DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS

USING BRANCHING TIME TEMPORAL LOGIC

Edmund M. Clarke

E. Allen Emerson
Aiken Computation Laboratory
Harvard University

Cambridge, Mass. 02138

This work was partially supported by NSF Grant MCS-7908365.

ABSTRACT

We present a method of constructing concurrent programs in which the
synchronization skeleton of the program is automatically synthesized from
a high-level (branching time) Temporal Logic specification. The synchroniza-
tion skeleton is an abstraction of the actual program where detail irrelevant
to synchronization is suppressed. Because the synchronization skeleton is
in general finite state, its properties can be specified by a formula f in
‘a propositional Temporal Logic. (The synthesis method uses a decision
procedure based on the finite model property of the logic.to determine
satisfiability of £f.) If the formulP f 4is satisfiable, then the specifi-
cation it expresses is consistent, and a model for f with a finite number
of states is constructed. The synghronization skeleton of a program meeting
the specification can be read from this model. If f is unsatisfiable, the
specification is inconsistent.

In the traditional approach to concurrent program verification, the
pgoof that a program meets its specification is constructed using various
axioms and rules of inference in a deductive system such as temporal logic.
The task of proof construction can be quite tedious, and a good deal of
ingenuity may be required. We believe that this task may be unnecessary in
the case of fin}te state concurrent systems, and can be replaced by a
mechanical check that the system meets a specification expressed in a
propositiohal temporal logic. The global system flowgraph of a finite state
concurrent system may be viewed as defining a finite structure. We describe
an efficient algorithm 'a model checker) to decide whether a given finite
structure is a model of a pa;ticular formula. We also discuss extended logics

for which it is not possible to construct efficient model checkers.

1. INTRODUCTION

We propose a method of constructing concurrent programs in which the
synchronization skeleton of the program is automatically synthesized from a
high-level (branching time) Temporal lLogic specification. The synchroniza-
tion skeleton is an abstraction of the actual program where detail irrelevant
to synchronization is suppressed. For example, in the synchroqization skel~-
eton for a solution to the critical section problem each process's critical
section may be viewed as a single node since the internal structure of the
critical section is unimportant. Most solutions to synchronization problems
in the literature are in fact given as synchronization skeletons. Because
synchronization skeletons are in general finite state, the propositional
version of Temporal Logic can be used to specify their properties.

Our synthesis method exploits the (bounded) finite model property for
an appropriate propositional Temporal lLogic which asserts that if a formula
of the logic is satisfiable, it is satisfiable in a finite model (of size
bounded by a function of the length of the formula). Decision procedures
have been devised which, given a formula of Temporal lLogic, f, will decide
whether f 1is satisfiable or unsatisfiable. If f is satisfiable, a
finite model of f 1is constructed. 1In our application, unsatisfiability
of £ means that the specification is inconsistent (and must be reformulated).
If the formula f is satisfiable, then the specification it expresses is
consistent. A Aodel for £ with a finite number of states is constructed
by the decision procedure. The synchronization skeleton of a program meeting
the specification can be read from this model. The finite model property
ensures that any program whose synchronization propertizs can be expressed
in propositional Temporal Logic can be fealized by ; system of concurrently

running processes, each of which is a finite state machine.

Initially, the synchronization skeletons we synthesize will bg for con-
current programs running in a shared-memory environment and for monitors.
However, we believe that it is also possible to extend these techniques to
synthesize distributed programs. One such application would be the automatic
synthesis of network communication protocols from propositional Temporal
Logic specifications.

Previous efforts toward parallel program synthesis can be found in the
work of [LA78] and [RK80]. [LA78] uses a specification language that is
essentially predicate calculus augmented with a special predicate to define
the relative order of events in time. [RK80] uses an applied linear time
Temporal Logic. Both [LA80) and [RK80] use gd hoc techniques to construct
a monitor that meets the specification. We have recently learned that [WO81]
has independently developed model-theoretic synthesis techniques similar to

our own. However, he uses a linear time logic for specification and generates

CPS-like programs.

We also discuss how a Model Checker for Temporal Logic formulae can
be used to verify the correctness-of a priori existing programs. In the
traditional approach to concurrent program verification, the proof that a
program meets its specification is constructed using yarious axioms and
rules of inference in a deductive system such as temporal logic. The task
of proof construction can be quite tedious, and a good deal of ingenuity
may be required. We believe that this task may be unnecessary in the
case of finite state concurrent systems, and can be replaced by a mechanical
check that the system meets a specification expressed in a propositional
temporal logic. The globai system flowgraph of a finite state concurrent
system may be viewed as defining a finite structure. We describe an effi-
cient algeri:hm (a model checker) to decide whether a given finite structure
is a model of a particular formula. We also discuss extended logics for which

it is not possible to construct efficient model checkers.

The paper is organized as follows: Section 2 discusses the model of
parallel computation. Section 3 presents the branching time logic that is
used to specify synchronization skeletons. Fixpoint characterizations for
various temporal operators are given in Section 4. Sections 5 and 6 describe
the wodel checker and the decision procedure, respectively. Finally,

Section 7 shows how the synthesis method can be used to construct a solution

to the starvation free mutual exclusion problem.

2. MODEL OF PARALLEL COMPUTATION

We discuss concurrent systems consisting of a finite number of fixed
processes Pl,...,Pm running in parallel. The treatment of parallelism
is the usual one: nondeterministic interleaving of the sequential "atomic"
actions of the individual processes Pi. Each time an atomic action is
executed, the system "execution" state is updated. This state may be thought
of as containing the location counters and the data values for all processes.
The behavior of a system starting in a particular state may be described
by a computation tree. Each node of the tree is labelled with the state
it represents, and each arc out of a node is labelled with a process index
indicating which nondeterministic choice is made, i.e., which process's
atomic action is executed next. The root is labelled with the start state.
Thus, a path from the root through the tree represents a possible computation
sequence of the system beginning in a given start state. Our temporal
logic specifications may then be thought of as making statements about
patterns of behavior in the computation trees.

Each Process Pi is represented as a flowgraph. Each node represents
a region or a block of code and is identified by a unique label. For example
there may be a node labelled CS; representing "the critical section of
code of process Piw“ Such a region of code is uninterpreted in that its
internal structure and intended application are unspecified. While in CSi,
the process Pi may simply increment variable x or it may perform an
extensive series of updates on a large database. The underlying semantics
of the computation performed in the various code.regions are irrelevant to
the synchronization skeleton. The arcs between nodes represent possible

transitions between code regions. The labels on the arcs indicate under

what conditions Pi can make a transition to a neighboring node. Our job
is to supply the enabling conditions on the arcs so that the global system

of processes Pl""'Pk meets a given Temporal logic specification.

