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ABSTRACT Hoare axiom systems for establishing partial correctness of programs may fail to be complete because 
of (a) incompleteness of the assertion language relative to the underlying interpretation or (b) inabil i ty of the 
assertion language to express the mvanants  of loops Cook has shown that if there IS a complete proof system for 
the assertion language (l e all true formulas of the assertion language) and if  the assertion language satisfies a 
natural expresstbthty condition then a sound and complete axiom system for a large subset of Algol may be 
devised We exhibit programming language constructs for which it ms impossible to obtain sound and complete 
sets of Hoare axioms even in this special sense of Cook's These constructs include (0 recursive procedures with 
procedure parameters in a programming language which uses static scope of ldenufiers and (u) coroutmes in a 
language which allows parameterless recurslve procedures Modifications of these constructs for which sound 
and complete systems of axioms may be obtained are also discussed 
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1. Introduction 

1.1 BACKGROUND. Many different formalisms have been proposed for proving 
Algol-like programs correct. Of these probably the most widely referenced is the axiomaUc 
approach of  Hoare [8, 9]. The formulas m Hoare's system are triples of  the form {P} S 
(Q} where S is a statement in the programming language and P and Q are predicates in 
the language of  the first-order predicate calculus (the assertion language) The partial 
correctness formula {P} S (Q} is true lff whenever P holds for the initial values of  the 
program variables and S ts executed, then either S will fail to terminate or Q will be 
satisfied by the final values of  the program variables. A typical rule of  inference is 

{P A b} S (P} 

{P} while b do S {P A ~b}" 

The axioms and reference rules are designed to capture the meanings of the individual 
statements of the programming language. Proofs of  correctness for programs are con- 
structed by using these axioms together with a proof system for the assertion language. 

What Is a "good" Hoare axiom system? One property a good system should have is 
soundness [10, 6]. A deduction system is sound lff every theorem is actually true. Another 
property is completeness [4], which means that every true formula is provable. From the 
Godel incompleteness theorem we see that tf the deductton system for the assemon 
language is axtomatizable and if a sufficiently rich mterpretatlon (such as number theory) 
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is used for the assertion language, then for any (sound) Hoare axiom system there will be 
assertions {P} S {Q} which are true but not provable within the system. The question Is 
whether this incompleteness reflects some inherent complexity of the programming lan- 
guage constructs or whether it is due entirely to the incompleteness of the assertion 
language. For example, when dealing with the integers, for any consistent axiomatizable 
proof system there will be predicates which are true of the integers but not provable within 
the system. How can we talk about the completeness of a Hoare axiom system independ- 
ently of its assertion language9 

One way of answering this question was proposed by Cook [4]. Cook gives a Hoare 
axiom system for a subset of Algol including the while statement and nonrecurswe 
procedures. He then proves that if there is a complete proof system for the assertion 
language (1.e. all true formulas of the assertion language) and if the assertion language 
satisfies a natural expresslbdity condition, then every true partial correctness assertion will 
be provable. Gorelick [7] extends Cook's work to recursive procedures. Similar complete- 
ness results are given by deBakker and Meertens [5] and by Manna and Pnueh [13]. 

1.2 NEW RESULTS OF THIS PAPER Modern programming languages provide constructs 
which are considerably more complicated than the while statement, and one might wonder 
how well Hoare's axiomatic approach can be extended to handle more complicated 
statements. In this paper we will be interested in the question of whether there are 
programming languages for which it is impossible to obtam a good (i.e. sound and 
complete) Hoare axiom system. This question is of obvious importance in the design of 
programming languages whose programs can be naturally proved correct. 

We first consider the problem of obtaining a sound and complete system of axioms for 
an Algol-like programming language which allows precedure names as parameters in 
procedure calls. We prove that in general it is impossible to obtain such a system of axioms 
even if we disallow calls of the form "call P(  .... P .... )". (Calls of this form are necessary 
to directly simulate the lambda calculus by parameter passing.) We then consider restric- 
tions to the programming language which allow one to obtain a good axiom system. 

The incompleteness result is obtained for a block-structured programming language 
with the following features: 

(i) procedure names as parameters of procedure calls, 
(ii) recursion, 

(iii) static scope, 
(iv) global variables, 
(v) internal procedures. 

All these features are found m Algol 60 [14] and in PASCAL [17]. We also show that a 
sound and complete axiom system can be obtained by modifying any one of the above 
features. Thus if we change from static scope to dynamic scope, a complete set of axioms 
may be obtained for (i) procedures with procedure parameters, (ii) recursion, (iv) global 
variables, and (v) internal procedures, or if we disallow internal procedures, a complete 
system may be obtamed for (i) procedures with procedure parameters, (ii) recursion, (iii) 
static scope, and (iv) global variables. As far as we know, this is the first axiomatic 
treatment of procedure parameters. 

An independent source of incompleteness is the coroutine construct. If  procedures are 
not recurslve, there is a simple method for proving correctness of coroutines based on the 
addition of auxihary variables 115]. If, however, procedures are recursive, no such simple 
method can give completeness. These observations generalize to languages with parallelism 
and recursion. 

Additional programming language constructs for which it is impossible to obtain good 
axioms are discussed in Section 9 

1.3 OUTLINE OF PAPER. The development of these results is divided into two parts; the 
first deals with procedures as parameters and the second with the coroutlne construct. In 
Section 2 a formal description is given for a programming language with static scope, 
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global variables, and procedures with procedure parameters. This is followed by a 
discussmn of  Cook's expressibihty condition Modifications necessary to handle dynamic 
scope are also discussed. In Section 3 we prove that it is impossible to obtain a sound and 
complete axiom system for this language In Sections 4, 5, and 6 we discuss restrictions 
sufficient to insure that good Hoare axioms can be found. Secuons 7 and 8 are devoted to 
completeness and incompleteness results for the coroutine construct and follow the same 
outline as was used m the first part of  the paper. The paper concludes with a discussion of  
the results and remaining open problems. 

2. A Simple Programming Language and lts Semantws 

As in [4] we distinguish two logical systems involved m discussions of  program correct- 
ness-- the  assertion language L A m  which predicates describing a program's behavior are 
specified and the expression language LE in which the terms forming the right-hand stdes 
of  assignment statements and (quantifier-free) Boolean expressions of  condiUonals and 
while statements are specified. Both LA and L~ are first-order languages with equahty 
and LA ls an extension of  LE The variables of  LE are called program identifiers 
(PROG~ID)  and are ordered by the positive integers. The variables of  LA are called 
variable l den t t f i e r s (VAR_ID) .  

