We now return to the proof of the incompleteness theorem. Suppose that
there were a sound, complete Hoare axiom system H for programs of the type described
at the beginning of this section. Thus for all La, Lg, and [, if (a) T is a complete proof
system for L4 and I, and (b) L4 is expressive relative to Lg and /, then

B {P} S {Q)/e = tur (P} S{Q}/e

This leads to a contradiction. Choose I to be a finite interpretation with || = 2. Observe
that 7' may be chosen 1n a particularly simple manner; 1n fact, there is a decision procedure
for the truth of formulas in L4 relative to I Note also that L4 1s expressive with respect to
Lg and I; this was shown by Lemma 2.1 since [1s finite. Thus both hypothesis (a) and (b)
are satisfied. From the definition of partial correctness, we see that {true} S {false)/¢
holds iff S diverges for the mitial values of its global vanables. By Lemma 3 1, we conclude

136 EDMUND M. CLARKE JR.

prog_counfer i
tin \ / in T
procedure parometer procedure parameter
back loop back P
local variable top; | § local variable top, 0
locol procedure upy local procedure upp
(slml) (sumz)

Fic 1 Contour diagram illustrating how instruction “enqueue 5” 1s simulated Different activations of recursive
procedure sim are disunguished by subscripts

prog_counter 2
rtn \ '/rm\ \
procedure parameter procedure parameter
back loop back up)
local variable top, -5 local voniable top, 0
local procedure upy local procedure upy
o | L ™
(UD')
(sm]) { snmz)

Fic 2 Contour diagram illustrating how mstruction “dequeue x” 15 stmulated Local procedure up; 1s called
from within second activation of procedure sim

that the set of programs S such that &; {true} § (false}/¢ holds 1s not recursively
enumerable. On the other hand since

= {true} S {false}/¢ = tur {true} S {false}/o,

we can enumerate those programs S such that =; {true} S {false}/¢ holds (simply
enumerate all possible proofs and use the decision procedure for T to check applications
of the rule of consequence). This, however, is a contradiction.

Programming Language Constructs 137

4 Completeness Results

A major source of complexity 1n languages which allow procedure parameters is self-
application, e g calls of the form “call P(.., P, ..)". If self-application 1s allowed, the
lambda calculus may be directly simulated by parameter passing. The reader will note,
however, that the incompleteness result of Section 3 holds even if self-application 1s not
allowed. In restricting the programming language so that a sound and complete axiom
system may be obtained, we will disallow self-application. This restriction may be enforced
by requiring that actual procedure parameters be either formal procedure parameters or
names of procedures with no procedure formal parameters

A second source of complexity associated with parameter passing 1s sharing. Sharing
occurs when some vanable in a program may be referenced by two different names. (A
formal treatment of sharing 1s given 1n [6].) The incompleteness result of Section 3 may
also be obtained if sharing 1s not allowed. We will assume 1n the remainder of the paper
that shanng 1s not allowed, we will require that whenever a procedure call of the form
“call g(a:P)” is executed in environment e, all of the variables n a are distinct and no
parameter 1n a 1s global to the declaration of ¢ or to any procedure in e which may be
activated indirectly by the call on q.

Once sharing and self-application have been disallowed a “good” axiom system may be
obtained by modifying any one of the five features of Theorem 3.1. These results are
summarized in Table I. In order to establish the completeness results of Table I, sound
and complete axiom systems must be given for languages 2-6. Owing to space hmitations,
we will only consider language 5 in this paper. Languages 2 and 3 are treated in [1]. Good
axiom systems for languages 4 and 6 are similar to the axiom system described in Section
4.2 and will not be discussed here.

