Automatic verification of sequential circuit designs

By E. M. CLark©e'. J. R. Btreut. O GRUMBERG:. D. E. Lo~ng!
AND K. L. McMiILLax!

YSchool of Computer Seience. Carnegie Mellon. Pittsburgh,
Pennsylvania 15213. U.S.A.
* Computer Science Department, The Technion. Haifa 32000, Israel

Temporal logic model checking is a method for automatically deciding if a sequential
circuit satisfies its specifications. In this approach. the circuit is modelled as a state
transition system. and specifications are given by temporal logic formulas. Efficient
search algorithms are used to determine if the specifications are satisfied or not. The
procedure has been used successfully in the past to find subtle errors in a number of
non-trivial circuit designs. Recently. the size of the circuits that can be handled by
this technique has increased dramatically. It is now possible to verify transition
systems that are many orders of magnitude larger than was previously the case. In
this paper. we describe some of the techniques that have made this increase possible.
These techniques are based on the use of binary decision diagrams to represent
transition systems and sets of states.

1. Introduction

Logical errors in sequential circuit designs are an important problem for circuit
designers. They can delay getting a new product on the market or cause the failure
of some critical device that is already in use. The most widelv used method for
sequential circuit verification is based on extensive simulation and can easily miss
significant errors when the number of possible states of the circuit is very large.
Although there has been considerable research on the use of theorem provers, term
rewriting systems and proof checkers in hardware verification. these techniques are
time consuming and often require a great deal of manual intervention. They have
been successfully used for reasoning about data paths, but most logical errors in
sequential circuit designs arise because of problems in the control circuitry rather
than in the data paths. The research described in this paper is based on an alternative
approach called temporal logic model checking in which specifications are expressed in
a propositional temporal logic and an efficient search procedure is used to determine
whether or not the specifications are satisfied. This technique has been used in the
past to find subtle errors in a number of non-trivial circuit designs. In this paper we
describe some recent extensions of this method that have made it possible to verify
much larger circuits than was previously the case.

Temporal logic is a formal system for reasoning about the ordering of events in
time without introducing time explicitly. It was originally developed by philosophers
for investigating the way that time is used in natural language arguments. Pnueli
(1977) was the first to use temporal logic for reasoning about the concurrent

Phil. Trans. R. Soc. Lond. A (1992) 339. 105-120 © 1992 The Royal Society
Printed in Great Britain 105

106 [0 Clavke and olhers

programs. Later. Bochmaim (19821 and Malachi & Owicki (1981) used this notation
for reasoning about cireuit designs. However. their correctness proofs were
constructed by hand. and they could only handle very small circuits. The
introduction of temporal logic model checking algorithms (Clarke & Emerson 1981
Quiclle & Nifakix 1981) in the carly 1980s allowed this type of reasoning to be
automated. Model checking is a technique for determining whether a finite state
transition svstem satisfies some formula of temporal logic. In this approach. the
transition svstem represents the circuit to be verified. and the formula represents its
specification. Since checking that a single model satisfies a formula is much easier
than proving the validity of a formula for all models. this technique can be
implemented very cfficiently. In fact. for computation tree logic (cTL). there is a
model-checking algorithm that has complexity linear in both the size of the
transition svstem and its specification (Clarke et al. 1986).

Model checking has several important advantages over mechanical theorem
provers or proof checkers for sequential cireuit verification. The most important is
that the procedure is completely automatic. Typically. the user provides a high-level
representation of the model and the specification to be checked. The model checking
algorithm will either terminate with the answer frue. indicating that the model
satisfies the specification. or give a counterexample execution that shows why the
formula is not satisfied. The counterexamples are particularly important in finding
subtle errors in complex transition systems. The procedure is also quite fast. and
usually produces an answer in a matter of minutes. Partial specifications can be
checked. When a specification is not satisfied. other formulas —not part of the
original specification - can be checked to locate the source of the error. Finally. the
logic used for specifications can directly express many concurrency properties. Thus,
it is unnecessary to introduce special variables to indicate the times at which events
oceur as is normally the case when some variant of predicate calculus is used as the
specification language.

The main disadvantage of the procedure is the state explosion problem. which can
oceur if the device being verified has many components that can make transitions in
parallel or if the circuit contains very wide data paths. Barly implementations could
handle transition svstems with only a few thousand states. Therefore. they were only
useful for svstems with a small number ot components. Nevertheless. this was
sufficient to find errors in a number of non-trivial. although relatively small.
protocols and circuit designs (Browne ef al. 1986: Dill & (larke 1986). In the past few
vears. however. the size of the circuits that can be handled by this technique has
increased dramatically. [t is now possible to check transition systems that are many
orders of magnitude larger in terms of states than the first examples that were tried.
[n this paper. we describe some of the techniques that have made this increase
possible. These techniques use highly efficient data structures to represent the
transition systems and sets of states.