An interpretation I for LA consists of  a set D (the domain of  the interpretation), an 
assignment of  funcUons on D to the funcUon symbols of  LA, and an assignment of  
predicates on D to the predtcate symbols of  LA. We will use the notation [I[ for the 
cardmality of  the domain of  I. Once an interpretation I has been specified, meanings may 
be assigned to the variable-free terms and closed formulas of  LA (LE). 

Let I be an interpretation with domain D. A program state is an ordered list of  pairs of  
the form 

(vl.dl)(v2.d2) "'" (vn.dn), 

where each v, is a variable identifier and each d, is an element of  D. Thus a program state 
is similar to the associatmn hst used in the definition of  LisP. I f  s is a program state and v 
is a variable identifier then s(v) is the value associated with the first occurrence of  v m s .  
Similarly, ADD(s, v, d) is the program state obtained by adding the pair (v.d) to the head 
of  list s, and DROP(s, v) is the program state obtained from s by deleting the first pair 
which contains v. VAR(s) is the set of  all variable identifiers appearing in s. 

I f  t is a term of  LA with variables xl ,  x2, ..., xn and s is a program state, then we will use 
the notation t(s) to mean 

t [ s ( x , ) l x ,  . . . . .  S(Xn)/X,d, 
Le. the term obtained by simultaneous substitution o f s (x l )  for xl . . . . .  s(xn) for xn. 

Likewise we may derme P(s) where P is a formula of  LA. It is frequently convenient to 
identify a formula P with the set of  all program states which make P true, i.e. with the set 
(slI[P(s)] = true} If  this identification is made, then false will correspond to the empty 
state set and true will correspond to the set of  all program states. 

We consider a simple programming language which allows assignment, procedure calls, 
while, compound, and block statements. Procedure declaratmns have the form "proc 
q(x:p); K(x,  p) end" where q is the name of  the procedure, x is the list of formal variable 
parameters, p is the list offormalprocedureparameters, and K(x,  p) is a statement involving 
the parameters x and p. A procedure call has the form "call q(a :P)"  where a is the list of  
actual variable parameters and P is the list of  actualprocedure parameters. To simplify the 
treatment of  parameters we restrict the entries in a to be simple program identifiers. We 
further require that procedure names be declared before they appear  in procedure calls. 
An environment e is a finite set of  procedure declarations which does not contain two 
different declarations with the same name. If  ~r is a procedure declaration, then 
ADD[e, ~r] is the environment obtained from e by first deleting all procedure declarations 
which have the same name as ~r, and then adding ~r. 
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Meanings of  statements are specified by a meaning function M = Mi whtch associates 
with statement S, state s, and environment e a new state s'. Intuitively s' is the state 
resulting i f  S is executed with imtml state s and initial environment e. The definition of  M 
is given operationally m a rather nonstandard manner which makes extenswe use of  
renaming. This type of  defimUon allows static scope of  idenufiers without the introduction 
of  closures to handle procedures. The definiuon of  M[,~(e, s) is by cases on S: 

(1) S is "begin new x; B(x)  end" ~ DROP(M[begin B(x ' )  end](e, s'), x ~) where t is the 
index of  the first program ldenUfier not appearing in S, e, or VAR(s) and s' -- ADD(s, x t, 
a0). (a0 Is a speoa l  domain element which is used as the inmal  value of  program identifiers.) 

(2) S is "begin proc q(x p); K(x,  p, q) end; B(q) end" ~ M[begin B(q ~) end](e', s) 
where i is the index of  the first procedure identifier not occurring in B(q)  or e and e' = 
ADD(e, "proc q'(x:p); K(x,  p, q') end"). 

(3) S Is "begin B1; B2 end" ~ M[begin B2 end](e, M[B,](e, s)). 
(4) S is "begin end" ~ s 
(5) S is "x := t" ~ s' where s' = ADD(DROP(s, x), x, I[t(s)]). 

,, [M[B1](e,s)  l f s ~ b ,  
(6) (conditional) S is "b ~ B~, B2 ~ [ M[B2](e, s) otherwise. 

S is "b * B" ~ [ M [ b  * B](e, M[B](e, s)) if s E b, (7) (while) t s  otherwise 

M[K(a ,  P)](e, s) if "proc q(x.p); K(x,  p) end" E e, 

(8) S is "call q(a :P)"  --> length(a) = length(x), and 
length(p) = length(P), 

undefined otherwise. 

Sometimes it wall be easier to work with computauon sequences than wtth the defimtion 
of  M directly. A computation sequence C of  the form 

C ~. (So, eo, so) ... (St, e,, st) ... 

gwes the statement, environment, and program state during the ith step in the computation 
of  M[So](eo, so). Since the rules for generating computation sequences may be obtained in 
a straightforward manner  from the definition of  M, they wdl not be included here. 

The meaning function M may be easily modified to give dynamtc scope of identifiers. 
With dynamic scope when an tdentifier is referenced, the most recently declared actwe 
copy of  the identifier Is used. This will occur with our model  if we omit the renaming of  
variables which zs used in clauses (1) and (2) in the definition of  M. Thus, for example, 

M[begin new x; B end](e, s) = DROP(M[begin B end](e, s'), x) where s '  = ADD(s, x, ao) 

Unless explicitly stated we will always assume stauc scope of  idenufiers in this paper. 
Partial correctness assertions will have form {P} S (Q} /e  where S is a program 

statement, P and Q are formulas of  LA, and e is an environment. 
Definition 2.1. (P} S { Q } / e i s t r u e w i t h r e s p e c t t o I ( ~ z ( P }  S { Q ) / e ) l f f V s ,  s ' [ s E P  

A M[S](e, s) = s' ~ s' E Q] and every procedure which is global to S or to some procedure 
declaration m e is contained in e. I f  I" is a set of  partml correctness assertions and every 
assertion in I ~ is true with respect to I, then we write ~ r .  

To discuss the completeness of  an axiom system independently of  its assertion language 
we introduce Cook's notion of  expresslbility. 

Definition 2.2. LA IS expresstve with respect to LE and 1 iff for all S, Q, e there is a 
formula of  LA which expresses the weakest precondition for partlal correctness WP(S, e, Q) 
= {s I M[S](e, s) Is undefined or M[S](e, s) ~ Q}. (Note that we could have alternatively 
used the strongest postcondmon SP(S, e, P) = (M[S](e, s)ls E P} ) 

If  La is expressive with respect to LE and L then mvariants  of  while loops and recursive 
procedures will be expressible by formulas of  LA. Not every choice of  LA, LE, and I gives 
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expressiblhty. Cook demonstrates this in the case where the assertion and expression 
languages are both the language of  Presburger Arithmetic. Wand  [16] gwes another 
example of  the same phenomenon. More realistic choices of  t a ,  LE, and I do give 
expressibility. If  LA and LE are both the full language of  number theory and I is an 
interpretation m which the symbols of  number theory receive their usual meanings, then 
LA ts expressive with respect to LE and I. Also, if the domain of  I is finite, expresslbility 
is assured. 