41 THE RANGE OF A STATEMENT. Consider the following program segment:
proc K(y p),

ify>1

then begin y = y — 2, call p(y F) end

elsey =0

end F,
proc G(w q), z =z + w, call g(w G) end G,
call F(x G),

Observe that the only procedure calls which can occur during the execution of the program
segment are “call F(x:G)” and “call G(x:F)”. In general let S, be a statement and ¢, an

TABLE | THEOREM SUMMARY
{No sharing or self-application)

Language Laonquage Longuoge Longudge Lonquage Language
1 ¥ b 4 oo

{1} Procedures with ¢ no procedure inC nc nc n¢
procedure parameters names s
parameters
(2} Recursion ¢ n¢ no recursion In¢ In¢ Inc
(3) Global variables inc Inc inc global ¢ nc
varigbles
disollowed
(4) Static scope Inc nc Inc inc dyngmic Inc
scope
(5) Interna! procedures inc nc nc nc nc internol
procedures
not allowed
Sound and complete no yes yes yes yes yes
Hoare axiom

system

138 EDMUND M. CLARKE JR.

environment; the range of So with respect to e, is the set of pairs (call g.(a:P), e.) for which
there is a valid computation sequence of the form

(So, €, %), ..., (call ¢.(a:P), e, 5,),

If static scope of identifiers is used, the range of a statement S with respect to environment
eo may be infinite. This is because of the renaming at block entry which occurs in clauses
(1) and (2) in the definition of M. If, however, dynamic scope 1s used, then the range of a
statement (with respect to a particular environment) must be finite, 1n fact there is a simple
algorithm for computing the range of a statement. The range of S with respect to
environment e is given by RANGE(S, e, $) where the definition of RANGE(S, e, m) is
given by cases on S.
(1) S is “begin new x; A end” — RANGE(begin A end, e, 7)
(2) S is “begin proc ¢(y:r); L end; A end” — RANGE(begin A end, ¢/, m) where ¢’ =
ADD(e, proc ¢(y:r); L end).
(3) Sis “begin 4;; A> end” — RANGE(begin A; end, e, RANGE(A,, e, 7)).
(4) S 1s “begin end” — .
B) Ss“z=¢" > m
(6) S1s“b—> A;, A" — RANGE(A2, e, RANGE(A:, e, 7))
(7) Sis “b * A” — RANGE(A, e,).
T if {call g(a:P),) E 7,
(8) Sis “call g(a:P)” — RANGE(K(a, P), e, 7) where 7' = 7 U {(call g(a:
P). e)} and “proc g(x:p);
K({x, p) end” € e, other-
wise.

This same property of dynamic scope provides a simple algorithm for determiming whether
the execution of a statement S in environment e will result 1n sharing.

4.2 Goop Axioms FOR DynaMIC ScoPe. The axioms and rules of inference in the
proof system DS for language 5 (dynamic scope of identifiers) may be grouped into three
classes: axioms for block structure (B1)-(B3), axioms for recursive procedures with
procedure parameters (R1)-(R6), and standard axioms for assignment, conditional, while,
and consequence (H1)-(H4).

Axioms for Block Structure:

{U[x*/x] A\ x = ao} begin A end {V[x'/x]}/e
{U} begin new x; A end {V}/e
where i is the index of the first program identifier not appearing in 4, e, U, or V.
{U} begin A end {V}/e U {proc q(x:p); K end}
{U?} begin proc ¢(x'p); K end; 4 end {V'}/e
(U4 {(Vi/e
(U A {V}/e

provided that e; C e, and e; does not contain the declaration of two different procedures
with the same name.

(U A {V}/e
{U} begin 4 end {V} /e
{U} A, {V}/e, {V} begin A; end {W}/e
{U} begin A;; A, end {W)}/e
Axioms for Recursive Procedures with Procedure Parameters. The first axiom, (R1), is

an induction axiom which allows proofs to be constructed using induction on depth of
recursion.

(B1)

(B2a)

(B2b)

(B3a)

(B3b)

Programming Language Constructs 139
(R1) {Us) call Fy(x0:Po) {Vo}/eo, ..., {Un} call Fo(x,:P,) (V) /en

= {Uo} Ko(Po) {Vo}/eo, ..., {Un} Ku(Pr) {Vu}/en
{Uo} call Fo(x0:Po) {Vo} /€0, ... , {Un} call F(x,:P,) {Vo}/en

where “proc F.(x,:p.); K:(p.) end” E e, for0=1=<n.