In the original implementation of the ¢tL model-checking algorithm. transition
relations were represented explicitly by adjacency lists. The new implementation of
the algorithm uses an implicit representation for state transition systems based on
binary decision diagrams (BDDs) (Bryant 1986). BDDs provide a canonical form for
boolean formulas that is often substantially more compact than conjunctive or
disjunctive normal form. and very cfficient algorithms have been developed for
manipulating them. The implicit representation used by the new method is quite
natural for modelling sequential circuits. Each state is encoded by an assignment of

Phil. Trans. R. Soc. Lond. A (1992)

Automatic vevification of sequential cireuit designs 107

boolean values to the set of state variables associated with the cireuit. The transition
relation can. therefore. be expressed as a boolean formula in terms of two sets of
variables. one set encoding the old state and the other encoding the new. This
tormula is often succinetly represented by a binary decision diagram. By using this
technique. we have been able to handle some examples that would have required the
cnumeration of 10** states with the original version of the algorithm. A refinement
of this technique in which the transition relation is partitioned into several parts has
permitted cven larger circuits to be checked for correctness. Several other groups
(Bryant & Seger 1990: Coudert et al. 1990: Touati ef al. 1990) have obtained
comparable results with model-checking algorithms based on BpDS.

Our discussion of these new techniques is organized as follows. The next section
explains the model of computation that we use and how we treat both svnchronous
and asynchronous circuits within this framework. Section 3 contains a brief
discussion of BpDs and how circuits are represented using Bpps. The syntax and
semantics of ¢TL are given in §4 along with some typical examples of specifications
expressed in this notation. The following section describes the new symbolic model-
checking algorithm and demonstrates how the transition relation of a large state
transition graph can be partitioned. In §6. we show how model-checking techniques
can be used to verify a pipelined aLt and a multiprocessor cache coherency
protocol. The paper concludes in §7 with a discussion of some future research
directions.

2. Circuits and state transition systems

To reason about the correctness of sequential cireuits. it is necessary to have a
formal model of circuit behaviour. In this paper. we model circuits as state transition
systems. We assume that a set I of boolean state rariables is associated with each
circuit. For a synchronous circuit. the set 1 typically consists of the outputs of all the
registers in the circuit. In the case of an asvnchronous circuit, there is usually one
element of 1" for cach wire. A state of the circuit consists of an assignment of truth
values to the elements of I If we identify each state with the set of variables in ¥
that are assigned the value true. then the set of all possible circuit states is given by
S = Powerset(). We assume that the set of possible fransitions between circuit states
is given by a relation £ € 8 x S and that the circuit has a set of initial states [< S in
which it is allowed to start. More formally-.

Definition 1. Let 1 be a finite set of boolean state rariables. 4 state transition system
over I"is a triple M = (S.I.RY. where 8 = Powerset(). I = 8 is the set of initial states
of the system. and R = S xS (s the transition relation.

Normally. the transition relation will be given as a boolean formula in terms of the
state variables. Two states are related by the transition relation if and only if the
truth valuations determined by the states satisfv the boolean formula.

We illustrate how synchronous circuits can be modelled by considering a small
example. The circuit in figure 1 is a simple modulo 8 counter. Let V = g vy v} be
the set of state variables for this circuit. and let }7 = {vg: v1. 25} be a copy of these
variables. We will represent a transition of a circuit by interpreting " to be the
present state variables and T” to be next state variables. The transitions of the
modulo 8 counter are given by

ty = . ¥ = P @ty vy = (g A) @ v,

Phil. Trans. £, Soc. Lond. A (1992)

108 E. 3. Clurke and others

The above equations can be used to define the relations
No(F 1) = (g y).
N(F.T) = (v, @ vy),
NV 1) = (vis (g A 1) D 2y).

which describe the constraints that the »; and ¢} must satisfy in a legal transition. The
transition relation is simply the conjunction of these constraints.

NV T = N7 ANV T7) A Ny T7),

In the case of a svnchronous circuit with n state variables. we let 1= {v,,....v,_},
V" = {}.....1_,}. and assume that for each state variable v; there is a function f; such
that

vy = filF)-

These equations are used to define the relations
NV 1) = (vj<=fi(1)).

As in the case of the modulo 8 counter. the conjunction of these relations forms the
transition relation of the circuit.

NV I =XNIAF,)Y & 7 AN V. T}

Forming the transition relation for asynchronous circuits is more difficult. For
each wire 7 in the circuit. we derive a transition relation R, that models how that wire
can change. For example. if v, is driven by an AND gate with inputs z, and v,. then

Ry (V. 17y = (rg=1y A 1y).

In this paper. we model asynchronous circuits using interleaving semantics. Thus. in
our models. at most one wire is allowed to change at a time. If we consider a
transition where only wire i may change. then it must satisfy the formula

NAV. T i= 8V T A /\ ey

J#i

In an asynchronous circuit the wire that changes is determined nondeterministically.
Consequently. in this case, the full transition relation is given by the disjunction

NV, V=XV, T v <50 v Ny (F. T

3. Representing state transition systems symbolically

Circuits with many components may have state transition systems with a very
large number of states. An obvious approach for solving the state explosion problem
is to develop techniques for succinetly representing large state transition systems, In
this section we describe a technique. based on the use of binary decision diagrams,
that appears to work quite well in practice.

Phil. Trans. R. Soe. Lond. A (1992)

dutomatic verification of sequential circuit designs 109

Figure 2

Figure 1

Lb‘g

By 1‘_)
o

Figure 1. Synchronous modulo 8 counter.
Figure 2. .\ BDD representing (a A b) V (¢ A d).

