The Design and Verification of
Finite State Hardware Controllers

E.M.Clarke, S.Bose, M.C.Browne, O.Grumberg
July 1987
CMU-CS-87-145

This research was partially supported by NSF Grant MCS-82-16706. O. Grumberg, is currently on leave
from Technion, Haifa and is partially supported by a Weizmann postdoctoral fellowship.

[I R

Table of Contents
. Introduction
.CTl.and EMC
. Using SML to develop a DMA controller
. Verifying the DMA controller
. Dircctions for Future Research

p—
N O BN

Figure 3-1:
Figure 3-2:
Iigure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Iigure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4;

i

List of Figures
DMA System
DMA System
CPU Interface
Address Comparator
Memory Interface
DMA Peripheral Interface
DMA Controller
Moore Machine For DMA Controller
‘I'he Model Checker Finds An Error
Counterexample Facility
Corrected Dma Controller

1. Introduction

Because finite state machines are such common components of VLSI circuits, a number of different state
machine description languages (AMAZE, CUPL, SLIM. ctc.--sce [9] for a survey) have been devised. In
general, these languages represent state machines at a very fow level: most even require an explicit description
of the state-transition behavior of the machine that is to be implemented. If the number of states is large, this
can be a tedious and error-prone process. Morcover, a large state transition table developed by one designer
may be difficult for another designer on the same project to modify or enhance. We have designed a
programming language called SMI. (State Machine Language) that provides a succinct notation for specifying
complicated finite state machines [2]. In addition, we have developed an automatic temporal logic verifier that
can be used to make sure that SML programs are correct. This paper illustrates the power of our approach by
showing how these two tools can be used to debug a fairly complicated DMA controller.

An SML program represents a synchronous circuit that implements a Moore machine. At a clock tran-

- sition, the program examines its input signals and changes its internal state and output signals accordingly.
Our language, unlike the ones mentioned above, has many of the standard control structures found in
modern high-level imperative programming languages, including a while statement, a conditional, a case
statment, and a parallel execution statement. There is even a simple mechanism for declaring non-recursive
procedures. However, the only data types that we allow are booleans and fixed width integers. Consequently,
any program written in SML has only a finite number of states. SML programs are compiled into state
transition tables which can then be implemented in hardware as PALs, PLAs, or ROMs. A post-processor is
available that converts the state tables produced by the SML compiler in a format which is compatible with
the Berkeley VLSI design tools. The language and its compiler have been used successfully within our

department to develop a number of different hardware controllers.

Although there has been some work on the use of high level languages for describing state machines
([6]. [7] our system is unique in that the state transition table produced by the SML compiler can also be
given to a temporal logic verifier that allows certain properties of the state machine to be verified automati-
cally. Temporal logic is a formal system for reasoning about the occurrence of events in time without
introducing time explicitly. The variant of temporal logic that we use for specification is a propositional,
branching-time temporal logic called CTL or Computation Tree Logic ([4], [S]). Typical operators include
AG £, which holds in the present state provided that fholds globally along all possible computations paths
starting from the present state, and AF f; which holds in the present state provided that finevitably holds in
the future in all possible computations. These operators permit complicated timing properties to be expressed
as formulas in the logic. For example, in our logic it is easy to express the property that if some event E1
occurs then another event E2 must inevitably follow: AG(E1 — AF Ez).

This research was partially supported by NSF Grant MCS-82-16706. O. Grumberg is currently on leave from Technion, Haifa and is
partially supported by a Weizman postdoctoral fellowship.

We call our verifier a model checker ([1], [S]). It uses an algorithm somewhat similar to those found in the
information propagation phasc of optimizing compilers to determinc the truth or falsity of temporal logic
formulas. 1t determines whether a temporal logic formula is true or not by traversing the state graph of the
Moore machine and scarching for a counterexample. The program will always answer frue or false and is
guaranteed to find a counterexample if there is one. The complexity of the algorithm is linear in the number
of states of the Moore Machine, but exponential in the number of inputs and outputs. In practice the worst
casc complexity is scldom observed. In fact, our verifier averages approximately 100 states per second! The
counterexample trace produced when a formula is not true is quite useful for debugging SML programs [3].