Axioms (R2)-(R6) enable an induction hypothesis to be adapted to a specific procedure
call. Before stating these axioms we define what it means for a variable to be inactive with
respect to a procedure cail.

Definition 4.1. Let procedure ¢ have declaration “proc g(x:p), K(x, p) end”. A variable
y 18 active with respect to “call g(a:P)” in environment e 1f y is either global to K(a, P} or
is active with respect to a call on a procedure in e from within K(a, P). If y is not active
with respect to “call g(a:P)” then y 1s said to be inactive (with respect to the particular
call). Similarly a term of the assertion language 1s mactive if it contains only inactive
variables. A substitution o s mactive with respect to “call g(a:P)” provided that it is a
substitution of inactive terms for inactive variables.

{U} call g(a:P) {V}/e
{Us} call g(a:P) {Vo}/e

provided o is inactive with respect to “call g(a:P)” and e.

{U(ry)} call g(a:P) {F(ro)} /e
{3rolU{ro)} call g(a:P) (Aro¥(ro)} /e

provided that 7, is inactive with respect to “call g(a:P)” and e.
{U} call g(a:P) {V}/e
{UAT)call g(a:P) {(VAT)/e
provided that no variable which occurs free in 715 active 1n “call g(a: P)”.
{U} call g(x:P) {V}/e
{Ula/x]} call g(a:P) {V[a/x]}/e

provided that no variable free in U or ¥ occurs 1n a but not 1n the corresponding position
of x. (x is the hist of formal parameters of ¢. This axiom will not be sound if sharing is
allowed)

Since procedures are allowed as parameters of procedure calls, it 1s possible for the
execution of a syntactically correct statement to result in a procedure call with the wrong
number of actual parameters. If dynamic scope of 1dentifiers 1s used, this eventuality may
be handled by the following axiom:

(R6) {true} call g(a:P) {false}/{proc g(x.p); K end}

provided that length(a) # length(x) or length(P) # length(p).

Standard Axioms for Assignment, Conditional, While, and Consequence. These axioms,
(H1)-(H4), are widely discussed in the literature and will not be stated here.

We 1llustrate the use of the above axioms by two examples. The first example 1llustrates
dynamic scope of identifiers. The second example shows how procedure parameters may
be handled.

Example 1. We prove
{true}
begin new x,

proc ¢, z = x end,

x =1,

begin new x, x = 2, call g end
end,

{z=2}/9
Let e be the environment {proc ¢; z .= x end}.

(R2)

(R3)

(R4)

RS)

140 EDMUND M. CLARKE JR.

D) {x=2Ay=1}z=x{z=2}/9 (HD)
Q) {x=2Apy=1}callg{z=2}/e (R1)
(3) {y =1} begin x == 2; callgend {z =2}/e (H1), (B3)
(4) {x = 1} begin new x; x ;= 2; call g end {z =2} /e (B
(5) (true}
begin x = |,
begin new x, x = 2, call g end
end
{z=2}/e (H1), (B3)
(6) {true}
begin new Xx,
proc g, z = x end,
x =1,
begin new x, x = 2, call g end
end

(z=2)/¢ (B1), (B2)

Note that if static scope were used instead of dynamic scope, the correct postcondition
would be {z = 1}.
Example 2. We prove