(a) Binary decision diagrams

Ordered binary decision diagrams (BDDs) provide a canonical representation for
boolean formulas (Brvant 1986) that is often substantially more compact than
conjunctive or disjunctive normal form. Since formulas expressed in this manner can
also be manipulated very efficiently in programs. Bpps have become widely used
in a variety of cap applications. including symbolic simulation, verification of
combinational logic and. more recently. verification of sequential circuits. A BDD is
similar to a binary decision tree. except that its structure is a directed acyclic graph
rather than a tree. and there is a strict total order placed on the occurrence of
variables as one traverses the graph from root to leaf. Consider. for example. the BbD
of figure 2. It represents the formula (z A b) v (¢ A d), using the variable ordering
@ < b <c <d.Givenan assignment of boolean values to the variables a. b, ¢ and d. one
can decide whether the assignment makes the formula true by traversing the graph
beginning at the root and branching at cach node based on the value assigned to the
variable that labels the node. For example. the assignment {¢ < 1.b<0,c< 1,d <1}
leads to a leaf node labelled 1. hence the formula is true for this assignment.

Bryant showed that if the variable ordering is fixed. there is a unique BDD for every
boolean formula. The size of the BDD depends critically on the variable ordering.
Bryant also devised efficient algorithms for computing the BDD representations of - f
and f Vv g given the BpDs for formulas f and g. The only additional operations that
we require for the algorithms that follow are quantification over boolean variables
and substitution of variables. It is straightforward to give an algorithm that finds the
BDD for a restricted formula of the form f|,_, or f|,_,, i.e. S with the variable v set to
0 or L. The restriction algorithm allows us to compute the 8pD for the formula Jv[f],
where 1 is a boolean variable and f is a formula, as flomo V flo=y. Substitution of a
variable w for a variable r in a formula f can be accomplished using quantification :

e[{v<=w) A f].

BDDs can also be viewed as a form of deterministic finite automata (Kimura &
Clarke 1990). An n-argument boolean function can be identified with the set of

Phil. Trans. K. Soc. Lond. A (1992)

110 I Clarke and others

strings in {0, 17 that represent valuations where the function is true. Since this is a
finite language and all finite languages are regular. there ix a minimal finite
automaton that accepts this set. This automaton provides a canonical representation
for the original boolean function. Logical operations on boolean functions can be
implemented by set operations on the languages aceepted by the finite automata. For
example. conjunction corresponds to language intersection. Standard constructions
from eclementary automata theory can be used to compute these operations on
languages. Based on this approach. it is relatively easy to develop a parallel
algorithm for constructing 8pps. Kimura & Clarke (1990) give such an algorithm and
describe its performance on a 16 processor Encore Multimax. The execution statistics
that have been obtained for a number of examples show that this algorithm achieves
a high degree of parallelism. In fact. on many examples it exhibits essentially linear
speedup as the number of processors is inereased.

(h) Describing transition systems with binary decision diagrams

In principle. it is easy to represent a set of system states by a BpD. Consider a
circuit in which 17is the set of state variables. A state is determined by an assignment
of either 0 or 1 to each variable in I". Given such a truth valuation. it is possible to
write a boolean expression that is true for exactly that valuation. For example. given
1" = {r,. ry. v} and the valuation {¢, — 1., < 1.2, < 0}. we obtain the boolean formula
ro A 1, A = v, This formula can. of course. be represented using a BDD. In general. a
boolean formula mayv be true for many different truth valuations. If we adopt the
convention that a formula represents the set of all valuations that make it true. then
we can deseribe sets of states by boolean formulas and. hence. by BDDs. In practice.
BDDs tend to bhe much more concise than traditional techniques for representing sets
of states. In the remainder of the paper. we will denote sets of states with S. We
denote the Bop for the set S by N(I). where |7 is the set of variables that the Bpp
depends on.

[n addition to representing sets of xyvstem states. we must be able to represent the
transition relation. To do this. we extend the idea used above. A valuation for the
variables in 1 and 1”7 can be viewed as designating a pair of states that determine a
transition. We can represent sets of such valuations using BDDs as above. For the
circuit example given in §2. the transition relation is represented by the 8pp for the
formula N(I7.17).

4. The logic CTL

To specify properties of state transition systems. we need a logic that can describe
the relative ordering of events in time. An obvious way of developing such a logic is
to introduce special variables into a predicate logic that represent the times at which
events oceur. Decision procedures for even the simplest fragments of such logics have
high complexity. however. Hence. it is difficult to develop fully automatic verification
tools if this approach is used. Instead. we use a propositional. temporal logic called
computation tree logic (ctL) (Clarke ef al. 1986) to specify properties of state transition
systems. Special operators are included in c¢rL for reasoning about the ordering of
events in time without introducing time explicitly. We begin this section with an
informal description of ¢TL and some examples of how properties that arise in
sequential circuit verification can be expressed in this logic.

Suppose that we wish to reason about a state transition system /. If some state
of M is selected as the initial state. then M can conceptually be unwound into an

Phil. Trans. B, Soe. Lond. A (1992)

Awtomalic rerification of sequential circuit designs 111

infinite tree with that state as its root (see figure 3). Since paths in the tree represent
possible behaviours or computations of the transition svstem. we will refer to the
infinite tree obtained in this manner as the computation tree of 3. c11. contains special
operators for describing computation trees. Formulas in ¢TL are built from atomic
propositions (one for each state variable in the circuit). boolean connectives (=. A .
V.. <>and @). and lemporal operators. Each operator consists of two parts: a path
quantifier (A or E) and a temporal modality (F. G. X. or U). The quantifier indicates
whether the operator denotes a property that should be true of all paths from a given
state or whether the property need only hold on some path. The modalities describe
the ordering of events in time along a computation path and have the following
intuitive meanings:

1. Fg (‘@ holds sometime in the future’) is true of a path if there exists a state on
the path for which the formula ¢ is true.