Our paper is organized as follows: In Section 2 we describe the version of temporal logic that we use as a
specifiction language. In Section 3 we illustrate how SML might be used by writing a DMA controller. In
Scction 4 we show how our temporal logic verifier can be used to debug the DMA controller. The paper

concludes in Section 5 with a discussion of some possible language extensions.

2. CTL and EMC

The logic that we use to specify circuits is a propositionalltemporal logic of branching time, called CTL
(computational tree logic). This logic is essentially the same as that described in [5]. The syntax for CTL is as
follows: Let Pbe the set of all atomic propositions in the language £, then:

1. Every atomic proposition Pin Pis a formula in CTL.

21 f, and f, are CTL formulas, then so are VYA AXf, EX/, A[j; Uf] and E[j; Uj;].

In this logic the propositional connectives = and A have their usual meanings of negation and conjunction.
A and and E are path quantifiers--A means "for every computation path” and E means "for some computation
path.” The temporal operator X is the next time operator. Hence, the intuitive meaning of AXf1 (EXj;) is that
f1 holds in every (in some) immediate successor state of the current state. The temporal operator U is the
strong until operator. The intuitive meaning of A[£ U] (E] £U f2]) is that for every computation path (for
some computation path), there exists an initial prefix of the path such that f2 holds at the last state of the
prefix and j; holds at all other states along the prefix.

We also use the following syntactic abbreviations:
AVE= LA [=V ad f e == LA~).
o AFf = Altrue U fl] which means for every path, there exists a state on the path at which J; holds.

o EFf = Eftrue U fl] which means that for some path, there exists a state on the path at which f;
holds.

o AG jg = -aEF—wj; which means for every path, at every node on the path j; holds.

) EGf1 = -AF~ f1 which means for some path, at every node on the path j; holds.

We also define the weak until operator u which is similar to the strong until except that it does not imply
that the second condition is inevitable. For cxample, A[fl u j;] is satisfied when all paths have an initial
sequence of states satisfying jl‘ immecdiately followed by a state satisfyingf2 or consists of an infinite sequence
of states satisfying j; The weak until can be defined by syntactic abbreviation
Alfu fl= ~E| ~fU(=f A = f)] which means that for every computation path, /, is truc in all states
preceding the (first) state in which j; is true,

The semantics of a CTL formula is defined with respect to a labeled state-transition graph. A CTL structure
is atriple A6 = (S, R, IT) where, '

1. §'is a finite set of states.
2. RC SxSis a total binary relation on S and denotes the possible transitions between states.

33IM:85 — 2G‘Pis an assignment of atomic propositions to states.

A path is an infinite sequence of states 8, S, S, - .. such that for every i, <si, ; +1> € R. For any structure
Mo = (S, R, IT) and state s, € S, there is an infinite computation tree with root labeled s, such that s — ¢is
an arc in the tree iff <s,1> ¢ R.

The truth in the structure is expressed by JYb.sO F= f, meaning the temporal formula fis satisfied in the
structure Ab at state S, The semantics of the temporal formulas are defined inductively as follows.

LsE=P = Pell(s).
2. s, = —lfl e s h&j;.
3.sol=j;/\j; = s0i=j;andsok=f2.
4.5 F=AXS = for all states 7 such that Gu > e R 1= j;
5. s, = EX}? = for some state f such that <so, DeRtE f1 .
= forall paths (s, s,s., ...) there exists a k>0 such that Sk = j; and for all

6. 5, = A[j;Ufz]
0<j<k, 5; l=j;.

1.5 = E[j;Uj;] <= for some path (so, 5,8, ...) there exists a k>0 such that St F=j; and for

all0<j<k, sjl=f1.

o °1 A

There is a program called EMC (extended model checker) that verifies the truth of a formula in a model
using these definitions. It uses efficient graph-traversal algorithms to check a formula in time linear in the
size of the graph and in the length of the formula. If the CTL structure is represented as a Moore machine,
the complexity remains linear in the length of the formula and the number of states but is exponential in the
number of inputs and outputs. (See [1] and [5] for details).