LEMMA 2.1. I f  L3, LE are first-order languages with equality and the domain of I is 
finite, then LA is expresstve w#h respect to LE and L 

PROOF. Let D be the domain of  I and suppose that I D I < oo. Let S be a statement, e an 
enwronment, and Q a formula of  LA. Suppose that x l , . . ,  xn are the variables that occur 
free in Q, global to S, or global to some procedure in e. Since D is fimte, there exists a 
finite set of  n*tuples I ~ = ((a~ . . . . .  a t )  [ 1 _< j _< m} such that s E WP(S, e, Q) lff  for some 
n-tuple (a~ . . . . .  a t )  m I" we have s(x,) = al for 1 _< i _< n. I f R  = Vl.~_<m xl = a{/X x2 = 
a~ A ... A xn = a~, then it is not difficult to show that R expresses WP(S, e, Q). 

If  H is a Hoare axiom system and T is a proof  system for the assertion language LA 
(relative to I) ,  then a proof  in the system (H, T) will consist of  a sequence of  partial 
correctness assertions {P} S {Q}/e and formulas o f  LA each of  which is either an axiom 
(of H or T)  or follows from previous formulas by a rule of  inference (of H or T). I f  {P} 
S {Q}/e occurs as a line m such a proof, then we write t -n ,r  {P} S {Q}/e. In a snnilar 
manner, we may define r '  I"-n,r A where I" and A are sets of  partial  correctness assertions. 

Definition 2.3. A Hoare axiom system H for a programming language PL is sound and 
complete (m the sense of Cook) tff for all T, LA, LE, and L such that (a) LA is expresswe 
with respect to LE and I and (b) T is a complete proof system for LA with respect to I, 

~ u , r  {P} S {Q}/e ¢-~ ~ t  {P} S {Q}/e. 

3. Recursive Procedures with Procedure Parameters 

In this section we prove: 
THEOREM 3.1. It is imposstble to obtain a system of Hoare axtoms H which Is sound and 

complete m the sense of  Cook for a programmmg language whtch allows: 

(t ) procedures as parameters of procedure calls, 
(it) recursion, 

(ui) stattc scope, 
(tv) global variables, 
(v) internal procedures. 

Remark. In Section 4 we show that it is possible to obtain a sound, complete system of  
Hoare axioms by modifying any one of  the above features. To obtain the incompleteness 
result, only procedure identifiers are needed as parameters of  procedure calls The 
completeness proof  allows, in addition, variable parameters whtch are passed by direct 
syntactic substitution. 

In order to prove the theorem we need the following lemma. 
LEMMA 3.1. The Halting Problem is undecidable for programs tn a programmmg lan- 

guage wtth features (t)-(v) above for all fintte mterpretattons I wzth III -> 2. 
The proof  of  the lemma uses a modification of  a result of  Jones and Muchnick [12]. 

Note that the lemma ~s not true for flowchart schemes or while schemes. In each of  these 
cases if III < oo the program may be viewed as a finite state machine, and we may test for 
termination (at least theoretically) by watching the execution sequence of  the program to 
see whether any program state is repeated. In the case of recursion one might expect that 
the program could be viewed as a type of pushdown automaton (for which the Halting 
Problem is decidable). This is not the case if  we allow procedures as parameters. The static 
scope execution rule, which states that procedure calls are elaborated in the envtronment 
of  the procedure's declaration rather than m the environment of  the procedure call, allows 
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the simulation program to access values normally buried in the runtime stack without first 
"popping the top" of  the stack. 

Formally we show that it is possible to simulate a queue machine which has three types 
of  instructions: (A) enqueue x - - a d d  the value of  x to the rear of  the queue; (B) dequeue 
x- - remove the front entry from the queue and place in x; and (C) i f  x = y then go to L - -  
conditional branch. Since the Halting Problem for queue machines is undecidable, the 
desired result follows. 

The queue is represented by the successive activations of  a recursive procedure sire with 
the queue entries being maintained as values of  the variable top which is local to stm. Thus 
an addition to the rear of  the queue may be accomplished by having s lm call itself 
recursively. Deletions from the front of  the queue are more complicated, sire also contains 
a local procedure up which is passed as a parameter during the recursive call which takes 
place when an entry is added to the rear of  the queue. In deleting an entry from the front 
of  the queue, this parameter is used to return control to previous activations of  sire and 
respect the values of  top local to those activations. The first entry in the queue will be 
indicated by marking (e.g. negatmg) the appropriate copy of  top. Suppose that the queue 
machine program to be stmulated is given by 

Q = I : I N S T 1 ;  ... K : I N S T k ;  

then the simulation program (in the language of  Section 2) has the form 

ptoc sim(. back), 
begin new top, bottom, progress, 

(declaratwn of  Iocal procedure up ) 
progress ffi 1, 
while progress = ! do 

begin 
if grog__counter = i then "INST¢' else 
Ifprog__counter = 2 then "'INST2" else 

if grog__counter = K then "INSTk" else progress "= 0 
end 

end 
end 

end son; 
prog counter ~ 1, 
empty_queue ~ !; 
call slm( loop) 

The variable empty__queue  tells whether the queue contains any elements, prog__coun ter  
is the instruction counter for the program being simulated. If  the size o f  the queue program 
is greater than the number of  elements in the domain of  the interpretation, then 
p r o p _  counter  may be replaced by a fixed number of  new vanables which hold its binary 
representation, progress  Is used to indicate when control should be returned to the previous 
acttvation of  the procedure sire. The procedure loop diverges for all values of its parameters; 
it will be called when an attempt is made to remove an entry from the empty queue. 
Declarations for empty__queue ,  p r o g c o u n t e r ,  progress ,  loop, and the program variables 
for the queue machine are omitted from the outline of  the simulation program. 