3. THE SPECIFICATION LANGUAGE

Our specification language is a (propositional) branching time temporal
logic called Computation Tree Logic (CTL) and is based on the language
presented in [EC80]. Our current notation is inspired by the language of
"Unified Branching Time" (UB) discussed in [BM81]}. UB is roughly equivalent
to that subset of the language presented in [EC80] obtained by deleting the
infinitary quantifiers and the arc conditions and adding an explicit next-
time operator. For example, in [EC80] we write VpathdInode P to express
the inevitability of predicate P. The corresponding formula in our UB-like
notation is AFP. The language presented in [EC80] is more expressive than
UB as evidenced by the formula V path c‘:’node P (which is not equivalent
to any formula in UB or in the language of [EC80] withéut infinitary quan-
tifiers). However, the UB-like notation is more concise and is sufficiently.
expressive for the purposes of program synthesis.

We use the following syntax (where p denotes an atomic proposition
and fi denotes a (sub~-) formula):

1. EBachof p, £ AAfZ, and ~f. is a formula (where the latter two

1 1

constructs indicate conjunction and negation, respectively).

2. Exjfl is a formula which intuitively means that there is an imme-
diate successor state reachable by executing one‘step of process
Pj in which formula fl holds.

3. A[flUle is a formula which intuitively means that for every com-
putation path, there exists an initial prefix of the path such that
f2 holds at the last state of the prefix and fl holds at all

other states along the prefix.

4. E[f1Uf2] is a formula which intuitively means that for some compu-

tation path, there exists an initial prefix of the path such

A structure

The corresponding tree

for start state Sq
So
N
S Sz
zl |
| v

So S,

VN
B |

S S2 So

Figure 3.1

that f2 holds at the last state of the prefix and fl holds at
all other states along the prefix.

Formally, we define the semantics of CTL formulae with respect to a

structure M = (S,Al,...,ﬁ,_(l’) which consists of

s - a countable set of states,
A - C s$xXS, a binary relation on S giving the possible transi-
tions by process 1, and

Z- an assignment of atomic propositions true in each state.

Let A = Al v ...V Ak We require that A be total, i.e., that
vx € S3y(x,y) €EA. A path is an infinite sequence of states (so,sl,sz_...) €s”
such that Vi(si,si+l) €A. To any structure M and state s'€s of M,
there corresponds a computation tree with root labelled S5 such that s -i->t
is an arc in the tree iff (s,t) €Ai. See Figure 3.1.

We use the usual notation to indicate truth in a structure: M, S, l= £
means that at state S in structure M formula f holds true. When the

structure M is understood, we write Sy '= f. We define |= inductively:

So E p iff p €.?(so)

s, F ~f iff not (s, F)

S5 }= flAf2 iff Sy }= fl and S |= f2

So E Exjf iff for some state t such that (sg,t) €Aj, tE £
i ves), 3i[i 20As,

So E A[£,Uf,] iff for all paths (SqrSyre--)s L[120As, E £,

AV3(0 £3 AF <is, E £)1

. Cri s
S, E E[fluf2] iff for some path (so,sl,...), 3i[i 20 As, E £,

AVI (0 €3 A3 <i-*sj E fl)]

We write F f to indicate that f is universally valid, i.e., true at all
states in all structures. Similarly, we write F f to indicate that f
is satisfiable, i.e., £ 1is true in some state of some structure.

We introduce some abbreviations:

£. vE, =~f£ A~f2), £, +f_ =~f vf_, and £, —f_ = (f *fz)/\(fz-*f)

17727 Y 1 72 "7 T2 R T |

for logical disjunction, implication, and equivalence, respectively.

1

A[f1Vf2] E'VEEVfiU~f2] which means for every path, for every state s

on the path, if £ is false at all states on the path prior to s,

l
then f2 holds at s.

E[fIVfZ] EvapvfiG~f2] which means for some path, for every state s

on the path, if £ is false at all states on the path prior to s,

1
then f2 holds at s.

AFfl = Altrue Ufll which means for every path, there exists a state

on the path at which f holds.

1
EFfl = E(true Ufll which means for some path, there exists a state on
the path at which f1 holds.
AGfl E:QEB~fl which means for every path, at every node on the path
£ holds.

1
EGf1 E'vAP~f1 which means for some path, at every node on the path
fl holds.
Axif E'vExivf which means at all successor states reachable by an

atomic step of process P,, £ holds.

i
EXf = ExlfV.". VExkf which means at some successor state f holds.
AXf = ~EX~f which means at all successor states £ holds.

See Fig. 3.2 for illustrations of some of the above modalities.

AGP

AFP

EFP

Figure 3.2

4. FIXPOINT CHARACTERIZATIONS

Each of the modal operators such as AU, EG, EF, etc., may be character-
ized as an extremal fixpoint of an appropriate monotonic functional. Let

M= (S,A ,....,Ak,.?) be an arbitrary structure. We use PRED(S) to denote

1
the lattice of total predicates over S where each predicate is identified
with the set of states which make it true and the ordering is set inclusion.

Then, each formula f defines a member of PRED(S) = {s:M,s|=f}. Let

T : PRED(S) =+ PRED(S) be given; then

(1) T is monotonic provided that PcQ implies TI[P)cTIQ];

(2) T is U-continuous provided that P, CP,C... implies TP, =
i

) gt (P, 1;

(3) T is N-continuous provided that P, 2P, 2... implies T Me.1 =
i

nNt(p,1. I}
i 1

A monotonic functional T on PRED(S) always hgs both a least fix-
point, 1fpX.T[X], and a greatest fixpoint, gfpX.T[X] (see Tarski [TASS]) :
1fpX.T[X] = N{X:T[X]=X} whenever T is monotonic, and 1lfpX.T[X] =
gTi[False] whenever T is also U-continuous; gfpX.T[X] = U{x:T [x]=x}
whenever T is monotonic, and gfpX.T([X] = gTi[True] whenever T 1is also
N-continuous.

The modal operators have the following fixpoint characterization:

EFh = 1£fpz.h VEXZ
AFh = 1fpZ.h VAXZ
E[gUh] = 1fpZ.h Vv (g AEXZ)

™
Q
c
Z
]

1fpZ.h Vv (g A AXZ)

10

AGh = gfpZ.hA AX2Z
EGh = gfpZ.hAEXZ
Elgvh]l = gfp2.hA (g VEXZ)

Algvh]

gfpz.h A (g v AXZ)

If all Ai in M are of bounded nondeterminism, then each of the
functional used in the fixpoint characterizations above is U-continuous and
N -continuous as well as monotonic. We show that the first fixpoint char-

acterization is correct:

PROPOSITION. 4.1. EFh 1is the least fixpoint of the functional TI[2]

h v EXZ.