2. Gy (‘g holds globally ") means that ¢ is true at every state on the path.

3. X¢ (‘@ is holds next time) means that ¢ is true at the second state on the path.
Le. the state immediately following the present state.

+. ¢Uyr (‘@ holds until i holds) means that there exists some state on the path
such that 1/ is true at that state. and that for all preceding states. ¢ is true.

Each formula of the logic is either true or false in a given state. An atomic
proposition is true in a state if the state variable corresponding to the proposition is
true in the state. The truth of a formula built from boolean connectives depends on
the truth of its subformulas in the usual way. A formula whose top level operator is
a temporal operator with a universal (existential) path quantifier is true whenever all
paths (some path) starting at the state have the property required by the operator’s
modality. A formula is true of a circuit if it is true for all the initial states of the
circuit. The following examples illustrate the expressive power of the logic:

1. AG(req—~AF ack): it is always the case that if the signal reg is high. then
eventually ack will also be high.

2. AG(pending —~EX completed): it is always the case that if pending is high. then
it is possible for completed to be high in the next state.

3. EF(started A = ready): it is possible to get to a state where started holds but
ready does not hold.

+. AG AF enabled: enabled holds infinitely often on every computation path.

5. AGEF restart: from any state. it is possible to get to the restart state.

6. AG(send — A(sendUrecr)): it is alwavs the case that if send occurs. then
eventually recr is true. and until that time. send must remain true.

We conclude this section with a more precise deseription of ¢TL to provide a
rigorous basis for explaining the decision procedure in §5. Let M/ = (S.1. R) be a state
transition system. A path in . is an infinite sequence of states 7 = s, s, s,...such that
for every i€ N. R(s;.5;.,). We write J.skE=q to indicate that the formula ¢ is true in
state s of M. This relation is defined inductively as follows:

L. If ¢ is the atomic proposition corresponding to the state variable r. then sk=¢
if and only if res. :

2. sE-gpifand only if it is not the case that s=g. s=¢ A i/ ifand only if s =q and
s/, The other propositional connectives are handled similarly.

3. sEEXg if and only if there exists a path 7 = 5,5, 5,... starting at s = s,, such
that s, =q.

1. sEEGg if and only if there exists a path 7 starting at s such that for every state
s onwms Fg.

Phil. Trans. . Soe. Lond. A (1992)

112 £ Clarke and others

Figure 3. State transition ¢raph and corresponding computation tree.

5. s=E(@Uy) if and only if there exists a path 7 = s, 5, 5,... starting at s = 5, and
some /= 0 such that s;=1y and for all j <i.5,F¢.

The semantics of the temporal operators with universal path quantifiers can be de-
fined in terms of those given above. For example. AGg is equivalent to = E(truelU —¢)
and A(gUy) is equivalent to ~E(=y U(=iy A -¢)) A ~EG —¢/. Finally. we will write
ME=q to indicate that every initial state of J/ satisfies the formula ¢.

5. Symbolic model checking

Temporal logic model checking algorithms (Clarke & Emerson 1981: Clarke ef al.
1986 : Lichtenstein & Pnueli 1985) may be used to determine automatically whether
a state transition system satisfies a temporal logic formula. The algorithm described
below is an efficient model checking algorithm for ¢TL that makes use of the symbolic
representation of circuits and sets of states described previously. Given a formula ¢,
the algorithm determines the set of states (represented as a BDD) where each
subformula of ¢ (including ¢ itself) is true. It does this in a bottom up fashion starting
from the atomic propositions in the formula.

1. Foran atomic proposition corresponding to the state variable r. the set of states
where the proposition is true is described by the boolean formula v

2. For a conjunction of formulas ¢ A /. the set of states where the conjunction is
true is the intersection of the set of states where ¢ is true and the set of states where
y is true. Given ppps S, (F) and S (1) corresponding to the latter. the BDD
corresponding to the conjunction is simply S, (V) A 8, (F). Other boolean operations
on formulas are handled similarly.

3. For the formula ¢y = EX¢. we first find the 8pp S, (') representing the set of
states where ¢ is true. The states where EX ¢ is true are those that have a successor
for which ¢ is true. If N(J7. 17} is the formula for the transition relation. then we can
write a boolean formula for EX g by quantification over the state variables in J:

S, = 3 8,07 A NI,

rel”’

Note that this results in » nested quantifications if there arve n variables in V.
Forming the conjunction of S, (I”) with N(J". 1”). gives a BDD that represents those
pairs of states s and ¢ for which there is a transition from s to f and ¢ is true in .
Quantifving out the variables in 1”7 gives a BDD that represents those states s which
have some successor satisfving ¢.

1. For a formula such as EF¢. we use a fixed point characterization of the

Phil. Treens. B. Soc. Lond. A (1992)

Automatic rverification of sequential circuit designs 113

temporal operator to compute a BDD representing the set of states for which EF ¢ is
true. EF ¢ is the least fixed point (under the inclusion ordering) of

EF¢ =¢ v EXEFg.

Given such a fixed point characterization, we can find the appropriate solution by
simply iterating. We begin with the set of states where @ is true represented as the
BDD S, (V). We then perform the EX operation as above on this set of states and union
the result with S, (17). This gives a new BDD S(V) describing those states which either
satisfv @ or which can reach a state satisfying ¢ in one step. We then repeat the
process: since the set of possible states is finite, we will eventually reach the desired
fixed point. Also note that detecting this condition is very efficient because BDDs
provide a canonical form for representing sets of states. Formulas with other
temporal operators such as EG can be handled in a similar manner.