The appropnate encoding for queue machine instructions is given by the following 
cases: 

(A) If  I N S T ~  is if x ,  = xm then go to n replace by 

begin 
if xp = Xm 
then grog__counter ffi n~ 
else prog__counter = grog__counter + l 

end 

(B) If  I N S T j  is j :enqueue A then replace by 
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begin 
if empty_queue # 1 then top = A, 
else begin top = -A ,  

empty__queue = 0 
end 

prog__counter = prog_counter + 1, 
call stm( up), 
progress = 0 

end 

Note that we are assuming that the first instruction m any queue program will be an 
enqueue  instruction. Note also that i f  progress  ever becomes 0, the simulation program will 
eventually terminate. 

(C) If  I N S T :  is '~/:dequeue x" then replace by 

begin 
if empty_queue = 1 then call loop (), 
call back (x, bottom ), 
if bottom = 1 then empty queue = 1, 
x ~ - x )  
prog__counter = prog_counter + l 

end 

If  the queue is not empty, back  will correspond to the local procedure up declared in the 
previous activation of  sim. On return from the call on back  the first parameter  x will 
contain the value of  top in the first activation of  sim. 

Finally, we must describe the procedure up which is used by s tm in determining the 
value of  the first element in the queue and deleting that element: 

proc up (front__of queue, first ), 
if top < O 
then begin 

f ront~of  queue = top, 
first = I 

end 
else begin 

call back (front__of queue.first ), 
if first = 1 then begin top = -top, 

first = 0 
end 

end 
end up, 

After a call on up, the parame te r  f r o n t _ o f  queue will contain the value of  top m the first 
activation of  sim. The parameter f i r s t  is used in marking the queue element which will 
henceforth be first in the queue. 

This completes the description of the simulation program. Contour diagrams [11] 
describing the simulation of the queue program "enqueue 5; dequeue  x" are given in 
Figures 1 and 2. We now return to the proof of  the incompleteness theorem. Suppose that 
there were a sound, complete Hoare axiom system H for programs of  the type described 
at the beginning of  this section. Thus for all LA, LE, and I, if  (a) T is a complete proof  
system for LA and I, and (b) LA is expressive relative to LE and I, then 

~ t  {P} S { Q } / e  ~ I-'-n,T {P} S { Q } / e .  

This leads to a contradiction. Choose I to be a finite interpretation with II[ _> 2. Observe 
that T may be chosen in a particularly simple manner; in fact, there is a decision procedure 
for the truth of formulas in LA relative to I Note also that LA iS expressive with respect to 
LE and I; this was shown by Lemma 2.1 since I is finite. Thus both hypothesis (a) and (b) 
are satisfied. From the definition of  partial correctness, we see that {true} S (false}/~ 
holds i f fS  diverges for the initial values of  its global variables. By Lemma 3 1, we conclude 
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1 
procedure parameter 

back uP1 I 
local variable top 2 0 

[ local procedure up 2 

(sire 2) 

FIG 1 Contourd lagramf l lus t ra tmghowmst ruc tmn"enqueueS"~ss lmula ted  Dlfferentact lvaUonsofrecurslve 
procedure s z m  are distinguished by subscripts 

Fio 2 

loop" m m 
rtn 

procedure parameter 
back ' back uP1 

I~al variable top] -5,,' local variable top2 0 

local procedure up 1 local procedure uP2 
L 

(up 

(stm l ) {s,m 2) 

Contour diagram dlustratmg how instruction "dequeue x" is simulated Local procedure/dpl is called 
from within second activation of procedure s ~ m  

that the set of programs S such that ~ (true} S {false}/q~ holds ts not recurstvely 
enumerable. On the other hand since 

~z (true} S (false}/~, ~-~ ~H,r (true} S (false}/~, 

we can enumerate those programs S such that ~z {true} S (false) /~ holds (simply 
enumerate all possible proofs and use the decision procedure for T to check apphcations 
of the rule of consequence). This, however, is a contradicuon. 
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4 Completeness Results 

A major source of  complexity in languages which allow procedure parameters is self- 
application, e g calls of  the form "call P( .., P, . .)". I f  self-apphcatlon is allowed, the 
lambda calculus may be directly simulated by parameter  passing. The reader will note, 
however, that the incompleteness result of  Section 3 holds even if  self-application is not 
allowed. In restricting the programming language so that a sound and complete axiom 
system may be obtained, we will disallow self-apphcation. This restriction may be enforced 
by requiring that actual procedure parameters be either formal procedure parameters or 
names of  procedures with no procedure formal parameters 

A second source of  complexity associated with parameter passing is sharmg. Sharing 
occurs when some variable in a program may be referenced by two different names. (A 
formal treatment of  sharing is given in [6].) The incompleteness result of  Section 3 may 
also be obtained if shanng is not allowed. We will assume In the remainder of  the paper 
that sharing is not allowed, we will require that whenever a procedure call of  the form 
"call q(a:P)"  is executed in environment e, all of the variables in a are distinct and no 
parameter in a is global to the declaration of q or to any procedure in e which may be 
activated indirectly by the call on q. 

Once sharing and self-application have been disallowed a "good" axiom system may be 
obtained by modifying any one of  the five features of Theorem 3.1. These results are 
summanzed in Table I. In order to establish the completeness results of  Table I, sound 
and complete axiom systems must be given for languages 2-6. Owing to space hmltations, 
we will only consider language 5 in this paper. Languages 2 and 3 are treated in [1]. Good 
axiom systems for languages 4 and 6 are slmdar to the axiom system described in Section 
4.2 and will not be discussed here. 

4 1 THE RANGE OF A STATEMENT. Consider the following program segment: 

pr~ F(y p), 
if.v> 1 
then begin y = y  - 2, cab p(y F) end 
else y .= 0 
end F, 

pro¢ G(w q), z = z + w, call q(w G) end G, 
call F(x G), 

Observe that the only procedure calls which can occur during the execution of  the program 
segment are "cab F(x: G)" and "call G(x:F)". In general let So be a statement and eo an 

TABLE I THEOREM SUMMARY 
(No sharing or self-apphcatlon) 

Longuogel Language Language Language4 Language Long~oge 

mc no procedure mc mc mc mc 
names as 
parameters 

tnc mc no recurston mc mc tnc 

(1) Procedures with 
procedure parameters 

(2) Recurston 

(3) Global vortobles mc mc mc global mc mc 
vortobles 
dtsollowed 

(4) Stohc scope mc mc )nc )nc dynamic mc 
scope 

(5) Internal procedures mc )nc mc )nc mc internal 
procedures 
not allowed 

Sound and complete no yes yes yes yes yes 
Hoore ox)om 
system 
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environment; the range of So with respect to eo is the set of  pairs (call q,(a:P), e, ) for which 
there is a valid computation sequence of  the form 

(So, eo, so) . . . . .  (call q,(a:P), e,, s,) . . . . .  