There are two additional features of the model checker that turn out to be particularly useful in practice.
The first extension is the addition of fairness constraints. Occasionally, we are only interested in the correct-
ness of fair exccution sequences. For example, we may wish to consider only execution sequences in which

some process that is continuously cnabled will eventually exccute. This type of property cannot be cxpressed
dircctly in CTL. In order to handle such properties we must modify the semantics of CT1L. slightly. Initially,
the model checker will prompt the user for a serics of fairness constraints. Fach constraint can be an arbitrary
formula of the logic. A path is said to be fair with respect to a set of fairness constraints if cach constraint
holds infinitely often along the path. The path quantifiers in CTL formulas are now restricted to fair paths.
Examples of fairness constraints can be found in Section 4. In [1] and [5] we show that handling fairness in

this manner does not change the lincar time complexity of the model checker.

The sccond feature is a counterexample facility,. When the model checker determines that a formula is
false, it will attempt to find a path in the graph which demonstrates that the negation of the formula is true.
For instance, if the formula has the form AG f, our system will produce a path to a state in = holds. This
feature is quite useful for debugging. EMC is written in C and runs on a VAX 11/780 under Unix.

3. Using SML to develop a DMA controller

We have developed a language called SML (state machine language) [2] for describing complicated finite
state machines. A program written in SML is compiled into a Moore machine, which can then be verified
using the model checker or implemented in hardware. Since we are dealing with digital circuits where wires
are cither high or low, the major data type is boolean. Each boolean variable may be declared to be either an
input changed only by the external world but visible to the program, an output changed only by the program
but visible to the external world, or an internal changed and seen only by the program. A systcm may be
modeled by some concurrently executing processes, each of which may correspond to one of its components.
The interaction between these components occurs with the help of signals which are represented as internal
variables. These signals may be unidirectional (driven by a specific component) or bidirectional. The
hardware implementation of boolean variables may be declared to be either active high or active low. Internal
integer variables are also provided. SML programs are similar in appearance to many irnpefative program-
ming languages. SML statements include if, while, and loop/exit. A parallel is provided to allow several
statements 10 execute concurrently in lockstep. There is also a simple mechanism for declaring non-recursive

procedures.

In this section we show how SML can be used to construct a simple DMA controller. In the next section we
show how our model checking program can be used to guarantee that our DMA design meets certain timing
properties expressed in the logic CTL. Direct memory access (DM A) is a technique that permits blocks of data
to be transferred directly from an 1/0 peripheral to main memory without using any of the CPU’s data or
address registers. With this technique (which is sometimes called cycle stealing) the DMA peripheral can
execute a memory access at any time that the CPU is not using the memory. Moreover, the CPU will be able
to continue with its normal operations until it reaches a point where it needs to make a memory access but a
DMA operation is still in progress. Our design for a DMA controller is loosely based on one that is described
in [8]. Although it is probably much simpler than most actual DMA systems, the relatively small number of

states in our SML program and the short length of time that it takes to verify the program (a few seconds per
specification) mean that our tools should also be useful for much larger and more complicated dcsigns as well.

Figure 3-2 shows the global structure of the SMI. program for the DMA system. In order to be able to
prove interesting properties of the DMA controller in the next section, our design must represent the various
system components that interact with the DMA controller. Thus, in our design, there arc five different
processes: onc for the DMA controller, one for the DMA peripheral, one for CPU, one for main memory,
and finally one for the address comparator that is used in determining whether block transfer is complete.
These five processes together specify the single finite state machine representing the DMA system. The
behavior of these processes will be explained in more detail below. Figure 3-1 shows how they are connected
together. In the diagram boxcs represent the five processes. Unidirectional signals are shown as unidirectional

arrows. For signals which have more than one driver, bidirectional arrows have been used.