(x=2x0+1ANz=0)}
proc F(y:p),
ify> 1
then begin y .= y — 2, call p(y.F) end
elsey =0
end F,
proc G(w q), z'=z+ w, call g(w G) end G,
call F(x G)
{z= x§)/o
Let e be the environment containing the declarations of F and G. Let K;(p) and K»(q) be
the bodies of procedures F and G, respectively. Since the range of “call F(x:G)” with
respect to e consists of (call G(x* F), e) and (call F(x:G), e) 1t 1s sufficient to determine the
effects of “call G(x: F)” and “call F(x:G)” when executed 1n environment e.
We assume:
D {(y=2p0+ 1A z=2z}call {(y:G) {z =2+)8}/e
and
Q) {(w=2wo+ 1 A z= 2z} call GW:F) {z = 20+ (wo + 1)*}/e.
Using these assumptions it is straightforward to prove:
B3) (=20 + 1A z=2)} Ki(G) {z= 2+ }3}/e
and
@ (w=2wo+ 1 A z=2) Ko{F) {z= 20+ (wo + 1)?}/e.
By axiom (R1), we obtain
OO =2p+1Az=2z)call (y:G) {z= 2+)5}/e
and
©) H{w=2wo+ L A z= 2z} call GW:F) {z = 20+ (wo + 1)?}/e.
By axiom (R5) and line (5),
D {&x=20p+1Az=2)call F(x:G) {z =1z + j3}/e.
By axiom (R2) with the inactive substitution of 0 for z and x, for yo, we get
@B F{x=2x+ 1A z=0}call F(x:G) {z = x§}/e.
Line (8) together with two applications of (B2) gives the desired result.

5. Soundness

In this section we ouiline a proof that the axiom system DS for programs with dynamic
scope of identifiers is sound. We argue that if T is a sound proof system for the true
formulas of the assertion language L, then

Programming Language Constructs 141
tps {P} S {Q}/emmphes = {P} S {Q}/e.

The argument uses induction on the structure of proofs; we show that each instance of an
axiom is true and that if all of the hypotheses of a rule of inference are true, the conclusion
will be true also.

The only difficult case is the rule of inference (R1) for procedure calls. We assume that
the hypothesis

{Uo} call Fo(XoIPo) {Vo}/éo, - {Un} call Fn(XnZP,L) {V,.}/en
= {Uo} Ko(Po) {Vo}/eo, ..., {Un} Kn{Pn) {Vs}/en

of (R1) 1s true and prove that
E=r (U} call F(x,:P) {V.}/e

must hold for 0 < i < n Without loss of generality we also assume that the proof used to
obtain

{Uo} Ko(Po) {Vo}/e0, ... , {Un} Kn{Pr) {Vy}/en

from
{Uo} call Fo(xo:Po) {Vo}/eo, ... , {Un} call Fr(Xn:Py) {Va}/en

does not involve any additional applications of the axiom for procedure calls.

To simplify the proof we introduce a modified meaning function M,. M[Sl(e, s) 15
defined in exactly the same manner as M[S](e, s) if S is not a procedure call. For procedure
calls we have M[call F(a:P)](e, 5) = M,.1[K(a, P)](e, s) if j > 0, “proc F(x.p); K(x, p)
end” € ¢, length(a) = length(x), and length(P) = length(p). M,[call F(a:P)](e, s) is undefined
otherwise. Thus M, agrees with M on statements for which the maximum depth of
procedure call does not exceed j — 1.

We also extend the definition of partial correctness given in Section 2. We write =’ { P}
S{Q}/eiff Vs, s[s€ PN M[S](e s) =5 — s € Q] In the following lemma we state
without proof some of the properties of M.

LemMa 5.1 (Properties of M,). (a)=° {U} call F(a:P) {V}/eforall U, F, V,e.

(b) Suppose that T'\— A where " and A are sets of partial correctness formulas of the form
{P} S {Q}/e and the formulas of A are obtained from those m T without use of axiom
(R1). Then =’ T’ imphes &=’ A.

(o) If = {UY} K(a, P) {V}/e holds and the procedure with declaration “proc F(X, p);
K(x, p) end” is n e, then ="' {U} call F(a'P) {V'}/e must hold also.

(d) If M[S](e, s) = 5’ then there is a k > O such that j = k implies M)[S](e, s) = 5.

The proofs of (a), (c), and (d) follow directly from the definitions of M,. The proof of
(b) 15 straightforward, since use of axiom (R1) for procedure calls has been disallowed.