I f  static scope of identifiers is used, the range of  a statement So with respect to environment 
eo may be infinite. This is because of  the renaming at block entry which occurs in clauses 
(1) and (2) in the definition of M. If, however, dynamic scope is used, then the range of  a 
statement (with respect to a particular environment) must be finite, m fact there is a simple 
algorithm for computing the range of a statement. The range of S with respect to 
environment e is given by RANGE(S, e, ok) where the definition of RANGE(S, e, ~r) is 
given by cases on S. 

(1) S is "begin new x; A end" ~ RANGE(begin A end, e, ~r) 
(2) S is "begin proc q(y:r); L end; A end" ---> RANGE(begin A end, e', ~r) where e' = 

ADD(e, proc q(y:r); L end). 
(3) S is "begin A1; A2 end" ~ RANGE(begin A2 end, e, RANGE(A1, e, ~r)). 
(4) S Is "begin end" ~ ~r. 
(5)  S IS " z  :-~" e" ~ ~r. 

(6) S Is "b ~ Ah A2" ~ RANGE(A2, e, RANGE(Ai, e, ~r)) 
(7) S is "b * A" ~ RANGE(A, e, ~r). 

I lr If (call q(a:P), e) E ~r, 
(8) S is "call q(a:P)"  ~ RANGE(K(a, P),  e, ~ r ' )  where ~r' = ~r U {(call q(a: 

P), e)} and "proc q(x:p); 
K(x,  p) end" E e, other- 
wise. 

This same property of  dynamic scope provides a smaple algorithm for determining whether 
the execution of a statement S in environment e will result in sharing. 

4.2 GOOD AXIOMS FOR DYNAMIC SCOPE. The axioms and rules of  reference in the 
proof  system DS for language 5 (dynamic scope of  identifiers) may be grouped into three 
classes: axioms for block structure (BI)-(B3), axioms for recurslve procedures with 
procedure parameters (RI)-(R6),  and standard axioms for assignment, condmonal, while, 
and consequence (H I)-(H4). 

Axioms for Block Structure: 

{U[x ' /x]  A x = a0} begin A end { V[x ' /x]} /e  
(BI) 

{U} begin new x; A end {V}/e 

where i is the index of the first program identifier not appearing in A, e, U, or V. 

{U} begin A end {V}/e 0 {proc q(x:p); K end} 
(B2a) 

{U} begin proc q(x'p); K end; A end ( V}/e 

( U )  .,4 { V ) / e l  
(B2b) 

{V} A {V)/e~ 

provided that el _C e2 and e2 does not contain the declaration of two different procedures 
with the same name. 

{U} A {V} / e  
(B3a) 

(U} begin A end { V}/e 

{U} A1 { V}/e, { V} begin Az end ( W } / e  
(B3b) 

{U} begin A1; A2 end ( W } / e  

Axioms for Recursive Procedures with Procedure Parameters. The first axiom, (R1), is 
an induction axiom which allows proofs to be constructed using induction on depth of  
recursion. 
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(RI)  (Uo) call Fo(xo:Po) {Vo}/eo .. . . .  {U.)  call F.(xn:Pn) (V.}/en 

}- {Uo} K0(Po) [Vo}/eo . . . . .  {U.)  K . ( P . )  {V.}/e. 
{U0} call Fo(xo:Po) {Vo}/eo .. . . .  {U.} call F . (x . :P . )  {V.}/e. 

where "proc F,(x,:p,); K,(p,) end" E e, for 0 _< t <_ n. 
Axioms (R2)-(R6) enable an induction hypothesis to be adapted to a specific procedure 

call. Before stating these axioms we define what it means for a variable to be inactive with 
respect to a procedure call. 

Definition 4.1. Let procedure q have declaration "proc q(x :p), K(x, p) end". A variable 
y ts active with respect to "call q(a:P)" m environment e lf y is either global to K( a, P)  or 
is active with respect to a call on a procedure in e from within K(a, P).  I f y  is not active 
with respect to "call q(a:P)" then y ts said to be inactive (with respect to the particular 
call). Similarly a term of the assertion language is mactive If it contains only inactive 
variables. A substitution o is Inactive with respect to "call q(a: P)" provided that it is a 
substitution of  inactive terms for inactive variables. 

{U} call q(a:e)  {V}/e 
(R2) 

( Uo} call q(a:P) ( Vo}/e 

provided o is inactive with respect to "call q(a:P)" and e. 

{U(r0)} call q(a:P) {V(ro)}/e 
(R3) 

(3roU(ro)} call q(a: P) {3ro V(ro)}/e 

provided that ro is inactive with respect to "call q(a:P)" and e. 

{U} call q(a:P) (V}/e 
(R4) 

( U A  T} call q(a:P) {VA T}/e 

provided that no variable which occurs free in T is active in "call q(a:P)". 

(U} call q(x:P) {V}/e 
(RS) 

{U[a/x]} call q(a:P) { V[a/x])/e 

provided that no variable free m U or V occurs in a but not in the corresponding position 
of  x. (x is the hst of  formal parameters of  q. This axiom will not be sound if sharing is 
allowed ) 

Smce procedures are allowed as parameters of  procedure calls, it Is possible for the 
execution of  a syntacncally correct statement to result in a procedure call with the wrong 
number of  actual parameters. If  dynamic scope of  identifiers ts used, this eventuality may 
be handled by the following axiom: 

(R6) (true) call q(a:P) (false)/(proc q(x.p); K end} 

provided that length(a) ~ length(x) or length(P) ~ length(p). 
Standard Axzoms for Assignment, Condmonal, Whde, and Consequence. These axioms, 

(HI)-(H4), are wtdely discussed m the hterature and wtll not be stated here. 
We dlustrate the use of  the above axioms by two examples. The first example illustrates 

dynamic scope of  identifiers. The second example shows how procedure parameters may 
be handled. 

Example 1. We prove 
(true} 
begin new x, 

proc q, z = x end, 

x = l ,  

begin new x, x = 2, call  q end 

end, 

{z = 2}/q~ 

Let e be the environment (proc q; z .ffi x end}. 
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(1) (x  = 2 A y  = 1) z := x {z = 2 ) / ~  (H1) 
(2) {x = 2 A y  = 1} call q {z = 2 ) / e  (R1) 
(3) {y ffi 1) begin x := 2; call q end {z = 2} /e  (HI) ,  (B3) 
(4)  ( x  = 1} begin new x; x := 2; call q end (z = 2 ) / e  (BI)  
(5) {true} 

begin x ffi 1, 
begin new x, x = 2, call q end 

end 
{z ffi 2}/e (HI) ,  (B3) 

(6) {true} 
begin new x, 

pro¢ q, z = x end, 
x ~ l ,  
begin new x, x = 2, call q end 

end 
{z = 2 ) / ~  (BI), (B2) 

Note that if  static scope were used instead of  dynamic  scope, the correct postcondi t ion 
would be {z = 1}. 