Memory
f 4 ActivateComgarator
Read DmaReq
Busy c
Write omparator
Y
CpuReq Dmadone
MemGrant
CPU & —= DMA _
Interface DmaAcc —{ Controller &omparatorSet
DmaValid
TransférReq DmaReq
‘ Y DmaCont
—
—> Peripheral
-— DmaEnd

Figure 3-1: DMA System

#define
fidefine
#define
#define

program

CPU

DMA
MEMREAD
MEMWRITE

true
false
false
true

DmaSystem;

~-- cpu declarations

input MemReq,

ReqType;

internal CpuReq, TransferReq, DmaType;

--comparator declarations
input ComparatorResult;
internal ComparatorSet;

--memory declarations
input MemFinished;
internal Busy, Read, Write;

--peripheral Declarations
input DeviceReady;
internal DmaAcc,

DmaValid, DmaReq,

--dma controller declarations
internal ActivateComparator, DmaDone, DmaCont:
internal DmaEnd, MemGrant;

procedure wait(exp)
while !(exp) do loop skip end1oop

endproc

parallel

Toop
loop
toop
Toop

lToop

endlioop
endloop
endloop
endloop

endloop

endparallel

endprog

|| --cpu interface

|| --address comparator
|| --memory interface
|| --dma peripheral

--dma controller

Figure 3-2: DMA System

The CPU interface controls the various types of memory operations that involve the CPU. It consists of a
casc statement with four alternatives that is repeatedly executed. The first two alternatives handle memory
read and write requests generated dircctly by the CPU. The third alternative is executed to initiate a transfer
mvolving the DMA peripheral. The default case is simply a skip statement which will be continually selected
while the CPU is executing an operation that does not involve main memory. ‘The first two alternatives have
essentially the same steps. CpuReq is raised to indicate that a memory access is necded. The DMA controller
will raise MemGrant in response, if the memory is not needed for a DMA transfer. The CPU will provide the
appropriate inputs for the memory operation and raise Read or Write. The memory interface will raise Busy
to indicate that it has begun to process the request. At this point the Read or Write signal may be lowered.
The CPU will wait until the memory operation has been completed (i.e. until Busy goes low) and then
transfer any results of the memory operation to the necessary CPU registers. CpuReg can then be lowered as
well. In the third alternative DmaType is set to false for true depending on whether the DMA request is a read
or write operation. Then TransferReq is raised to start the DMA peripheral.

The address comparator determines whether a DMA transfer has finished by comparing the contents of the
DMA address register (DmaAdr) with the contents of the DMA last word register (DmaLwr). Initially,
DmaAdr and DmaLwr are loaded with the addresses of the first and last words in the block to be transferred
between main memory and the DMA peripheral. DmaAdr is incremented each time the transfer of another
word in the block has been completed. When the ActivateC. omparator signal becomes high, the two registers
are compared. DmaDone is assigned the value frue if the two registers have the same value and Jalse
otherwise. ~The signal ComparatorSet is then raised to indicate that the comparison is complete.

ComparatorSet is lowered after DmaReq becomes low.

The memory interface is also quite simple. MemAdr will contain the address of a word in memory. A read
operation will transfer the contents of that word to DataOut. A write operation, on the other hand, will
replace the contents of the addressed memory location by the value on Dataln. A read (or write) operation is
initiated by raising Read (or Write) when Busy is low. The memory will respond by latching MemAdr (and
Dataln in the case of a write operation) and raising Busy. Busy will be lowered again when MemFinished

becomes high, indicating that the transfer has been completed.