We return to the soundness proof for (R1). By part (a) of the lemma,

E° (U} call F(x,:P) {V.}/e.,, 0<i=n.
By the hypothesis of (R1) and part (b) of the lemma, we see that
= {U)} call £,(x.:P) {Vi}/e,, O0=<i=<n,
imphes
= (U} K(P) {V}/e, O0<i1=<n
By part (c) of the lemma,
= {U,} call F,(x,;:P)) {(V.}/e,, O0<i=n,

142 EDMUND M. CLARKE JR.
implies
=Y {U,) call F(x,:P,) {V.}/e,, O0=<i=<n.
Hence, by induction we have for all j = 0:
F {U} call Fi(x,:P) {V.}/e., 0=<i=<n.

Let s € U, and suppose that s’ = M[call F,(x,:P,)](e, 5); then there 1s a kK > 0 such that
J = kmplies M,[call F.(x,:P)](e, 5) = 5. Since =’ {U,} call F.(x.:P,) {V.}/e, we conclude
that ¥ € V..

Thus =; {U.} call F(x,:P)) {¥.}/e; holds for O =<1 < n and the proof of soundness is
complete for (R1). We leave the proof of soundness for the other axioms and rules of
inference to the interested reader.

6. Completeness

In this section we outline a proof that the axiom system DS is complete in the sense of
Cook. Let T be a complete proof system for the true formulas of the assertion language L,.
Assume also that the assertion language L4 1s expressive with respect to the expression
language Lr and interpretation I. We prove that

= (U} S {V)/eimplies psr (U} S {V}/e.

The proof uses induction on the structure of the statement S and 1s a generalization of the
completeness proof for recursive procedures without procedure parameters given 1 [7)].
Owing to the length of the proof we will only consider the case where S is a procedure call;
other cases will be left to the reader.

Assume that {Us} call Fo(ao"Po) {¥o}/eo is true. We show that {Us} call Fy(ao:Po)
{Vo}/eo is provable. Let “call Fi(a,.P,)”, .. , “call F.(a.:P,)” be the procedure calls in the
range of “call Fo(ao:Po)” and let e, be the environment corresponding to “call F(a,:P.)”.
We assume that F, has declaration “proc F(x.:p.); K.(x., p.) end”, that r, 1s the list of
variables that are active in “call F,(x,:P,)”, and that r; 1s the list of variables that are active
in “call F(a,:P.)”. We also choose ¢, to be a list of new variables which are inactive 1n
“call F,(x,:P,)” and “call F(a,:P)”.

To shorten notation, let

R' = {rl == cl}; M = SP(ca“ E(a;:Pz), €, Rt’)’
R ={r/=¢]}, L = Uplco/ro]
W, = SP(call F,(x,:P), e., R.), «

Recall that SP(S, e, U) is the strongest postcondition corresponding to statement S and
precondition U in environment e. Since L, is expressive, it follows that W, and W, may be
represented by formulas of Ly for0 <:=n.

We will show that

{R)} call F(x,:P,) {W.}/e, 6.1)

1s provable for all i, 0 </ =< n. From this result 1t follows that {Uo} call Fo(ao Po) {Vo}/eo
is also provable. To see that this last part of the argument is correct, observe that

(a) -+ {Ro} call Fo(ao:Po) {Wo}/eo by (6.1) and axiom (R5) since Ro = Ro[ao/x0] and
W6 = Wo[ao/Xo].

(b) = {Ro N\ L} call Fo(ao:Po) {Wi N\ L}/eo by axiom (R4).

(©) = {3co[Ro A L]} call Fo(ao:Po) {Ico Wo A L]} /e by axiom (R3).

(d) = Us — 3ed[Ro A L] since T is a complete proof system for L4 and since &= Up =
360[]'(’) = Co AN U()[Co/l'(’)]]

Programming Language Constructs 143

() = e[Wo A L] — SP(call Fo(ao:Po), ey, Up). Since L and the variables ¢y are
mactive with respect to “call Fo(ao:Po)”, we have

E deo Wi A L] = Aeo SP(call Fo(ao' Po), eo, Ro) A L]
= Jeof SP(call Fo(ao:Po), eo, Ro A L)]
= SP(call Fy(ao:Po), €0, e[R, A L))
= SP(call Fo(ao:Po), e, Uo).