Example 2. We prove 

{x= 2xo+ I A z = 0 }  
proc F(y:p), 

i f  y >  1 
then begin y .= y - 2, call p ( y .  F )  end 
elsey = 0 

end F, 
proc G(w q), z '= z + w, call q(w G) end G, 
call F(x G) 
{z = x~}l¢, 

Let e be the env i ronment  conta in ing the declarations of  F and  G. Let K1 (p) and  K2 (q) be 
the bodies of  procedures F and  G, respectively. Since the range of  "call F(x:G)" with 
respect to e consists of  (call G(x'F), e) and  (call F(x: G), e) R is sufficient to determine the 
effects of  "call G(x: F ) "  and  "call F(x: G)" when executed m env i ronment  e. 

We  assume: 
(1) {y = 2yo + 1 A z = Zo} call F(x:G)  {z = Zo + y g } / e  

and  
(2) {w = 2Wo + 1 A z = zo} call G(w:F) {z = Zo + (Wo + l)2}/e. 

Using these assumptions it is straightforward to prove: 
(3) {y = 2yo + 1 A  z = Zo} Ki(G) {z = zo + y~}/e 

and  
(4) {w = 2wo + 1 A z = go} Ke(F) {z -- zo + (wo + l)2}/e. 

By axiom (R1), we obta in  
(5) I -  {y = 2yo + 1 A z = Zo} call F(y:G)  {z = Zo + y~}/e 

and  
(6) I -  {w = 2Wo + 1 A z = zo} call G(w:F)  {z = Zo + (wo + l)2}/e. 

By axiom (R5) and  line (5), 
(7)  I -  {x = 2yo + 1 A z = zo) call F(x:G) {z = zo + y~}/e. 

By axiom (R2) with the inactive substRution of  0 for zo and  xo for yo, we get 
(8) I-- {x = 2x0 + 1 A z = 0} call F(x:G) {z = XoZ}/e. 

Line (8) together with two apphcat ions of  (B2) gives the desired result. 

5. Soundness 

In  this section we outl ine a proof  that the axiom system DS for programs wRh dynamic  
scope of  identifiers is sound. We  argue that if  T is a sound proof  system for the true 
formulas of  the assertion language LA then 
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t--DS.r {P} S (Q) /e  implies ~r  {e} S (Q} /e. 

The argument uses induction on the structure of  proofs; we show that each instance of  an 
axiom is true and that if all of  the hypotheses of  a rule of inference are true, the conclusion 
will be true also. 

The only difficult case is the rule of  inference (RI) for procedure calls. We assume that 
the hypothesis 

(Uo) call Fo(xo:Po) (Vo)/eo . . . .  (Un} call Fn(x~:P~) (Vn)/e~ 
F- {Uo) Ko(Po) (Vo}/eo . . . . .  (U~} K~(Pn) {V.)/e~ 

of (RI)  IS true and prove that 

~z (U,) call F(x,: P,) (V,)/e, 

must hold for 0 _< i _< n Without loss of  generality we also assume that the proof used to 
obtain 

(Uo} Ko(Po) (Vo)/eo . . . . .  {Un) K~(P~) (V~)/e~ 

from 

(Uo} call Fo(xo:Po) {Vo)/eo . . . . .  (Un} call Fn(xn:Pn) (Vn)/en 

does not involve any additional applications of  the axiom for procedure calls. 
To simplify the proof we introduce a modified meaning function Mj. Mj[S](e, s) is 

defined in exactly the same manner as M[S](e, s) if S is not a procedure call. For procedure 
calls we have My[call F(a:P)](e, s) = Mj-i[K(a, P)](e, s) l f j  > 0, "proc F(x.p); K(x, p) 
end" ~ e, length(a) = length(x), and length(P) = length(p). Mj[call F(a:P)](e, s) is undefined 
otherwise. Thus Mj agrees with M on statements for which the maximum depth of  
procedure call does not exceed j - 1. 

We also extend the definition of  partial correctness given in Section 2. We write ~J {P} 
S {Q}/e  iff V s, s'[s E P A Mj[S](e, s) = s' ~ s' ~ Q] In the following lemma we state 
without proof some of  the properties of  Mj. 

LEMMA 5.1 (Properties of  Mj). (a) ~o {U} call F(a:P) ( V ) / e f o r a l l  U, F, V, e. 
(b) Suppose that F ~ A where F and A are sets of  partial correctness formulas of  the form 

(P) S ( Q ) / e  and the formulas o f  A are obtamed from those m r without use o f  amom 
(RI). Then ~ F imphes ~J 4. 

(c) I f  ~ J ( U ) K ( ao P) { V ) / e holds and the procedure with declaration "proe F(x, p); 
K(x, p) end" is m e, then ~J+~ {U) call F(a 'P)  ( V} /e  must hold also. 

(d) I f  M[S](e, s) = s' then there ts a k > 0 such that j _> k implies Mj[S](e, s) = s'. 
The proofs of  (a), (c), and (d) follow directly from the definitions of  Mj. The proof of  

(b) is straightforward, since use of axiom (RI) for procedure calls has been disallowed. 
We return to the soundness proof for (R 1). By part (a) of  the lemma, 

~o (U~) call F~(x,:P,) ( V , ) / e ,  O_<i_<n. 

By the hypothesis of (R1) and part (b) of the lemma, we see that 

~J {U,) call F,(x,:P,) (V,)/e, ,  0 _< l _< n, 

implies 

~ {U,) K,(P,) {l.~)/e,, O_<t_~n 

By part (c) of  the lemma, 

~J (U,) callF,(x~:P,) (V,}/e,, O ~ i < _ n ,  
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implies 

~j+l {U,} call F,(x,:P,) {V,}/e,, 0 _< i<_ n. 

Hence, by induction we have for a l l j  _> 0: 

~J {U,) callF,(x,:P,) {V,}/e,, O_<i_<n. 

Let s E U, and suppose that s' = M[call F,(x,:P,)](e, s); then there Is a k > 0 such that 
j _> k tmplies Mj [call F,(x,:P,)](e, s) ffi s'. Since ~J { U,} call F,(x,:P,) { V,}/e, we conclude 
that s' ~ V,. 