The DMA peripheral will wait until the CPU initiates a DMA transfer by raising TransferReq. When
DeviceReady becomes high, it will raise DmaReq to indicate that it is ready to transfer another word between
the device (itself) and main memory. If the DMA request is a memory write, then the peripheral will transfer
the data to be written to the DmaBus and wait for DmaAcc to be asserted. If the request is a memory read, the
peripheral will wait until DmaValid becomes high to transfer data from the DmaBus to its internal registers.
Then, it will raise DmaAcc to inform the Dma Controller that it has finished. If the entire DMA transfer has
been completed (i.c. DmaEnd is true), the peripheral will lower DmaReg, return to the top of the outer loop,
and wait for TransferReq to become high again. If the the transfer has not yet been completed and must be

Toop
switch

case (MemReq == CPU) & (ReqType == MEMREAD) :
raise(CpuReq); -
wait(MemGrant);

--transfer cpu generated address to MemAdr
raise(Read);
wait(Busy);
lTower(Read);
wait{!Busy);

--transfer memory output to cpu register
lower(CpuReq);
break;

case (MemReq == CPU) & (ReqType == MEMWRITE):
raise(CpuReq);
wait(MemGrant);
--transfer cpu generated address to MemAdr
--also transfer cpu data to Dataln
raise(Write); :
wait(Busy);
parallel ,
lower(Write) || lower(CpuReq)
endparallel;
wait(!Busy);
break;

case (MemReq == DMA) & !TransferReq:
DmaType := RegType;
--Initialize DmaAdr and Dmalwr
raise(TransferReq);
break;

default: skip;

endswitch
endloop

Figure 3-3: CPU Interface

continued (i.e. DmaCont is true), the peripheral will lower DmaReq and return to the top of the inner loop to

wait until the DMA peripheral is ready again.

The DMA controller coordinates the actions of the CPU, the main memory, and the DMA peripheral. If a
DMA request occurs when main memory is not busy, it will arrange for the DmaAdr to be incremented and
for the comparator to be activated. If the DMA request is a memory write, the controller will cause the
contents of the DmaAdr to be transferred to the MemAdr and also for the data on the DmaBus to be
transferred to the memory’s Dataln register. It then raises the Write signal to initiate the memory operation
and waits for Busy to go high. When the memory operation has been started, it raises DmaAcc to inform the

Toop
wait(ActivateComparator);
--compare values in DmaAdr and Dmalwr.
DmaDone := ComparatorResult;
raise(ComparatorSet);
wait(!DmaReq);
Tower(ComparatorSet)

endloop

Figure 3-4: Address Comparator

loop
switch

case Read:
--latch MemAdr
raise(Busy);
--start to transfer contents of memory location
--to DataOut
wait(MemFinished);
lTower(Busy);
break;

case Write:
--latch MemAdr and Dataln
raise(Busy); ,
--start transfer of input word to appropriate
--memory Tlocation
wait(MemFinished);
lower(Busy);
break;

default: skip;

endswitch
endloop

Figure 3-5: Memory Interface

DMA peripheral that the DmaBus can be cleared. If the DMA request is a memory read, the controller will
transfer the contents of the DmaAdr to the MemAdr and initiate the memory operation as in the previous
case. When the operation has completed, it will transfer the data from the memory’s DataQut register to the
DmaBus, assert DataValid, and then wait until the peripheral acknowledges by raising DmaAcc. When the
comparator has finished comparing the values in the Dmaddr and the DmaLwr, the controller will set
DmaEnd and DmaCont appropriately and wait until ComparatorSet goes low, indicating that the current

phase in the DMA transfer has been finished.
t [i

Alternatively, if a CPU request occurs when the main memory is not busy, the controller will raise

10

Toop
wait(TransferReq);
Toop
wait(DeviceReady);
if DmaType == MEMWRITE then
--Transfer data to DmaBus
raise(DmaReq);
wait(DmaAcc);
--clear DmaBus...
else
raise(DmaReq);
wait(Dmavalid);
--Transfer data from DmaBus to
--internal registers
raise(DmaAcc);
wait({!DmaValid);
Tower (DmaAcc)
endif;
wait(DmaCont | DmaEnd);
if DmaEnd then
lower(TransferReq); lower(DmaReq);
exit endif;
lTower(DmaReq)
endloop
endloop

Figure 3-6: DMA Peripheral Interface

MemGrani to inform the CPU that it can proceed with its memory operation. If the memory is busy or if
neither a DMA transfer nor a CPU memory access is needed, the DMA controller will simply loop. Note that
because of the ordering of the two alternatives, a DMA transfer will always have priority over a CPU memory
transfer. This is desirable, since data might be lost if service to the DMA peripheral were delayed too long a

time.