5. The formulas with universal path quantifiers can be rewritten in terms of
formulas with existential path quantifiers and boolean operations.

The algorithm can be extended to handle fairness constraints as described by
(larke ¢t al. (1986). In addition, the model-checking algorithm will give a
counterexample trace (if this is possible) when it finds that a formula is false. This
feature is particularly useful in debugging complex circuits.

Several parts of the algorithm involve performing computations of the following
form:

3 [S(F) A NV I

veV

This expression is called a relational product. and it forms the basis for many
verification techniques that use symbolic methods. Thus. it is crucial to be able to
perform this step efficiently. For example, a special algorithm is typically used which
performs this operation without building the spp for S(V") A N(V. 7). which would
often be impractically large. Unfortunately. the Bpp .N(F, 17) itself is often very big,
and being forced to construct this Bpp has been the major stumbling block in trying
to verify complex circuits. In the remainder of this section. we describe techniques
for overcoming this problem by using more than one BDD to represent .\,

(a) Asynchronous circuits

Since the transition relation for an asynchronous circuit is a disjunction of
relations. the relational product computed is of the form

3 (SO A NGV VYV oo vN (VTN

vel”’

This relational product ean be computed without ever constructing the Bpp for the
full transition relation by rewriting the formula as follows.

3 [SO") AN IV - v T[S AN,)]

eV’ vel”’

Thus we are able to reduce the problem of computing the full relational product one
of computing a series of relational products involving relatively small Bpps. This
technique was used to verify the design of an asynchronous stack in (Burch el al.
1990«). Larger asynchronous circuits can be verified by the same method.

Phil. Tranx. . Soe. Lond, A (1992)

A Vol 339, A

114 F.o M. Clarke and others

Read ports Write port

_Eg —— Register file -
= ||
3
g
£
Control
- % L Pipe registers
—
T >3
= é___
Bypass circuitry

Figure 4. Pipeline circuit block diagram.

(b) Synchronous circuils

Since the transition relation for a synchronous circuit is a conjunction of relations.
the relational product computed has the form

I SO A NPT A AN, (5T (1)

vel”’
The technique used for asynchronous circuits cannot be applied here because
existential quantification does not distribute over a conjunction. However. a
different technique can be used in this case to construct the Bpp for the full transition
relation. We use the modulo 8 counter deseribed earlier to illustrate this technique.
Since the counter has three state variables. the relational product is given by
Jrg ey ey [SU7) A (No(F Ty ANV T A N TN

Since conjunction is associative. and the ordering of existential quantification does
not matter. we can rewrite this as

36, 3y 3o [(US(7) A No(F. 7)) A Ny(V, 7)) A No(F, 171, (2)
Next, we make use of the fact that subformulas can be moved out of the scope of an
existential quantifier if they do not depend on any of the variables being quantified.
Since N, (V. I”) does not depend on ¢, or 1}, we obtain

Fep [T Feg [(ST7Y A N(T T ANV I A NLT T,
Sinece .V (V, 17) does not depend on v, we can apply this transformation one more
time by writing

3o [Fop [Feg [(ST7) A NI AN)] A N T
We can now compute the relational product in equation (1) by starting with S(J")
and at each step conjoining the previous result with an \N(I". ") and quantifving out

Phil. Trans. R. Soc. Lond. A (1992)

Automatic verification of sequential cirewit designs 115

the appropriate variables. Thus we have reduced the problem of computing the full
relational product to one of performing a series of smaller relational product-like
steps.

The ordering chosen for the conjuncts in equation (2) can have a major impact on
the performance of the algorithm. We wish to order the V;(¥, T”) so that the variables
in 17 can be quantified out as quickly as possible. and variables in 1" are added as
slowly as possible. This is desirable since it reduces the number of variables that the
intermediate BpDs depend on. and hence. can greatly reduce the size of these BDDs.
In this particular example. the number of new state variables ¢} in the intermediate
BDDs is independent of the order of the Ny(J".). However, the number of old state
variables v; depends on the order. and is minimized by the order given in equation

(2).
6. Examples

In this section. we discuss two examples that illustrate the application of symbolic
model checking. The first example is a simple data pipeline of the type commonly
used in rISC processors. and the second is a distributed cache consistency protocol.

(a) Data pipeline

The data pipeline circuit performs three-address arithmetic and logical operations
on operands stored in a register file. Figure 4 shows a block diagram for the pipeline.
The number of pipe registers can be varied; if s is the number of pipe registers, then
executing an instruction requires s+2 cycles.

1. During the first cycle of the instruction. operands are read from the register file
into the instruction operand registers.

2. During the second cycle, the result of the operation is computed and stored in
the first pipe register.

3. In cycles three through s+ 1. the result is passed between pipe registers.

4. In the last cvcle. the result is written back to the register file.

In a real circuit. operations would typically be performed between some of the
pairs of pipe registers. but in our example. results are just propagated unchanged.
Each instruction specifies the source and destination registers and the operation to
perform. In addition. the pipeline has a stall input which indicates that the
instruction is invalid and should be ignored. More specifically. the instruction’s
destination register should not be affected if the stall input is true. The stall signal
might. for example. be used to indicate an instruction cache miss: the signal would
be asserted until an instruction is fetched from main memory. To allow results to be
used before they are actually written into the register file, data can be fed from the
ALU output or from one of the pipe registers back to the ALU operand registers.