Thus ~ l  {U,} call F,(x,:PJ {V,}/e, holds for 0 _<, _< n and the proof of  soundness is 
complete for (R1). We leave the proof of  soundness for the other axioms and rules of  
inference to the interested reader. 

6. Completeness 

In this section we outline a proof that the axiom system DS is complete m the sense of  
Cook. Let T be a complete proof system for the true formulas of  the assertion language LA. 
Assume also that the assertion language La is expresswe with respect to the expression 
language LE and interpretation I. We prove that 

~ l  {U} S {V) /e  implies t--DS, T (U} S {V}/e. 

The proof uses induction on the structure of  the statement S and is a generalization of  the 
completeness proof for recursive procedures without procedure parameters given m [7]. 
Owing to the length of  the proof we will only consider the case where S is a procedure call; 
other cases will be left to the reader. 

Assume that {Uo} call Fo(ao'Po) {Vo}/eo is true. We show that {Uo} call Fo(ao:Po) 
{ Vo}/co is provable. Let "call Fl(al. P0",  -- , "call Fn(an :Pn)" be the procedure calls in the 
range of  "call F0(a0:P0)" and let e, be the environment corresponding to "call F,(a, :P,)". 
We assume that F, has declaratton "proe F,(x,:p,); K,(x,, p,) end", that r, Is the list of  
variables that are active in "call F,(x,: P,)", and that r,' is the hst of  variables that are actwe 
in "call F,(a,:P,)". We also choose c, to be a list of  new variables which are inactive m 
"call F,(x,: P,)" and "call F,(a,: P,)". 

To shorten notation, let 

R, ~- {r, -- c,); I'E' -ffi SP(call F,(a,:P,), e,, R,'), 
R,' ~ {r; ffi c,}, L --- Uo[co/r~] 
W, -~ SP(call F,(x,:P,), e,, R,), d 

Recall that SP(S, e, U) is the strongest postcondition corresponding to statement S and 
precondition U in environment e. Since LA is expressive, it follows that ~ and W,' may be 
represented by formulas of  LA for 0 _< t _< n. 

We will show that 

{R,} call F,(x,:P,) { W,}/e, (6.1) 

ts provable for all i, 0 _< i _< n. From this result it follows that { Uo} call Fo(ao Po) { Vo}/eo 
is also provable. To see that this last part of  the argument is correct, observe that 

(a) I-- {R~} call Fo(ao:Po) {W~}/eo by (6.1) and axiom (R5) since R~ = Ro[ao/xo] and 
w 8 - -  Wo[ao/xo]. 

(b) I- {R5 A L} call Fo(ao:Po) {W~ A L}/eo by axiom (R4). 
(c) I-  {3co[R5 A L]} call Fo(ao:Po) {3co[W5 A L]}/eo by axiom (R3). 
(d) I-  Uo ~ 3co[R5 A L] since T is a complete proof system for LA and since m Uo -= 

3co[r8 ffi Co A Uo[eo/rS]]. 
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(e) ~ 3co[W6 A L] ~ SP(call Fo(ao:Po), eo, Uo). Since L and the variables Co are 
inactive with respect to "call Fo(ao:Po)", we have 

3Co[ W6 A L ]  ~ 3co[SP(cali Fo(ao'Po), co, RS) A L ]  
-= 3co[SP(call Fo(ao:Po), eo, R~ A L)] 
~- SP(call Fo(ao:Po), eo, 3co[R~ A L]) 
=- SP(call Fo(ao:Po), eo, Uo). 

(f) I-  3co[W~ A L] ~ SP(call Fo(ao:Po), eo, Uo) This follows from (e) since T is a 
complete proof system for LA. 

(g) I-- {Uo} call Fo(ao:Po) {SP(call Fo(ao:Po), eo, Uo)}/eo by (c), (e), (f), and the rule of  
consequence. 

(h) ~- SP(call Fo(ao.Po), eo, Uo) --~ Vo since ~ (Uo} call Fo(ao:Po) {Vo}/eo and since 
SP(cali Fo(ao:Po), eo, Uo) is the strongest postcondttmon corresponding to Uo and "call 
Fo(ao:Po)". 

(i) ~ (Uo} call Fo(ao:Po) { Vo}/eo by (g), (h), and the rule of  consequence. 

It is still necessary to prove (6.1). We wdl show that 

(Ro} call Fo(xo:Po) {Wo}/eo . . . . .  {Rn} call Fn(xn:Pn) {Wn}/en 
I--- {Ro} Ko(Po) {Wo}/eo . . . .  {R,} call K.(P~) {W,} / e , .  (6.2) 

The proof of  (6.1) will then follow by axiom (RI) for procedure calls. Proof o f  (6.2) is by 
induction on the structure of  K, using an induction hypothesis that is somewhat more 
general than what we need to prove 

LEMMA 6.1. Let K be a statement and let R and W be predicates such that ~ (R} K 
( W } / e  and such that the range of  K with respect to e is included m (call Fo(ao:Po), Co) . . . . .  
(call Fn(ao:P,), e,); then 

{Ro} call Fo(xo:Po) { Wo}/eo . . . . .  {Rn) call Fn(xn:Pn) {Wn}/e~ ~- {R} K { W ) / e .  

PROOF. Proof is by induction on the structure of  K We will only consider the case 
where K is a procedure declaration, i.e. K m "begin proc q(x:p); L end; S end". I f ~  {R} 
K { W } / e  then we must also have ~ (R} K' { W } / e '  where K' ~- "begin S end" and e' = 
ADD(e, "proc q(x:p), L end"). Note that the range of  K' with respect to e' is included 
within the range of  K with respect to e. By the induction hypothesis we have that 

{Ro) call Fo(xo:Po) { Wo) /eo . . . . .  {R,) call F,(x, :Pn) { W,} / e ,  t -  (R} K' { W )  /e'. 

By axiom (B2), we see that 

(Ro} call Fo(xo:Po) (Wo}/eo . . . . .  {R,} call F~(xn:Pn) { W , } / e ,  ~ (R} K { W } / e .  

Other cases m the proof of  Lemma 6 1 are left to the interested reader. Note that once 
Lemma 6.1 has been estabhshed, (6.2) follows from the observation that ~ {R,} K,(P,) 
{ W,}/e,, O _ ~ l ~ n .  

7. Coroutines 

A coroutine has the form 

"coroutine: Q1, Q2 end". 