4_Verifying the DMA controller

When the entire SML program is compiled, a deterministic Moore machine in FIF format (FSM Inter-
mediate Format) is obtained. A small portion of the compiler output is shown in Figure 4-1. The Moore
machine for the complete program has five inputs and fifteen outputs--internals are treated as outputs in FIF
format. The ".H" suffix on each variable name indicates that all of the inputs and internals are active high.
Before printing the FIF format, the compiler minimizes the Moore machine. In this case the minimized
machine has 392 states and 922 transitions. Although this may seem like a large number of states, remember
that the complete program has five major processes. Any one process (the DMA controller subprocess, for
example) could be compiled separately and would vhave a much smaller number of states. The state
numbers run from 0 to 391 and are prefixed by a " # " sign. The bit pattern on the same line with the state
number tells which outputs are high in that state. Thus, all of the outputs are low in state 0, while Busy and
DmaDone are high in the last state. In state 0 there are possible transitions to states 1, 2, 3, and 4. The
transition to state 4 will occur if CpuReq and TransferReq are both high.

11

loop
switch

case DmaReq & !Busy:
--increment DmaAdr
raise(ActivateComparator);
if DmaType == MEMWRITE then
~~transfer DmaAdr to MemAdr
--and data on DmaBus to Dataln
raise{(Write);
wait(Busy);
parallel
Tower(Write)
I
raise(DmaAcc)
endparailel;
wait(!Busy);
lower(DmaAcc);
else '
--transfer DmaAdr to MemAdr
raise(Read);
wait(Busy);
lower(Read);
wait(!Busy);
--transfer DataOut to DmaBus
raise(DmaValid);
wait(DmaAcc);
lower(DmaValid)
endif;
wait(ComparatorSet);
if DmaDone then
raise(DmakEnd);
wait(!ComparatorSet);
lower(Dmaknd);
else
raise(DmaCont);
wait(!ComparatorSet);
Tower(DmaCont);
endif;
lower(ActivateComparator);
break;

case CpuReq & !Busy:
raise(MemGrant);
wait(!CpuReq);
lower (MemGrant);
break; : S

default: skip;

endswitch
endloop

I

Figure 3-7: DMA Controller

12

NAME = DmaSystem;

STATES = 392;

CUBES = 922;

INPUTS = MemReq.H, ReqType.H, ComparatorResult.H,
MemFinished.H, DeviceReady.H:

MOORE-OUTPUTS = CpuReq.H, TransferReq.H, DmaType.H,
ComparatorSet.H, Busy.H, Read.H, Write.H, DmaAcc.H,
DmaValid.H, DmaReq.H, ActivateComparator.H,
DmaDone.H, DmaCont.H, DmaEnd.H, MemGrant.H:

#0 000000000000000
11XXX 4
10XXX 3
01XXX 2
00XXX 1

#391 000010000001000

XXX1X 388
XXX0X 391
#END

Figure 4-1: Moore Machine For DMA Controller

Figure 4-2 shows the transcript of a run of the model checking program described in Section 3 on our DMA
protocol. For this example three fairness constraints are used. The first ensures that memory reads and writes
always terminate. The second ensures that the DMA peripheral will always eventuaily be ready to transmit or
receive data. The last is needed to guarantee that the CPU will always eventually get a chance to perform a
memory operation. 4

The first specification asserts that if CpuReq becomes high, then eventually it will become low again.
Therefore, if the cpu needs to perform a memory operation, it will eventually be able to do so. Time is
measured in 1/60 of a second, so our progrém is able to determine that the first specification is satisfied in
approximately 1.5 seconds! The second specification asserts that when TransferReq becomes high, eventually
either DmaEnd or DmaCont will become high. The third assertion shows that it is impossible for
ActivateComparator and MemGrant to be high at the same time. Since ActivateComparator is high while a
memory read or write for the DMA is in progress, it follows that memory operations for the CPU and DMA

are mutually exclusive.