A more detailed cTL specification for the pipeline is given elsewhere (Burch et al.
1990a); we provide a brief summary here. In particular, the pipeline considered in
this section performs only addition operations. The main correctness condition states
that when an instruction is issued. then s+2 cycles later. the destination register
contains the appropriate value. The value that the destination register should
contain depends on the results from instructions which are still executing since
results from these instructions may be bypassed to the ALU operand registers. We can
take this into account by noting that these results will all be reflected in the register
file s+ 1 cycles after the instruction is issued. Thus, after s+ 2 cycles, the value in the
destination register should be the sum of those values that are in the source registers

Phil. Trans. B. Soc. Lond. A (1992)

5-2

116 £ M. Clarke and others
s+ 1 cveles after the instruction is issued. Let reg; ; denote the state variable for bit
I of register j. Nince the pipeline is deterministic and every state has a successor. we
can express the value of reg; ; & cyveles in the future by the ¢t formula

k

AXAX -+ AXrey; ;.

(We abbreviate this as AX"reg;) When there are two registers. bit i of the
destination register s+ 2 cyvcles in the future is given by

(—destaddr A AX* % reg, ;) V (destaddr A AX*? reg, ,).

We abbreviate this formula as dest,. Similar formulas are used to specify the source
operand values. These formulas are used to write formulas sum, that correspond to
the individual bits in the sum of the source operands. Then the fact that either the
pipeline is stalled or bit i of the destination register gets bit / of the sum of the source

operands is given by AG (= stall — (sum, <> dest,)).

From the diagram of the circuit. we see that it decomposes naturally into pieces.
We used this decomposition with the techniques described in §5 to reduce the size of
the BDDs constructed during the verification. Some of the parts. such as the register
file. were found to require large BDDs to represent: we broke these into more pieces.
We also found that we could combine some of the parts. such as the individual pipe
registers. without increasing the number of BpDD nodes required: we did this to
decrease overhead. The final partitioned transition relation consisted of the following
pieces: (1) control logic: (2) pipe registers: (3) the first ALU operand register: (4) the
second sLT operand register: and (5) one piece for each general register. This ordering
was also used in computing the relational product as described in §56.

We performed the tests described above by using a ¢TL model checker written
mostly in LISP. The actual BbD manipulation routines are written in (' and are based
on a package by Brace ¢t al. (1990). The model checker was run on a Sun 4. We
experimented with several different pipeline configurations. The largest of these had
eight registers. each 32 bits wide. and two pipe registers. giving a total of 406 state
variables and more than 10" reachable states. The verification took 4 h and 20 min
of cpr time. FFor all of the configurations that we considered. the verification time
grew polynomially in the number of pipeline components. Moreover. when the
relational product was computed with the ordering described above. the sizes of the
intermediate results increased monotonically during each step. In other words.
partitioning the transition relation did not result in having to manipulate larger
BDDs than would have been necessary with a monolithic transition relation. This is
an important point: in many applications involving BDDs. it is the number of nodes
in intermediate results (not the final result) that limits the size of the problems that
e o Tnilled. (b) Distributed cache protocol

The symbolic model-checking technique has been applied to the verification of the
cache consistency protocol of the IEncore (igamax multiprocessor (McMillan &
Schwalbe 1991). The Gigamax is a distributed. shared memory multiprocessor. in
which the processors are grouped into clusters. Kach cluster has a local bus. and uses
bus snooping (Archibald & Baer 1986) to maintain consistency within the cluster. In
addition. each cluster has an interface called a vic. which links the cluster into a
network. The vic keeps the caches in the cluster consistent with the rest of the

Phil. Trans. R. Soc. Lond. A (1992}

Automatic verification of sequential circuit designs 117

global bus

ulc t]
uiC uIC
cluster bus

MEE- MEE-

Figure 5. (Gigamax memory architecture.

network by acting as both a bus snooper and a bus master on behalf of the remote
clusters. The tic has a table which keeps track of the remote status of all addresses
from the local main memory. This allows the vIc to intervene in bus transactions
which affect remotely owned addresses. and to send appropriate invalidation or call
back requests to the network. The network is organized into a hierarchy, as depicted
in figure 5. The global bus, at the top of the hierarchy, has vIcs connected to each
cluster. Each t1c on the global bus records the state of all cache lines which are held
in the cluster to which the vic is connected. This information makes directory
pointers in main memory unnecessary.

An abstract. architectural level model of the Gigamax was constructed —
essentially a system of communicating finite state machines. The model was checked
for the following properties (here. p, denotes the nth cache in the system):

1. Single-line data consistency:

consistent(p,,, p) = ((p, valid A p,-valid) = p, data = P data)
VP, P AG AF (consistent(p,, p,,) V 3p,:p, - write).

2. Absence of deadlock:

Vp,: ((AGEF p, " shared) A (AGEF p, - owned)).

3. Correctness of diagnostics:

Vp, AG - p,error.

The first of these states states that if no cache is written, then all pairs of caches
eventually become consistent. The second states that it is always possible for a cache
to enter the shared (readable) state. and it is always possible for a cache to enter the
owned (writable) state. The third states that the diagnostic system never reports an
error (under normal operation).