Proof. We first show that EFh is a fixpoint of T[2): Suppose
Sy |= EFh. Then by definition of |=, there is a path (so,sl,sz,...) in M
such that for some k, Sy E EFh. If k = 0, S F h. Otherwise s |= EFh
and s/ E EXEFh. Thﬁs, EFhCh VEXEFh. Similarly, if s/ E h VEXEFh, then
So Eh or So [EXEFh. In either case, s, l EFh and h VEXEFhCEFh. Thus
EFh = h VEXEFh.

To see that EFh is the least fixpoint of T[2], it suffices to show

that EFh = U, . t*[False]l. It follows by a straightforward induction on

iz0
i that s-OETi[False] iff there is a finite path (so,sl,...,si) in M
and a j<i for which sj F h.
These fi:époint characterizations are helpful in proving the correctness
of the model checking algorithm of Section 5 and are also used in constructing
the tableau for the decision procedure of Section 6. Fixpoint characteriza-

tions have been investigated, in other contexts, by a numbexr of researchers

including [PA69], [CL77], [Fs8l], and [EC80].

11

5. MODEL CHECKER

Assume that we wish to determine whether formula £ is true in the

finite structure M = (S,A ,g.e,Ak,S?). Let sub+(fo) denote the set sub-

1

formulae of fo with main connective other than ~. We label each state

s €S with the set of positive/negative formulae £ in sub*(fo) so that

f € label(s) iff M, s F £

~f € label(s) iff M, s FVE .

The algorithm makes n +1 passes where n = length(fo). On pass i, every
state s €S is labelled with f or ~f for each formula f£ Esub"'(fo) of
length i. Information gathered in earlier passes about formulae of length

less than 1 is used to perform the labelling. For example, if f = flA.fz,

then f should be placed in the set for s precisely when f1 and f2

are already present in the set for s. For modalities such as A[f10f2]
information from the successor states of s (as well as from s itself)

is used. Since A[fIUfZ] = £ V(fl,AAXA[fIUfZJ)' A[flule should be placed

2
in the set for s when f2 is already in the set for s or when f1 is
in the set for s and A[flUf2] is in the set of each immediate successor
state of s.

Satisfaction of A[flUle may be seen to "radiate" outward from states

where it holds immediately by virtue of f2 holding:

1

£

0
Let (A[flUf2]) 2

k+1
(A[fIUfZ])

k
£,V AX(A[flule) .
It can be shown that M,s E (A[flule)k iff M,s E A[flule and along

every paﬁh starting at s, f2 holds by the kth state following s. Thus,

12

states where (A[flUfZ])o holds are found first, then states where

. 1l card(S)
(A[flUle) holds, etec. If A[flule holds, then (A[flUfZ])

must hold since all loop-free paths in M. are of length €card(s). Thus,
if after card(S) steps of radiating outward, A[flule has still not been
found to hold at state s, then put ~A[f1Uf2] in the set for s.

The algorithm for pass i is listed below in an Algol-like syntax:

for every state s €S do
for every f£ €sub+(fo) of length i do
if f A[flUfZ] and f2€set(s) or
£ = E[f].UfZ] and f2 €set(s) or
f Exjfl and 3t((s,t) EAj and fl €set(t)) or
b4 f1 Af2 and fl €set(s) and f2 € set(s)
then add f to set(s)

end
end;
A: for j =1 to card(s) do
for every state s€S do
for every f€sub+(f0) of length i do

if £

A[fIUfZ] and fl €set(s) and

Vt((s,t) EA-+f €set(t)) or

= E[flule and f1€set(s) and
3t((s,t) EAAL €set(t))

then add £ to set (s)

rh
i

end
B: end
end;
for every state s €S do
for every f€sub+(f0) of length i do
if £ gset(s)
then add ~f to set(s)
ead .

C: end

13

Figures 5.1-5.5 give snapshots of the algorithm in operation on the
structure shown for the formula AFb AEGa (which abbreviates AFb A~AP~a).

Suppose we extend the logic to permit V path ? node p or, equiva-
lently, its dﬁal 3 path g node P which we write E?p. We can generalize

the model checker to handle this case by using the following proposigion:

PROPOSITION. 5.1. Let M = (S,A;,...,A &) be a structure and s € s.
Then M,s E EFp iff there exists a path from s to a node s' such that
M,s' F p and either s' is a successor of itself or the strongly comnected

component of M containing s' has cardinality greater than 1 (see Fig.

5.6). o

Proof. (only if:) Suppose M,s F ﬁ?p. Then there is an infinite

path (SO’sl'SZ"") through M and a state s'€S such that
(1) s0 = s;
(2) s' = s, for infinitely many distinct 1i;

(3) M,s' E p.
If s' is a successor of itself, we are done. Otherwise, there is a finite
path (s',...,s",...s') from s' back to itself (because of (2)) which
contains a state s" # s. So, s" is reachable from s' and s' |is
reachable from s", and s' is in a strongly connected component of M
of cardinality greater than 1.

(if:) If s' is.a successor of itself, then p is true infinitely
often along the path (s',s',...). Since s' is reachable from s,
M,s F ﬁ?p. If the strongly connected component of M containing s' is
of cardinality greater than 1, then there is a state s" # s such that
s' is reachable from s" and s" is reachable from s". Hence there is

a finite path from s' back to itself, and an infinite path starting

/ _

~a,b a,~b
AFb, AF~ql

O

st time at label A in pass |

Figure 5.1

~a,b
AFBAF~A

——
3

>

a,~b
AFb

q,b

?

AFb

Ist time at labe! B in pass 1|

Figure 5.2

a,~b
AFb

a,~b
AFb
~a,b
AFb,AF~a
q,b
AFDb

2nd time at label B in pass |

Figure 3.3

~a,b
AFb,AF~a

O

a,~b
AFb,~AF~a
a,~b
AFb,~AF~a
— /
AFb,~AF ~a

1st time at label C in pass 1

Figure 5.4

~a,b
| AFb,AF~a
~(AFba~AF~a)

=)

at termination

a,~b
AFb~AF~a
AFba~AF~a

a,~b |
AFb,~AF~a
AFba~AF~a

q,b
AFb,~AF~a
AFba~AF~a

Figure 5.5

®
Testing for EFp

Figure 5.6

14

at s' which goes through s' infinitely often. Since s' 1is reachable

0
from s, M,s k EFp.

Notice that all algorithms discussed so far run in time polynomial in
the size of the candidate model and formula. The algorithm for basic CTL
presented above runs in time length(f)-(card(s))z. Since there is a linear
time algorithm for finding the strongly connected components of a graph
[TA72], we can also achieve the length(f)-(card(S))2 time bound when we
include the infinitary quantifiers.