For the next two specifications, we need the weak until operator AW. This operator is like the ordinary
until operator AU except that its second argument is not required to eventually hold on every fair path. We
define the weak until operator as a macro in terms of existential version of the ordinary until operator. The
fourth and fifth specifications use the new operator to express the property that the type of a DMA transfer is
not allowed to change while TransferReq is high.

The last three assertions do not have the correct truth values and, therefore, show that our program contains

an error. The first two of these assertions state that DmaDone doesn’t change its value from the time that

13

(bMMMﬂwﬂmbmmanMghumﬂcMmrDnmauoanmEmjgmsmngheMQaﬁmﬁm1mowsmmins
possible to get to a state in which the ActivateComparator can become high, but ComparatorSet is alrcady
true.

CTL MODEL CHECKER (version B1.0)

Reading DmaController...

Fairness constraint: ~Busy | MemFinished.
Fairness constraint: ~TransferReq | DeviceReady.
Fairness constraint: ~CpuReq | MemGrant.
Fairness constraint:

= AG(CpuReq -> AF ~CpuReq).
The formula is TRUE. time: 100

[= AG(~TransferReq -> AX(TransferReq
-> AF(DmaEnd | DmaCont))).
The formula is TRUE. time: 186

|= EF(ActivateComparator & MemGrant).
The formula is FALSE. time: 43

[= AW(x,y) := ~E[~y U (~x & ~y)].
Macro AW defined;

|= AG(~TransferReq -> ‘
AX((TransferReq & DmaType) ->
AW((TransferReq & DmaType),~TransferReq))).
The formula is TRUE. time: 182

= AG(~TransferReq ->AX((TransferReg & ~DmaType) ->
AW((TransferReq & ~DmaType),~TransferReq))). '
The formula is TRUE. time: 194

[= AG((DmaDone & ComparatorSet) ->
A[DmaDone U DmaEnd}).
The formula is FALSE. time: 309

= AG((~DmaDone & ComparatorSet) ->
A[~DmaDone U DmaCont]).
The formula is FALSE. time: 339

|= EF{~ActivateComparator &

(EX ActivateComparator) & ComparatorSet).
The formula is TRUE. time: 133

Figure 4-2: The Model Checker Finds An Error

14

The model checker has a trace option that can be used to print an example exccution for a true formula with
an existential padh quantifier or for a false formula with a universal path quantificr. This fcature is important
for debugging SML programs.

If we check the last assertion with this feature enabled. we obtain the execution shown in Figure 4-3. By
cxamining this execution, it is relatively easy to see what is wrong with our program. In the DMA controller
after we check the value of DmaDone we raisc Dmalnd or DinaCont and wait for C. omparatorSet to become
low. Since ActivateComparator is not lowered until several statements later, it will still be high when
ComparatorSet is lowered by the comparator process. The comparator process will incorrectly find that
ActivateComparator is still true when it returns to the top of its loop. Thus, it will proceed to change
DmaDone and reset ComparatorSet, causing the behavior that we have detected with the model checker.

= EF(~ActivateComparator & (EX ActivateComparator)
& ComparatorSet).
The formula is TRUE.
Do you want to specify the
input in the initial state? [n]

State 0-0:

State 1-0:

State 5-16: DeviceReady TransferReq

State 9-0: TransferReq DmaReq.

State 21-0: TransferReq DmaReq ActivateComparator

State 37-0: TransferReq Read DmaRegq

ActivateComparator

State 60-8: MemFinished TransferReq ComparatorSet
Busy Read DmaReq ActivateComparator

State 83-0: TransferReq ComparatorSet DmaRegq
ActivateComparator

State 118-0:TransferReq ComparatorSet DmaValid
DmaReq ActivateComparator

State 138-0: TransferReq ComparatorSet DmaAcc
Dmavatlid DmaReq ActivateComparator