(f) = e[Wo A L] — SP(call Fy(ao:Po), eo, Uy) This follows from (e) since T 1s a
complete proof system for L.

(g) — {Uo} call Fo(aolpo) {SP(call Fo(aoipo), €o, Uo)}/eo by (C), (e), (f), and the rule of
consequence.

(h) = SP(call Fy(ao.Po), e, Up) — Vo since = {Up} call Fo(ao:Po) {Vo}/eo and since
SP(call Fo(ao:Po), €0, Uo) 15 the strongest postcondition corresponding to Us and “call
Fo(aofpo)”.

(i) = (Uo} call Fo(ao:Po) {¥o}/eo by (g), (h), and the rule of consequence.

It is still necessary to prove (6.1). We will show that

{Ro} call Fo(xo:Po) {Wo}/eo, ..., {Rn} call Fu(x,:Py) {Wy}/en
F {Ro} Ko(Po) {Wo}/eq, .., {Rn} call K,(P,) {W.}/en (6.2)

The proof of (6.1) will then follow by axiom (R1) for procedure calls. Proof of (6.2) 1s by
induction on the structure of K, using an induction hypothests that is somewhat more
general than what we need to prove

Lemma 6.1. Let K be a statement and let R and W be predicates such that = {R} K
{W}/e and such that the range of K with respect to e is included in {call Fo(ao:Po), &), ...,
(call F(a,:Py,), e,); then

{Ro} call Fo(xo:Po) {Wo}/eo, ..., {Rn} call Fo(x,:Py) {Wy}/e. = {R} K {W}/e.

Proof. Proof 1s by induction on the structure of K We will only consider the case
where K is a procedure declaration, i.c. K = “begin proc g(x:p); L end; S end”. If = {R}
K {W}/e then we must also have = {R} K’ {W} /e where K’ = “begin S end” and ¢’ =
ADD(e, “proc q(x:p), L end”). Note that the range of K’ with respect to € is included
within the range of K with respect to e. By the induction hypothesis we have that

{Ro} call Fo(xo:Po) {Wo)}/eo, ..., {Rn} call Fo(x.:P,) {W,}/en = {R} K {W}/€.
By axiom (B2), we see that
{Ro) call Fo(xo:Po) {Wo}/eo, ... , {Rn} call Fu(Xn:Py) (Wy}/en = (R} K {W}/e.

Other cases 1n the proof of Lemma 6 1 are left to the interested reader. Note that once
Lemma 6.1 has been established, (6.2) follows from the observation that = {R;} K,(P,)
{(W}/e, 0<i1=<n.

7. Coroutines
A coroutine has the form
“coroutine: @, Q; end”.

@, is the main routine; execution begins i ¢, and also terminates in Q; (this requirement
simplifies the axiom for coroutines). Otherwise Q1 and Q: behave 1n identical manners. If
an exit statement is encountered in Q;, the next statement to be executed will be the
statement following the last resume statement executed in Q. Similarly, execution of a

144 EDMUND M CLARKE JR.

resume statement 1n QJ: causes execution to be restarted following the last exit statement
in Q;. If the exit (resume) statement occurs within a call on a recursive procedure, then
execution must be restarted in the correct activation of the procedure. A formal operational
specification of the semantics for coroutines 1s given in [1].

If recursive procedures are disallowed, a sound and complete axiom system may be
obtained for the programming language of Section 2 with the addition of the coroutine
construct. Such a system, based on the addition of auxiliary vanables, 1s described 1n [2].
The axiom for the coroutine statement is similar to the one used by Chint [3]. However, the
strategy used to obtain completeness 1s different from that advocated by Clint, auxiliary
variables represent program counters (and therefore have bounded magnitude) rather than
arbitrary stacks

THEOREM 7.1 Thereis a Hoare axiom system H for the programming language described
above, including the coroutine construct but requiring that procedures be nonrecursive, which
ts both sound and complete in the sense of Cook

8. Coroutines and Recursion

We show that 1t 1s impossible to obtain a sound-complete system of Hoare axioms for a
programming language allowing both coroutines and recursion provided that we do not
assume a stronger type of expressibihty than that defined in Section 2. (We will argue n
Section 9 that the notion of expressibility introduced 1n Section 2 1s the natural one. We
will also examine the consequences of adopting a stronger notion of expressibility) Let
L., be the programming language with features described in Sections 2 and 7 including
both parameterless recursive procedures and the coroutine statement.