Finally, we show that it is not always possible to obtain polynomial
time algorithms for model checking. Suppose we extend our language to
allow either an existential or a universal path quantifier to prefix an
arbitrary assertion from linear time logic as in [LA80] and [GpP80O]. Thus,

we can write assertions such as

F A...AFg AGh_A...AGh
El 9, 95 1 n]
meaning
"there exists a computation path p such that, along p
sometimes 9 and ... and sometimes = and

always h1 and ... and always hn."

We claim that the problem of determining whether a given formula f holds

in a given finite structure M is NP-hard.

THEOREM 5.2. Directed Hamiltonian Path is reducible to the problem of
determining whether M,s k £ where

M g a finite structure,

s 18 a state in M and

£ 18 the assertion (using atomic propositions Pyeees)

E[Fpl A-.. AFp AG(pl-'XG~pl) A...AG(pn‘* XG ~pn)) . o

15

Proof. Consider an arbitrary directed graph G = (v,A) where
vV = {v1’°'°'vn}° We obtain a structure from G by making proposition pi
hold at node A and false at all other nodes (for 1 <3 <n), and by adding
a source node U, from which all v; are accessible (but not vice versa)
and a sink node u, which is accessible from all v, (but not vice versa).

Formally, let the structure M = (u,B, &%) consist of

=v4y

U=V {ul,uz} where u,,u, gv

&, on assignment of states to propositions such that
v, Fpys v Fpg A5 JS0i#3)
u ke Py s Uy ¥ P (1<i<n) and

B=2al {(ulvi):vi ev} u{(vi 1a,) 2V, €v} U{(uz,uz)} .
It follows that

M,u, F £ iff there is a directed infinite path in M

1
starting at u, which goes through all v.EV

i
exactly once and ends in. the self-loop through

iff there is a directed Hamiltonian path

in G. o

We believe that the model checker may turn out to be of considerable
value in the verification of certain finite state concurrent systems such
as network protocols. We have developed an experimental implementation of

the model checker at Harvard which is written in C and runs on the DEC 11-70.

~

16

6. THE DECISION PROCEDURE

In this section we outline a tableau-based decision procedure for satis-

fiability of CTL formulae. Our algorithm is similar to one proposed for

*
UB in ([BM81]. Tableau-based decision procedures for simpler program logics

such as PDL and DPDL are given in [PR77) and [BH81]. The reader should

consult [HC68] for a discussion of tableau-based decision procedures for

classical modal logics and [SM68] for a discussion of tableau-based decision

procedures for propositional logic.

We now briefly describe the decision procedure for CTL and

illustrate it with a simple example. The decision procedure is described

in detail in the appendix. To simplify the notation in the present discus-

sion, we omit the labels on arcs which are normally used to distinguish

between transitions by different processes.

The decision procedure takes as input a formula fo and returns either

"YES, £

0

is satisfiable," or "NO, f0 is unsatisfiable." If f0 is satis-

fiable, a finite model is constructed. The decision procedure performs the

following steps:

1.

Build the initial tableau T which encodes potential models of

£ I1f £ is satisfiable, it has a finite model that can be

0’ 0
"embedded" in T.
Test the tableau for consistency by deleting inconsistent portions.

If the "root" of the tableau is deleted, fo is unsatisfiable.

Otherwise, fo is satisfiable.

*

The [BM81] algorithm is incorrect and will erroneously claim that certain
satisfiable formulae aire unsatisfiable. Ccrrect tableau-based and filtration-
based decision procedures for UB are given in [EH8l]. In addition, Ben-~Ari

[BAB1] states that a corrected version, using different techniques, of [BM8l)
is forthcoming.

17

3. Unravel the tableau into a model of fo.
The decision procedure begins by building a tableau T which is a finite
directed AND/OR graph. Each node of T is either an AND-node or an OR-node
and is labelled by a set of formulae. We use Gl’Gz"“ to denote the
labels of OR-nodes, Hl'Hz"" to denote the labels of AND-nodes, and
Fl,FZ,... to denote the labels of arbitrary nodes of either type. No two
AND-nodes have the same label, and no two OR-nodes have the same label.
The intended meaning is that, when node F is considered as a state in
an appropriate structure, F i= £ for all fE€F. The tableau T has a
"root" node G0 = {fo} from which all other nodes in T are accessible.

The set of successors of an OR-node G, Blocks(G) = {Hl’H2""'Hk} has

the property that

= ¢ iff = H or ...or =|Hk .

We can explain the construction of Blocks(G) as follows: Each formula
in G may be viewed as a conjunctive formula a = alAa2 or a disjunctive
formula B = BIVBZ' Clearly, £Ag is an o formula and fvg isa B
formula. A modal formula may be classified as a or B based on its
fixpoint characterization; thus, EFp = p VEXEFp is a B formula and

AGp = pAAXAGp is an o formula. A formula that involves no modalities
or has main connective one of EX or AX is both o and B and is
called an elementary formula. Any other formula is nonelementary. We

say that a set of formulae F is downward closed provided that (i) if

a €F then ,0. €F, and (ii) if B EF then BIEF or'BZGF. We

b R
construct the members Hi of Blocks(G) by repsatedly expanding each
nonelementary formula in G into its o or B components. Each B expan-

sion results in two blocks, one which will contain Bl and the other which

will contain B,. Expansion stops when all H; are downward closed.

do=<EFp A EF~E>

{ } by a-expansion of EFpAEF~p
|
EFp
/EF”p\ }by B-expansion of EFp
yd ~N ~ .
p” EXEFp
_ -~ \\ // \\ } by B-expansion of EF~p
-~ \ / N
E|XEF~p ~p EXE!'--wp ~p
|
| | | }
! 1 ! I
K 5|EFpAEF~p| #+| EFpAEF~p| #:|EFpAEF~p| A4 EFPAEFP
EFp EFP EFP EFp
EF~p EF~p EF~p EF~p
P P EXEFp EXEFp
EXEF~p ~p EXEF~p | | ~p

Blocks (Jo)={Ho,...,#3}. Each#; is a downward closed set containing o and
" is obtained by taking the union of all formulae occuring along the path from the

root to the ith leaf of the a- 8 expansion tree of EFpAEF~ p.

Figure 6.1

18

The set of successors of an AND-node H, Tiles(H) = {Gl'G2'°"’Gk} has

the property that, if H contains no propositional inconsistencies, then .

=B iff =|<';.l and ... and =|Gk .

To construct Tiles(H) we use the information supplied by the elementary
formulae in H. For example, if '{Axhl,Axhz,EXgl,Eng,EXQ3} is the set
of all elementary formulae in H, then Tiles(G) ='{{hl,hz,gl}}{hlrhzrgz}'
{hl’h2'g3}} .