State 150-0: TransferReq ComparatorSet DmaAcc
DmaReq ActivateComparator

State 162-0: TransferReq ComparatorSet DmaReq
ActivateComparator DmaCont

State 178-0: TransferReq ComparatorSet
ActivateComparator DmaCont

State 200-4: ComparatorResult TransferRegq
ActivateComparator DmaCont

State 222-16: DeviceReady TransferReq
ActivateComparator DmaDone

State 261-0: TransferReq ComparatorSet DmaReg
DmaDone

State 296-0: TransferReq ComparatorSet DmaRegq
ActivateComparator DmaDone

time: 133

Figure 4-3: Counterexample Facility

15

The problem with the DMA controller can be fixed if we modify it as shown in Figure 4-4. In the new
version the ActivateComparator signal is lowered before DmaReq is lowered. Thus, the COMPpArator process
will not be able to raise ComparatorSer until ActivateComparator is asserted again. When the modified
program is compiled, a' Moore machine with 272 states and 628 transitions is obtained. If the model checker
is run on the new state transition graph, all of the CTL assertions in Figure 4-2 have the correct truth values.
By checking additional properties in a similar manner, it is possible to obtain a high degree of confidence in

the correctness of the program.

if DmaDone then
parallel
raise(DmaEnd)

H
lower(ActivateComparator)
endparallel;
wait(!DmaReq);
lower(DmaEnd);
else '
parallel
raise(DmaCont);

I
lower(ActivateComparator)
endparallel;
wait(!DmaReq);
lower(DmaCont)
endif;
break;

Figure 4-4: Corrected Dma Controller

5. Directions for Future Research

In the process of designing and verifying the DMA controller, we realized a number of different ways in
which the SML language and our temporal logic verifier could be extended in order to simplify this process.
Some of these extensions are quite simple. For example, in writing CTL specifications it is frequently impor-
tant to be able to assert that some property holds every time that control reaches a particular point in the
program. This would be much easier if our language permitted statement labels—-we could then simply write
AG (at<label> — <property>). Since our language doesn’t have a goto statement, however, labels were
omitted from the original language design.

Finally, some extensions involve more theoretical research. In order to check interesting properties of the
DMA controller, we had to compile it with additional processes representing the various system components
that interact with the controller. In order to implement the controller, however, we must compile the in-
dividual components seperately and interconnect them with wires. If we find an error in the first approach,
then most likely it will also be an error in the separately compiled version. However, if a specification checks
in the first approach can we immediately assume that it will hold for the separately compiled version? The

answer may depend on factors like the delays associated with wires and clearly needs more thought.

16

References

1. Michael C. Browne. An improved Algorithm for the Automatic Verification of Finite State Systems using
‘Temporal Logic. Proceedings of the 1986 Conference on Logic in Computer Science, Cambridge, Massachu-
setts, June, 1986. :

2. M. C. Browne, E. M. Clarke. SML: A high level language for the design and verification of Finite State
Machines. IFIP WG 10.2 International Working Conference from HDL Descriptions to Guaranteed Correct
Circuit Designs, Grenoble, France., September, 1986.

3. M. Browne, E. Clarke, D. Dill, B. Mishra. "Automatic Verification of Sequential Circuits using Temporal
Logic™. IEEE Transactions on Compuiers C-35, 12 (December 1986).

4. EM. Clarke, E.A. Emerson. Synthesis of Synchronization Skeletons for Branching Time Temporal Logic.
Proc. of the Workshop on Logic of Programs, Yorktown Heights, NY, 1981.

5. EM. Clarke, E.A. Emerson, A.P. Sistla. "Automatic Verification of Finite-State Concurrent Systems using
‘Temporal Logic Specifications”. ACM Transactions on Programming Languages and Systems 8, 2 (1986),
244-263.

-6. D. L. Parnas. " A Language for Describing the Functions of Synchronous Systems". Communications of
the ACM 9 (Feb. 1966), 72-75.

7. G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language and its Mathematical
Semantics. Ecole Nationale Superieure des Mines de Paris , 1984.

8. F.J. Hill and G. R. Peterson. Digital Systems. John Wiley , 1978 .
9. 1. D. Ullman .. Computational Aspects of VLSI. Computer Science Press , 1984.