The symbolic model checker SMV performed an exhaustive search of the model’s
state space without explicitly constructing the global state graph. This was
important. since the number of states in the model was as high as 10'®, depending on
the number of clusters. and the number of processors in each cluster. We performed
the verification on a Sun 3/60. For a model with two clusters. and six processors per
cluster. the number of states was 2.0 x 10% and the execution time was 8; min, The
number of BDD nodes representing the largest approximation to the reached state set
was 3293. and the number of nodes representing the transition relation was 37556.
The transition relation was partitioned disjunctively, as described in §5, with one
disjunct for each of the three busses. The execution times grew cubically with the
number of caches per cluster.

Phil. Trans. R. Soc. Lond. A (1992)

118 .M. Clarke and others

Checking the three specifications exposed a number ot subtle errors in the design
that were not found in simulation. These errors were usually caused by events. e.g.
cache misses and message arrivals. occurring out of the normal sequence anticipated
by the designers. Since they typically resulted from a highly improbable confluence
of events. the likelihood of finding them by random simulation methods was low. For
example. one deadlocked state uncovered by the model checker required a minimum
of 13 steps to reach. As the design evolved to correct these errors. the model was
easily adapted. and quickly provided an analvsis of any new errors introduced by
design changes.

7. Conclusion

The techniques described in this paper have already been used to find non-trivial
errors in circuit designs. We are currently investigating the correctness of other
hardware systems with realistic complexity like the cache cohereney protocol used in
the IEEE Futurebus standard. We believe that our current model checking
algorithm works sufficiently well in practice to be of use in industry and have begun
collaboration with Intel Israel to develop a version of the program that will be
suitable for circuit designers. Since model checking avoids the construction of
complicated proofs and provides a counterexample trace when some specification is
not satisfied. we believe that circuit designers will find this technique relatively easy
to learn and use. We plan to adapt the cTL verifier for use with vEDL and Verilog.
since it now appears that these hardware description languages will become widely
used in industry. We hope to have a prototype verification system for one of these
languages running by the middle of 1992,

Nevertheless. we believe that there are a number of wayvs our CTL model checker
can be improved to make it easier to use by engineers. Some of these improvements
involve relatively straightforward extensions of current syvstem. For example. an
obvious problem with the current svstem is how to make the specification language
more expressive and casier to use. Some type of timing diagram notation may be
more natural for engineers than crtL. It may be possible either to translate timing
diagrams systematically into temporal logic formulas or to check them directly by
using an algorithm similar to the one used by the model checker. A similar problem
arises in finding a good way to display the counterexamples that are generated when
a formula is not true. This feature is invaluable for actually finding the source of a
subtle error in a circuit design. However. our current system just prints out a path
in the state transition graph that shows how the error occurs. It is easy to imagine
more perspicuous ways of displaving this information.

Other extensions require more theoretical research. An obvious direction for
research is to develop even more concise techniques for representing boolean
functions. Our verification method is not especially dependent upon the properties of
binary decision diagrams. In fact. any representation of boolean functions that
supports boolean operations and for which there are good simplification algorithms
is a candidate for such a representation. As better representations are developed.
they can easily be incorporated into our model checking algorithms. Moreover, it
should be possible to adapt the methods that we use for representing transition
relations and solving fixed point equations to other formalisms for reasoning about
finite state concurrent systems like linear temporal logic. automata on infinite
sequences. and various bisimulation relations from process algebra (Burch et «al.
19900).

Phil. Trans. R. Soc. Lond. A (1992)

Automatic verification of sequential circuit designs 119

Ultimately. we expect to obtain more benefit from the use of abstraction and
compositional reasoning techniques. Much additional research is needed on both of
these topics. It may be possible to reason about certain types of infinite state systems
by using abstraction techniques. We also plan to investigate the use of symmetry in
reasoning about circuits. Most large circuits are highly symmetric. This symmetry
should be reflected in the state transition graph of the circuit. We believe that it may
be possible to exploit this observation to avoid searching the entire state space of the
circuit. Another important problem concerns the use of induction with model
checking. Many circuit designs are parametrized. For instance, a hardware stack may
be parametrized by its length and the size of elements it contains. Model checking can
be used to show the correctness (or incorrectness) of specific instances of such a
circuit, but some type of inductive argument appears necessary to establish the
correctness of the general design. There has already been some research on this
problem (Browne et al. 1989: Kurshan & McMillan 1989), but more work is needed.

We are currently attempting to extend our methodology to real-time concurrent
systems. Such systems are particularly difficult to verify because their correctness
depends on the actual times at which events occur. We are developing an automatic
verifier for real-time systems. The verifier uses a discrete time model that represents
the passage of time with clock ticks. The formal relationship between this model of
time and a continuous time model is being investigated by Burch (1991). We believe
we can show that this model is a conservative approximation of a more realistic
continuous time model. The verifier will also use algorithms based on binary decision
diagrams. We expect this will help avoid the state explosion problem and allow the
verification of larger systems than would be the case with explicit state enumeration
algorithms.

Finally. we believe that it is important to investigate how model checking
techniques can be combined with theorem proving. We suspect that ultimately both
model checkers and theorem provers will be needed to establish the correctness of
complex circuits. Theorem provers seem necessary for reasoning about those parts of
a complex microprocessor like the floating point arithmetic unit that require
relatively deep mathematical knowledge. On the other hand. it seems unlikely that
existing theorem proving systems will surpass model checking techniques for
reasoning about complex hardware controllers in the near future. The problem is how
to combine the two very different styles of reasoning into a single framework so that
a user can smoothly integrate the results obtained by each.