To build T, we start out by letting G, ='{fo} be the root node. Then

we create Blocks(Go) ='{H1,H ,...,Hk} and attach each gi as a successor

2

of Go. For each Hi we create Tiles(Hi) and attach‘its members as the
successors of H;. For each G3 €'Tiles(Hi) we create Blocks(Gl), etc.
Whenever we encounter two nodes of the same type with identical labels we
identify them. This ensures that no two AND-nodes will have the same label,
and that no two OR-nodes will have the same label. The tableau construction

length(£fg)

will eventually terminate since there are only 2 possible labels

each of which can occur at most twice.
Suppose, for example, that we want to determine whether EFp AEF~P is
satisfiable. We build the tableau T starting with root node G0 =

{EFp AEP~p}. We construct Blocks(Go) = {8_,H ,H

orHy 2;H3} as shown in Figure

6.1. Each Hi is attached as a successor of GO' Next, Tiles(Hi) is

determined for each Hi (except H., which is immediately seen to contain

1
a propositional inconsistency) and its members are attached as successors of
H,. (Note that two copies of G1 = {EFwpl are created, one in Tiles(HO)
and the other in Tiles(Hz); but they are then merged into z single node.)

Similarly, G2€:Ti1es(H2)f\Tiles(H3). Continuing in this fashion we obtain

the complete tableau shown in Fig. 6.2.

. | EFpAEF~p

EFpAEF~p

: | EFpAEF~p

: |EFpAEF~p

: |EFpAEF~p

T
\

Figure 6.2

EFp
EXEFp

19

Next we must test the tableau for consistency. Note that Hl is

inconsistent because it contains both p and ~p. We must also check that it
is possible for eventuality formulae such as AFh or EFh to be fulfilled:
e.g., if EFh €F, then there must be some node F' reachable from F such
that h €F'. 1If any node fails to pass this test, it is marked inconsistent.
In this example, all nodes pass the test. Since the root is not marked
inconsistent, EFp AEPvp 1is satisfiable.

Finally, we construct a model M of EFp AEFvp. The states in M
will be (copies of) the AND-nodes in the tableau. The model will have the
property that for each state H, M,H k f for all f €M. The root of M

can be any consistent state fii€Blocks(Go). We choose HO. Now HO con-
tains the eventualities EFp and EF ~p. We must ensure that they are

actually fulfilled in M. EFp is immediately fulfilled in HO’ but EF~p

is not. So when we choose a successor state to Ho, which must be one of

H4 or HS' we want to ensure that EF~p is fulfilled. Thus, we choose Hs.

Finally, the only possible successor state of HS is HS itself. We

obtain the model shown in Fig. 6.3 which is embedded in the tableau.

Figure 6.3

20

7. SYNTHESIS ALGORITHM

We now present our method of synthesizing synchronization skeletons
from a CTL description of their intended behavior. We identify the follow-
ing steps:

1. Specify the desired behavior of the concurrent system using CTL.

2. Apply the decision procedure to the resulting CTL formula in order

to obtain a finite model of the formula.

3. Factor out the synchronization skeletons of the individual pfocesses

from the global system flowgraph defined by the model.

We illustrate the method by solving a mutual exclusion problem for
processes P and P.. Each process is always in one of three regions of

1 2

code:

NCS, the NonCritical Section
TRYi the TRYing Section
cs, the Critical Section

which it moves through as suggested in Fig. 7.1.

When it is in region NCSi, process Pi performs "noncritical" computa-
tions which can proceed in parallel with computations by the other process
Pj' At certain times, however, Pi may need to perform certain "critical"
computations in the region CSi. Thus, Pi remains in NCSi as long as it
has not yet de;ided to attempt critical section entry. When aﬂd if it
decides to make this attempt, it moves into the region TRYi. From there it
enters Csi as soon as possible, provided that the mutual exclusion con-
straint -~ (csl/\csz) is not violated. It remains in CSi as long as

necessary to perform its "critical" computations and then re-enters NCSi.

Figure 7.1

21

Note that in the synchronization skeleton described, we only record transi-

tions between different regions of code. Moves entirely within the same

region are not considered in specifying synchronization. Listed below are

the CTL formulae whose conjunction specifies the mutual exclusion system:

1.

start state
Ni
NCS1 A C52
mutual exclusion
A
AG (cs1 csz))
absence of starvation for Pi
AG(TRY, = AFCS.)
i i
each process Pi is always in exactly one of the three code regions
AG(NCS, VTRY, V(CS.)
i i i
AG (Ncsi >~ (TRYi vCSs.))
AG (TRYi ->~(NCSi vCS.))
AG (csi >~ (Ncsi VTRY,))

P b

|

it is always possible for P, to enter its trying region from its

=

noncritical region
AG(NCS, +EX,TRY,)
i i i
it is always the case that any move Pi _makes from its trying
region is into the critical region
AG(TRY, A EX,True +AX,.CS.)
i i i i
it is always possible for Pi to re-enter its noncritical region
from its critical region
AG(CS. +EX.NCS.)
i i i
a transition by one process cannot cause a move by the other
AG(NCS. +AX_.NCS,)
i 3 i
AG(TRY, +AX_TRY,)
i 3 i
AG(CS, +AX.CS,)
i j i
some process can always move

AG(EX True)

We must now construct the initial AND/OR graph tableau. In order to

reduce the recording of inessential or redundant information in the node

22

labels we observe the following rules:

(1) Automatically convert a formula of the form §1A... Afn to the

set of formulae {fl,...,fn}. (Recall that the set of formulae
{f,,...,f)} is satisfiable iff £ A...Af is satisfiable.)

(2) Do not physically write down an invariance assertion of the form
AGEf because it holds everywhere as do its consequences f and
AXAGf (obtained by.a-expansion). The consequence AXAGf serves
only to propagate forward the truth of AGEf +to any "descendent"
nodes in the tableau. Do that propagation automatically but with-
out writing down AGf in any of the descendent nodes. The conse-
quence f may be written down if needed.

(3) An assertion of the form f Vg need not be recorded when £ is
already present. Since any state which satisfies £ must also
satisfy fvg, fvg is 'redundant.

(4) If we have TR.Yi present, there is no need to record ~NCSi and
~Csi. If we have NCSi present,there is no need to record ~TRYi
and ~CSi. If we have CSi present, there is no need to record
NNCSi and ~TRYi .