Lemma 8.1. The halting problem for programs in the language L., is undecidable for all
finite interpretations I with | 1| = 2.

Proor. We will show how to simulate a two-stack machine by means of a program 1n
the language L... Since the halting problem 1s undecidable for two-stack machines, the
desired result will follow. The simulation program will be a coroutine with one of 1ts
component routines controlling each of the two stacks. Each stack 1s represented by the
successive activations of a recursive procedure local to one of the routines. Thus, stack
entries are maintamed by a varnable zop local to the recursive procedure, deletion from a
stack 1s equivalent to a procedure return, and additions to a stack are accomplished by
recurstve calls of the procedure. The simulation routine 1s given in outhne form below:

prog__counter = 1,
coroutine
begin
proc stack__1,
new fop, progress,
progress = 1,
while progress = 1 do
if prog__counter = 1 then “INST,” else
if prog__counter = 2 then “INST;” else

if prog__counter = K then “INSTy” else null
end
end stack__1,
call stack__1
end,
begin
proc stack__2,
new fop, progress,
progress = 1,
while progress = 1 do
if prog_counter = 1 then “INST1” else

Programming Language Constructs 145

%5

if prog__counter = 2 then “INST:” else

if prog__counter = K then “INST}” else null
end
end stack__2,
call stack_ 2
end
end

where “INSTY”, ..., “INST,” and “INSTY”, ..., “INST}” are encodings of the program
for the two-stack machine being simulated. Thus, for example, in the procedure stack__1
we have the following cases:

(1) If INST, is push x on stack__1, “INST,” will be

begin
top = Xx,
prog_counter = prog__counter + 1,
call stack__1

end,

(2) If INST, is pop x from stack__1, “INST,” will be

begin
prog—_counter = prog__counter + 1,
X = top,
progress .= 0

end,

(3) If INST, is push x on stack__2 or pop x from stack_ 2, “INST,” will simply be
begin

exit
end,

A similar encoding INSTY, ... , INST% for the copy of the program within procedure
stack__2 may be given. See Figure 3

THEOREM 8.1. Itisimpossible to obtain a system of Hoare axioms H for the programming
language L., which is sound and complete in the sense of Cook.

il rn| 4
top top{ 4

w

| 1w

rtn
top
Activations of Activations of
recursive procedure recursive procedure
Stack_1 Stack_2
18 routine of 2" routine of
coroutine coroutine

Fic 3 Simulation of two-stack machine with program push 3 on stack__1, push 4 on stack__2, push 5 on
stack__1 by coroutine with local recursive procedures

146 EDMUND M. CLARKE JR.

The proof is similar to the proof of Theorem 3.1 and will be omitted.

9. Discussion of Results and Open Problems

A number of open problems are suggested by the above results. An obvious question is
whether there are other ways of restricting the programming language of Section 2 so that
a sound and complete set of axioms can be obtained. For example, from Section 4 we
know that such an axiom system could be obtained simply by disallowing global variables.
Suppose that global vanables were restricted to be read only instead of entirely disallowed.
Would it then be possible to obtain a sound and complete axiom system? Automata
theoretic considerations merely show that the type of incompleteness argument used in
this paper is not applicable.