Q~ is the main routine; execution begins in Qi and also terminates in Q1 (this requirement 
simplifies the axiom for coroutines). Otherwise Q1 and Qz behave m identical manners. I f  
an exit statement is encountered in Q1, the next statement to be executed will be the 
statement following the last resume statement executed in Qz. Similarly, execution of  a 
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r e s u m e  statement m 02 causes execution to be restarted following the last exit  statement 
in Q1. If  the exit (resume) statement occurs within a call on a recursive procedure, then 
execution must be restarted in the correct activanon of the procedure. A formal operaUonal 
specification of  the semantics for coroutines Is given in [1]. 

I f  recursive procedures are disallowed, a sound and complete axiom system may be 
obtained for the programming language of  Section 2 with the addit ion of  the coroutine 
construct. Such a system, based on the addmon of  auxihary variables, is described m [2]. 
The axiom for the coroutine statement is simdar to the one used by Chnt [3]. However, the 
strategy used to obtain completeness is different from that advocated by Clint, auxiliary 
variables represent program counters (and therefore have bounded magmtude) rather than 
arbitrary stacks 

THEOREM 7.1 There is a Hoare axtom system H f o r  the programming language described 
above, includmg the coroutme construct but requirmg that procedures be nonrecurstve, whtch 
ts both sound and complete m the sense o f  Cook 

8. Coroutines and Recurston 

We show that it is impossible to obtain a sound-complete system of  Hoare axioms for a 
programming language allowing both coroutmes and recursion provided that we do not 
assume a stronger type of  expressibdlty than that defined m Section 2. (We will argue m 
Secaon 9 that the notion of  expressibility introduced m SecUon 2 Is the natural one. We 
will also examine the consequences of  adopting a stronger notion of  expresslbility ) Let 
Lc.r be the programming language with features described in Sections 2 and 7 including 
both parameterless recursive procedures and the coroutlne statement. 

LEMMA 8.1. The halting problem f o r  programs in the language Zc,r is undeetdable for  all 
f imte  mterpretattons I wtth III -> 2. 

PROOF. We will show how to simulate a two-stack machine by means of  a program m 
the language L .... Since the halting problem is undeodable  for two-stack machines, the 
desired result will follow. The simulation program will be a coroutme with one of  its 
component routines controlling each of  the two stacks. Each stack is represented by the 
successive activations of  a recurswe procedure local to one of  the routines. Thus, stack 
entries are maintained by a variable top local to the recursive procedure, deletion from a 
stack is equivalent to a procedure return, and additions to a stack are accomphshed by 
recurslve calls of  the procedure. The simulation routine is given in outhne form below: 

prog__counter = 1, 
coroutine 

begin 
proc stack__ 1, 

new top, progress, 
progress = l, 
while progress = 1 do 

ifprog__counter = I then "INSTi" else 
ifprog__counter = 2 then "'INST2"' else 

if prog__counter = K then "INSTK'" else null 
end 

end stack_ l, 
call stac~____l 

end, 
begin 

proc stack__2, 
new top, progress, 
progress :z 1, 
while progress = 1 do 

ifprog~counter = 1 then "INST," else 
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ifprog counter ~ 2 then "'INST'" else 

if prog__counter = K then "'INST," else null 
end 

end stack__2, 
call stack__2 

end 
end 

where  " I N S T i " ,  . . . .  " I N S T k "  a n d  " I N S T , " ,  . . . .  " I N S T F '  are encod tngs  o f  the  p r o g r a m  
for  the  two-s tack  m a c h i n e  be ing  s imulated.  Thus ,  for example ,  m the  p rocedure  s tack__l  
we h a v e  the  fo l lowing cases: 

(1) I f l N S T j  is push  x on  s tack__ l ,  " I N S T f '  wall be 

begin 
top = x, 
prog_counter = prog__counter + 1, 
call stac~___l 

end, 

(2) I f  1 N S T j  is pop x f rom s tack__ l ,  " I N S T f '  wall be  

begin 
prog__counter = prog__counter + 1, 
x = top, 
progress .= 0 

end, 

(3) I f  I N S T j  is push  x on  s t a c k _ 2  or pop x f rom stack__2, " I N S T f '  wdl  s tmply  be 

begin 
exit 

end, 

A simi lar  encod ing  I N S T ?  . . . . .  I~NST~ for the  copy o f  the  p r o g r a m  wi th in  p rocedure  
s tack__2 m a y  be  gwen.  See F igure  3 

THEOREM 8.1. I t  tS impossible to obtain a system o f  Hoare  axzoms H f o r  the p rogramming  
language Lc.r whwh Is sound and  complete m the sense o f  Cook. 

Achvohons of . 
recurs0ve proceoure 
$tack_l 

Achvahons of 
recurs~ve procedure 
Stock_2 

FIG 3 

1 st routine of 2 nd routme of 
coroutme coroutme 

Smaulauon of two-stack machine wzth program push 3 on stack 1, push 4 on stack__2, push 5 on 
stack l by coroutme with local recurslve procedures 
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The proof is similar to the proof of  Theorem 3.1 and will be omitted. 

9. Discussion of Results and Open Problems 

A number of  open problems are suggested by the above results. An obvious question is 
whether there are other ways of  restricting the programming language of  Section 2 so that 
a sound and complete set of  axioms can be obtained. For example, from Section 4 we 
know that such an axiom system could be obtained simply by disallowing global variables. 
Suppose that global vanables were restricted to be read only instead of  entirely disallowed. 
Would it then be possible to obtain a sound and complete axiom system? Automata 
theoretic considerations merely show that the type of  incompleteness argument used in 
this paper is not applicable. 

In the case of  coroutines and recursion the most important question seems to be whether 
a stronger form of expressibility might give completeness. The result of  Section 8 seems to 
require that any such notion of expressibility be powerful enough to allow assertions about 
the status of the runtime stack(s). Clint [3] suggests the use of  stack-valued auxiliary 
variables to prove properties of  coroutines which involve recursion. It seems possible that 
a notion of  expressibility which allowed such variables would give completeness. However, 
the use of  such auxiliary variables appears counter to the spirit of  high level programming 
languages. If a proof of  a recursive program can involve the use of  stack-valued variables, 
why not simply replace the recurswe procedures themselves by stack operaUons? The 
purpose of  recursion in programming languages is to free the programmer from the detatls 
of  implementing recursive constructs. 

Finally we note that the technique of  Sections 3 and 8 may be applied to a number of  
other programming language features including (a) call by name wRh functions and global 
variables, (b) unrestricted pomter variables with retention, (c) unrestrtcted pointer variables 
with recursion, and (d) label variables with retention., All these features present dffficulttes 
wtth respect to program proofs, and (one might argue) should be avotded m the design of 
programming languages statable for program verification. 
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