By the above conventions, the root node of the tableau will have the

two formulae NCS and NCS recorded in its label which we now write as

1 2

<NCSi NCS,>. In building the tableau, it will be helpful to have constructed

Blocks (G) for the following OR-nodes: <NCS1 NCSZ>, <TRYl NC52>, <CSl NC52>,

<TRY1 TRY2>, and <CS1 TRY2>. For all other OR-nodes G' appearing in the
tableau, Blocks(G') will be identical to or can be obtained by symmetry
from Blocks(G) for some G in the above list. Figures 7.2-7.6 show the

abbreviated construction of Blocks(G) for these OR-nodes as well as

Tiles(H) for each H €Blocks(G). We then build the tableau using the

<Ncsl Ncsz>

NCS, NCS,
EX, TRY, EX,TRY,
AX, NCS, AXaNCS,

<l' RY, NCS; <\ICS1 TRY?_>

hets. e e e ey

Figure 7.2

/, \\
// \\
/
| / \\

TRY, AF CS; NCS; TRY, AFCS; NCSz
AX, NCS EX True AX2TRY, AX‘NCSZ EX True AX2TRYy
EX True AX AFCS, EX,TRY, AX AFCS; EX2TRYz
AX CS| : EXzTrue

LS

s True NCS '
' Ach, TRY, AFCS, TRE> ‘ <T;Y, AFCSITRY;

Figure 7.3

< CS) NC8;>

CS; NCS,
EX;NCS; EX,TRY;
AX, NCS, AX,CS,

Gcs, NCS} <cs, TRY2>

Figure 7.4

/ N\
/ \
/ \
/ \
TRY, AFCS, TRY, TRY, ARCS, TRV
AX,TRY, AFCS, AX,TRY ax,TRY, AFCS; AXoTRY,
EX;True EX True EX True EXzTrue
AX, CS, AXAFCS, AX AFCS, AX5CSz
AXAFCS, AX AFCS3
| 2

CS, True TRY,
AFCS,
AFCS,

Figure 7.5

TRY, True CS,
AFCS,)
AFCS,

<C31 TRY;>
/" AN

/ N\ : .
s N inconsistent
CS, AFCS, TRY, CS, AFCS, TRY,
EX{NCS; EX True AX,CS; EX{NCS, EX True AXCS,
EX, True AXAFCS; EX, True EX True AX;CS
AX, TRY, AX, TRYp AX,CSo
|ncon5|stent
<NCS‘AFCSZTRY9 NCS AFCS?_TRY SlAFCSZCS

Figure 7.6

23

information about Blocks and Tiles contained in Figures 7.2-7.6. We

next apply the marking rules to delete inconsistent nodes. Note that the

OR-node <cs] cs, AFC82> is marked as deleted because of a prcpcsitional

inconsistency (with ~ (CS /\Csz), a consequence of the unwritten invari-

1l
ance AG(tv(CSl;\CS)). This, in turn, causes the AND-node that is the

predecessor of <cs1 C82 AFCSZ> to be marked. The resulting tableau is

shown in Fig. 7.7. Each node in Fig. 7.7 is labelled with a minimal set of

formulae sufficient to distinguish it from any other node.

We construct a model M from T by pasting together model fragments
for the AND-nodes using local structure information provided by T. Intui-
tively, a fragment is a rooted dag of AND-nodes embeddable in T such
that all eventuality formulae in the label of the root node are fulfilled
in the fragment. Fragments are described in detail in the appendix.

The root node of the model is H_, the unique successor of G From

0 o’

the tableau we see that HO must have two successors, one of Hl or H2

and one of H3 or H4. Each candidate successor state contains an eventu-

ality to fulfill, so we must construct and attach its fragment. Using the
method described in the appendix, we choose the fragment rooted at Hl to
be the left successor and the fragment rooted at H, %o be the right
successor (see Fig. 7.8). This yields the portion of the model shown in
Fig. 7.9.

We continue the construction by finding successors for'each of the

leaves: HS, Hg' HlO and HB' We start with HS' By inspection of T,

we see that the only successors H5 can have are HO and Hg. Since HO

and H already occur in the structure built so far, we add the arcs

2
H5 > HO and HS nd H9 to the structure. Note that this introduces a cycle

0 % Hl i H5 i Ho)u In general, a cycle can be dangerous because it might

NCS, NCS,
EX, TRY, EX, TRY;

L A 2 L bat N
TRY, NCS, , NCS, TRY,
AFCS, TRY, Nc:,s.2 / NNCS, TRY, AF CS,

Hy: ' A’ H h i

?/3‘ ' ’..... 7/4.:.‘\ '
TRY,NCS, “FTRY, NCS, NCS, TRY, NCS,TRY,
EX,CS, EXoTRY, EX, TRY, EX,CS,
AXAF CS, | AXAF CS,

1./5: ¥ He ¥ y 2% LI y X }
CS] NCSZ TRY] TRYZ ’ TRY] TRYZ NCS| CSZ

o 4
< TRY > smw2 TRY, c:s2 RY
CS1 TRY, AF cs1 AFCS, AF CS, AF cs T 1652

° | cs TRY, TRY, c:s2
1 2

Figure 7.7

#e
g
Hq 0

Figure 7.8

24

form a path along which some eventuality is never fulfilled; however, there
is no problem this time because the root of a fragment, Hl, occurs along the
cycle. A fragment root serves as a checkpoint to ensure that 211 eventuali-
ties are fulfilled. By symmetry between the roles of 1 and 2, we add in

the arcs H8 i HlO and HB 3 H0° The structure now has the form shown in

Fig. 7.10.

We now have two leaves remaining: Hg and HlO' We see from the

tableau that H4 is a possible successor to H9. We add in the arc
1l

H.L-+ H

9 4" Again a cycle is formed but since H

4 is a fragment root no

2
problems arise. Similarly, we add in the arc HlO - Hl' The decision pro-

cedure thus yields a model M such that M,s, E fo where fo is the con-
junction of the mutual exclusion system specifications. The model is shown
in Fig. 7.11 where only the propositions true in a state are retained in
the label.

We may view the model as a flowgraph of global system behavior. For

example, when the system is in state H,, process P is in its trying

1 1

region and process P2 is in its noncritical section. P1 may enter its

critical section or P2 may enter its trying region. No other moves are

possible in state Hl. Note that all states except H6 and H7 are distin-

guished by their propositional labels. In order to distinguish H6 from

H7, we introduce a variable TURN which is set to 1 upon entry to H6 and

to 2 upon entry to H If we introduce TURN's value into the labels of

7°
H6 and H7 then, the labels unigquely identify each node in the global
system flowgraph. See Fig. 7.12.

We describe how to obtain the synchronization skeletons of the indivi-

dual processes from the global system flowgraph. In the sequel we will

refer to these global system states by the propositional labels.