In the case of coroutines and recursion the most important question seems to be whether
a stronger form of expressibility might give completeness. The result of Section 8 seems to
require that any such notion of expressibility be powerful enough to allow assertions about
the status of the runtime stack(s). Clint [3] suggests the use of stack-valued auxiliary
variables to prove properties of coroutines which involve recursion. It seems possible that
a notion of expressibility which allowed such variables would give completeness. However,
the use of such auxiliary variables appears counter to the spirit of high level programming
languages. If a proof of a recursive program can involve the use of stack-valued variables,
why not simply replace the recursive procedures themselves by stack operations? The
purpose of recursion in programming languages is to free the programmer from the details
of implementing recursive constructs.

Finally we note that the technique of Sections 3 and 8 may be applied to a number of
other programming language features including (a) call by name with functions and global
variables, (b) unrestricted pownter variables with retention, (c) unrestricted pointer variables
with recursion, and (d) label variables with retention. All these features present difficulties
with respect to program proofs, and (one might argue) should be avoided 1n the design of
programming languages suitable for program verification.

REFERENCES

1. CLARKE, EM JRr. Programming language constructs for which 1t 1s impossible to obtain good Hoare-like
axioms Tech Rep No 76-287, Comptr Sc1 Dept, Cornell U, Ithaca, NY , Aug 1976
2 CLarkg, EM Jr Pathological mteraction of programmung language features Tech Rep CS-1976-15,
Comptr Sa Dept, Duke U, Durham, N C, Sept 1976.
CLINT, M Program proving. Coroutines Acta Informatica 2 (1973), 50-63
4. Cook, S A Axiomatic and interpretive semantics for Algol fragment Tech Rep. 79, Comptr Sc1 Dept, U
of Toronto, Toronto, Canada, 1975 To be published in SCICOMP.
5. DEBAKKER, J W., AND MEERTENS, L G L T On the completeness of the inductive assertion method Mathe-
matical Centre, Amsterdam, Dec 1973
6 DoNAHUE,J. Mathematical semantics as a complementary definition for axiomatically defined programming
language constructs In Three Approaches to Reliable Software Language Design, Dyadic Specification,
Compl. "y Semantics, by J Donahue et al , also Tech Rep CSRG-45, Comptr Syst Res Group, U of
Toronto, Toronto, Canada, Dec 1974
7 GoreLick, G.A Complete axiomatic sysiem for proving assertions about recursive and non-recursive
programs Tech Rep No 75, Comptr Sci Dept, U of Toronto, Toronto, Canada, Jan 1975
8 Hoare,C AR An axiomatic approach to computer programmung Comm ACM 12, 10 (Oct 1969), 322-329
9 Hoarg, CA R Procedures and parameters: An axiomatic approach In Symposium on Semantics of Algo-
rithmic Languages, E Engeler, Ed, Springer-Verlag, Berhn, 1971, pp 102-116
10 Hoare, CAR, anD Lauer, PE Consistent and complementary formal theores of the semantics of
programming languages Acta Informatca 3 (1974), 135-154
11 JonNsTON, J.B The contour model of block structured processes Proc ACM SIGPLAN Symp on Data
Structures 1n Programming Languages, Feb 1971, pp 55-82
12 JonEs, N D, aND MuchNIck, S S Even simple programs are hard to analyze J ACM 24, 2 (April 1977),
338-350.
13. MANNA, Z, AND PNUELL, A Formalization of properties of functional programs J ACM 17, 3 (July 1970),
555-569.
14 Naur, P, Ed Revised report on the algonthmic language ALGOL 60 Comm ACM 6, | (Jan 1963), 1-17

W

Programmung Language Constructs 147

15 Owicki, § A consistent and complete deductive system for the venfication of parallel programs. Proc.
Eighth Annual ACM Symp on Theory of Comptng , May 1976, pp 73-86.

16 WaND, M A new mncompleteness result for Hoare’s system Proc Eighth Annual ACM Symp. on Theory of
Comptng , May 1976, pp 87-91

17 WIRTH, N The programming language PASCAL Acta Informatica 1, 1 (1971), 35-63

RECEIVED APRIL 1977, REVISED JANUARY 1978

Journal of the Association for Compuung Machinery. Vol 26, No 1, January 1979