This research was sponsored in part by the Avionies Laboratory. Wright Research and
Development Center. Aeronautical Systems Division (AFSC), U.S. Air Force. Wright-Patterson
AFB, Ohio 45433-6543 under Contract F33615-90-C-1465. ARPA Order no. 7597: the National
Science Foundation under Contract no. CCR-9005992: and the U.S.~Israeli Binational Science
Foundation.

References
Archibald, J. & Baer. J. L. 1986 Cache coherence protocols: evaluation using a multiprocessor

simulation model. ACM Trans. Computer Syst. 4. 273-298.

Bochmann. G. V. 1982 Hardware specification with temporal logic: an example. IEEE Trans.
Computers C-31(3). 223-231.

Brace. K. S.. Rudell. R. L. & Brvant. R. E. 1990 Efficient implementation of a BDD package. In
DAC90 (1990).

Browne. M. C.. Clarke. E. M.. Dill. D. L. & Mishra. B. 1986 Automatic verification of sequential
circuits using temporal logic. [EEE Trans. Computers C-35. 1035-1044.

Phil. Trans. . Soc. Lond. A (1992)

120 K. Clarke and others

Browne. M. (.. Clarke. E. M. & CGrumbere. O. 1989 Reasoning about networks with many
identical finite state processes. [nform. Computat. 81(1).

Bryant. R. E. 1986 Graph-based algorithms for boolean function manipulation. /[EEE Trans.
Computers C-35(8).

Bryant. R. E. & Seger. (".-J. 1990 Formal verification of digital circuits using symbolic ternary
svstem models. In Kurshan & (Marke (1990).

Burch. J. R. 1991 Automatic symbolic verification of real-time concurrent systems. Ph.D. thesis,
Carnegie Mellon University. Pittsburgh. PA 15213, (In preparation.)

Burch. J. R.. Clarke. E. M.. McMillan. K. L. & Dill. D. L. 1990a Sequential circuit verification
using symbolie model checking. In DAC90 (1990).

Burch. J. R.. Clarke. E. M.. McMillan. K. L.. Dill. D. L. & Hwang. J. 19906 Symbolic model
checking: 10* states and bevond. In Proceedings of the Fifth Annual IEEE Symposium on Logic
in Computer Science.

Clarke. E. M. & Emerson. E. A. 1981 Svnthesis of synchronization skeletons for branching time
temporal logic. In Logic of programs: workshop (ed. D. Kozen). vol. 131 of Lecture Notes in
C'omputer Science. Yorktown Heights. New York: Springer-Verlag.

Clarke. E.M.. Emerson. E. A, & Sistla. A. P. 198 Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACW Trans. Prog. Lang. Syst. 8. 244-263.

Coudert. O.. Madre. J. (' & Berthet. (. 1990 Verifying temporal properties of sequential machines
without building their state diagrams. In Kurshan & Clarke (1990).

DAC90 1990 27th ACM/IEEE Design Automation Conference.

Dill. D. L. & Clarke. E. M. 1986 Automatic verification of asynchronous circuits using temporal
logic. I[EE Proe. E 133(5).

Kimura. 8. & Clarke. E. M. 1990 A parailel algorithm for constructing binary decision diagrams,
In Proceedings: IEEE [nternational Conference on Computer Design.

Kurshan. R. & Clarke. E. M. (eds) 1990 Workshop on Computer-Aided Verification. New Brunswick,
New Jersey: Center for Discrete Mathematics and Theoretical Computer Ncience (DTMACS).
Technical Report $0-31.

Kurshan. R.P. & McMillan. K. L. 1989 A structural induction theorem for processes. In
Proceedings of the Eighth Annual 1)1 Symposium on Prineiples of Distributed Computing. ACM
Press.

Lichtenstein. O. & Pnueli. A. 1985 Checking that finite state concurrent programs satisfy their
linear specification. In Conference Record of the Twelfth Annual ACM Symposium on Principles on
Programming Languages.

Malachi. Y. & Owicki. 8. 8. 1981 Temporal specifications of self-timed svstems. In VLSI systems
and computations (ed. H. T. Kung. B. Sproull & (. Steele). pp. 203-212.

McMillan. K. & Schwalbe. J. 1991 Formal verification of the Encore Gigamax cache consistency
protocol. In International Symposium on Shared Hemory Multi processors.

Pnueli. A. 1977 The temporal semantics of concurrent programs. In I8th Symposium on
Foundations of Computer Seience.

Quielle. J. P. & Sifakis. J. 1981 Specification and verification of concurrent systems in CESAR.
In Proceedings of the Fifth International Symposium in Programming.

Touati. H. J.. Savoj. H.. Lin. B.. Brayton. R. K. & Sangiovanni-Vincentelli. A. 1990 Implicit

state enumeration of finite state machines using BDD's. In [EEE International Conference on
Computer-Aided Design.

Discussion

P. TrovrsoxN (Inmos Lid. Bristol. UK .). Is the partitioning of the transition relation
automated or performed by hand ?

E. M. CLARKE. At present. the partitioning is done by hand. In the examples that we
have considered. finding a good partition has been fairly simple. \We believe that this
procedure is potentially automatable. However. we do not have a general algorithm
for this problem at the present time.

Phil. Trans. R. Soc. Lond. A (1992)