Figure 7.10

e

| TRY NCS, NCS, TRYZ

#5 2 > #y Z
8
CS, NCS, , TRY, L TRY,] "®[NCS, CS,
A N3 -
® |CS, TRY, TRY, CS,

Figure 7.11

NCS, NCS, |-

i

TRY, NCS,

N

NCS, TRY,

TRY, TRY, TURN=2

NCS,CS,

Figure 7.12

TRY, CS,

v

25

When P1 is in NCSl, there are three possible global states [NCS

[NCS 1 TRY,] [NCS

1 NCSZ]

Cszlc In each case it is always possible for P1 to make

1

a transition into TRY, by the global transitions [NCS, NCS,] 3 [TRY, NCS,],
1, TURN:=2 : 1

[NCSl TRYZ] [TR.Yl TRYZ], and [NCS1 C52] > [TRY1 CSZ]' Frcm each

global transition by P., we obtain a transition in the synchronization

1

skeleton of Pl. The P2 component of the global state provides enabling

conditions for the transitions in the skeleton of Pl. If along a global

transition, there is an assignment to TURN, the assignment is copied into
the corresponding transition of the synchronization skeleton. Thus we have
the transitions shown in Fig. 7.13(a) in the synchronization skeleton of Pl.
We merge the transitions which lack assignments to obtain the portion of the

synchronization skeleton of P1 shown in Fig. 7.13(b).

Now when Pl is in TRYl, there are four possible global states:

[TRYl Ncs2], [TRYl TRY2 TURN=1], [TRYl TRY2

and their associated global transitions by P

TURN=2], and [TRYl CSZ]

1:
1 _ 1
[TRY, NCS,] > [CS, NCS,] and [TRY, TRY, TURN=1] » [CS, TRY,].
(No transitions by Pl are possible in [TRY1 TRY,, TURN=2] or [TRY1 CSZ]')

Thus we obtain the portion of the synchronization skeleton for P1 shown in

FPig. 7.14(a). When Pl is in CS1 the associated global states and

transitions are:

1 1
[csl NCs,], [cs1 TRY, 1, [Csl NCSZ] > [NCSl NCS,], and [cs1 TRY2] > [Ncsl TRY2]
from which we obtain the portion of the synchronization skeleton for Pl
shown in Fig. 7.14(b). Altogether, the synchronization skeleton for P is

1
shown in Fig. 7.15(a). By symmetry in the global state diagram we obtain
the synchroaization skeleton for P2 as shown in Fig. 7.15(b).

The general method of factoring out the synchronization skeletons of

the individual processes may be described as follows: Take the model of the

@

@ NCS2

TRY,
1

C

Figure 7.13(a)

TURN:=2

NCS

6

@

VB2 [FURN=2}—{ TRY,

NCS

NCS» v CS_Z

Figure 7.13 (b)

@NCSZ v (TRYz2 A TURN=1)_@

Figure 7.14(a)

s, NCS2 v TRY, @

Figure 7.14 (b)

NCS,v CS,

Iy NCS2 v (TRY2 A TURN=I

NCSZ \'} TRYZ

Figure 7.15(a)

NCS, v (TRY, A TURN=2)

.-
o

®

NCS] \'} TRY]

N

Figure 7.15(b)

26

specification formula and retain only the propositional formulae in the
labels of each node. There may now be distinct nodes with the same label.
Auxiliary variables are introduced to ensure that each node gets a distinct
label: if label L occurs at n>1 distinct nodes vl,...,vn, then for
each vi, set L:=i on all arcs coming into vy and add L=i as an

i
additional component to the label of v; - The resulting newly labelled
graph is the global system flowgraph.

We now construct the synchronization skeleton for process Pi which
has m distinct code regions Rl""'Rm' Initially, the synchronization
skeleton for Pi is a graph with m distinct nodes Rl""'Rm and no arcs.
Draw an arc from Rj to Rk if there is at least one arc of the form
Lj-*Lk in the global system flowgraph where Rj is a compdnent of the
label Lj and Rk is a component of the label Lk' The arc Rj-*Rk is

a transition in the synchronization skeleton and is labelled with the

enabling condition

i
coe : IR, .cee .es i i
\/{(Sl A ASP) [3 Sl Sp] - [Rk Sl Sp] is an arc in the
global system flowgraph} .
i,L:=n
—_—

Add L:= to the label of R. * if some arc ...8 1
" 5 7R [Ry 8§y°%p

[Rk Sl...sp] also occurs in the flowgraph.

27

8. CONCLUSION

We have shown that it is possible to automatically synthesize the
synchronization skeleton of a concurrent program from a Temporal logic
specification. We believe that this approach may in the long run turn out
to be quite practical. Since synchroﬂization skeletons are, in general,
quite small, the potentially exponential behavior of our algorithm need
not be an insurmountable obstacle. Much additional research may be needed,
however, to make the approach feasible in practice.

We have also described a model checking algorithm which can be applied
to mechanically verify that a finite state concurrent program meets a parti-
cular Temporal Logic specification. We believe that practical software tools
based on this technique could be developed in the near future. Indeed, we
have already programmed an experimental implementation of the model checker
on the DEC 11/70 at Harvard.” Certain applications seem particularly suited
to the model checker approach to verification: One example is the problem
of verifying the correctness of existing network protocols many of which are

coded as finite state machines. We encourage additional work in this area.

*
We would like to acknowledge Marshall Brinn who did the actual programming
for our implementation of the model checker.

28

S. BIBLIOGRAPHY

[BH81]

[BMB1]

{CL77]

[ECBO]

[EH81]

[FS8l]

[GP80]

{HC68]

[LA8O0]

[LA78]

[PA69]

[PR77]

[RK80]

[SM63]

[TA55]

Ben-Ari, M., Halpern, J., and Pnueli, A., Finite Models for Deter-
ministic Propositional Logic. Proc. 8th Int. Colloguium on Auto-
mata, Languages, and Programming, to appear, 1981.

Ben-Ari, M., Manna 2., and Pnueli, A., The Temporal Logic of
Branching Time. 8th Annual ACM Symp. on Principles of Programming
Languages, 1981.

Clarke, E.M., Program Invariants as Fixpoints. 18th Annual Symp.
on Foundations of Computer Science, 1977.

Emerson, E.A., and Clarke, E.M., Characterizing Correctness Prop-
erties of Parallel Programs as Fixpoints. Proc. 7th Int. Collo-
quium on Automota, Languages, and Programming, Lecture Notes in
Computer Science #85, Springer-Verlag, 198l1.

Emerson, E.A., and Halpern, J., A New Decision Procedure for the
Temporal Logic of Branching Time, unpublished manuscript, Harvard
Univ., 1981.

Flon, L., and Suzuki, N., The Total Correctness of Parallel Pro-
grams. SIAM J. Comp., to appear, 198l.

Gabbay, D., Pnueli, A., et al., The Temporal Analysis of Fairness.
7th Annual ACM Symp. on Principles of Programming Languages, 1980.

Hughes, G., and Cresswell, M., 4n Introduction to Modal Logic.
Methuen, London, 1968.

Lamport, L., "Sometime" is Sometimes "Not Never." 7th Annual ACM
Symp. on Principles of Programming Languages, 1980.

Laventhal, M., Synthesis of Synchronization Code for Data Abstrac-
tions, Ph.D. Thesis, M.I.T., June 1978.

Park, D., Fixpoint Induction and Proofs of Program Properties, in
Machine Intelligence 5 (D. Mitchie, ed.), Edinburgh University
Press, 1970.

Pratt, V., A Practical Decision Method for Propositional Dynamic

. Logic. 10th ACM Symp. on Theory of Computing, 1977.

Ramamritham, K., and Keller, R., Specification and Synthesis of
Synchronizers. 9th International Conference on Parallel Proc-
essing, 1980.

Smullyan, R.M., First Order Logic. Springer-Verlag, Berlin, 1968.

Tarski, A., A Lattice-Theoretical Fixpoint Theorem and Its Appli~
cations. Pacific J. Math., 5, pp. 285-309 (1955).

29

[TA72] Tarjan, R., Depth First Search and Linear Graph Algorithms. SIAM
J. Comp. 1:2, pp. 146-160, 1972.

[wo81] Wolper, P. Synthesis of Communicating Processes From Temporal
logic Specifications, unpublished manuscript, Stanford Univ., 1981.

30

10. APPENDIX

In this appendix, we describe the decision procedure for CTL in detail.
We assume that the reader is familiar with the overview of the decision pro-
cedure given in Section 6. The proofs of correctness of the decision proce-
dure and of the finite model property for CTL are similar to the corresponding

proofs for UB. See [EH81].

10.1 Construction of the Initial AND/OR graph

We construct the initial AND/OR graph T in stages by the method
below:

1. 1Initally, let the "root" node of T be the OR-node G, = {fo}.

2. 1If all nodes in T have successors, halt. Otherwise, let F be
any node without successors in T. If F is an OR-node G, construct
Blocks (G) = {Hl,...,Hk} and attach each Hi as an immediate successor of
G in T. If any Hi has the same label as another AND-node H already
present in T, then merge Hi and H. If F is an AND-node H, construct
Tiles (H) ='{Gl,...,Gk} and attach each G, as an immediate successor of
G in T. Label the arc (H,Gi) in T with each Jj such that
Gi € Tilesj(H). If any Gi has the same label as some other OR-node G

already present in T, then merge G and G. Repeat this step.
1

10.2 Construction of Blocks(G)

For convenience, we assume that every formula in G has been placed
in standard form with all negations driven inside so that only atomic propo-

sitions appear negated. (This can be done using duality: ~(fAg)+>~fV ~g,

31

~AFh <*EG ~h, etc.) We say that a formula is elementary provided that it
is a proposition, the negation of a proposition, or has main connective
ij or Exj. Any other formula is nonelementary.

We classify nonelementary formulae as either a or 8 as discussed in

Section 6. The following table summarizes the classification:

o = fAg a = £ a, =g
o = A[fvg] al = g o, = f vaxa[fvg]
a = E[fvg] al = g a2 = f VEXA[fVqg]
B = fvg B, = £ B, = g
B = A[fuqg] Bl = g 82 = £ ARXA[fUg)
B = E[fug] Bl = g B, = £AEXE[fUg]

To construct Blocks(G) we first build a finitely branching tree whose
nodes are labelled with sets of formulae. (This tree is essentially a
propositional logic tableau as described in [Smullyan}.} Initially, let
the root = G. In general, let F be a leaf in the tree constructed so far
for which there exists a nonelementary formula f€F. Add one or two sons
to F as appropriate according to the rules shown in Fig. 10.1l. Eventually;
this construction must halt because all leaves Fl,...,Fm will contain only
elementary formulae. (This can be proved by induction of the length of
the longest formula in G.) Then let Blocks(G) = {Hl,...,Hm} where Hi

is the set of all formulae appearing in some node on the path from Fi

back to the root of the tree.

10.3 Construction of Tiles(H)

For each j €[1l:k], we must determine the set Tilesj(H) of successors

associated with process 3j. Let

/N

Friajufana A(BJU{B} A{BIU{B,)

Figure 10.1

32

&

{f: ijf€H} and

B

{g: EngGH} .

If HEj # @ then write HEj as '{gl,...,gn} and define

. 1
Tllesj(H) = {Gj,...,G?} where
i
G, = Ha, U{g, for i€ [l:n .
3 3 {gl} o) [1:n]
Now define
Tiles(H) = U{Tilesj(H): JE[L1:k]} .

If Gi €Tiles(H) then the arc from H to Gi in T is labelled with
j.s.--2J_ whéere G, €Tiles, (H),...,Tiles. (H). Figure 10.2 gives an example.
1 m i J1 Im
There are two special cases to consider. Let HA = U{HAj: j€[1:k]}
and HE = U{HEj: jE[1:k]}. If HA# @ and HE = @ then split H into
Hl""'Hk where each Hj = H U{EXjTrue} and proceed as befofe. If
HA = HE = § the let Tiles(H) = {g} where G = {f: fEH} and let

Blocks (G) = {H}.

10.4 Deleting Inconsistent Portions of the Tableau

We now apply the rules below to mark as inconsistent certain nodes of

the tableau T. First we need the following definition:

A full subdag D rooted at node F in T is a finite, directed acyclic
subgraph of T satisfying the following 3 conditions:
1. For every OR-node GED, there exists precisely one AND-pode H

such that H is a sonof G in D and in T.

AX, f, AXfp AXpfy AXofp
EX,q, EX,;9, EX;9; EX303

Figure 10.2

33

2. For every AND-node HED, if H has any sons at all in D, then
every sonof H in T is asonof H in D.
3. F is the unique node in D from which all other nodes are reach-

able.

Note that a full subdag D is somewhat like a finite tree. it has a root
(either an OR-node or an AND-node) and a frontier consisting of nodes with
no successors in D (although they may very well have successor when con-
sidered as nodes in T). 2All nodes of the frontier are AND-nodes.

Here are the marking rules:

markP: Mark as deleted any node F which is immediately inconsistent,
i.e, contains a formulae £ and its negation ~¢£.

markOR: Mark as deleted any OR-node G all of whose AND-node sons Hi
are already marked deleted.

markAND: Mark as deleted any AND-node H one of whose OR-node sons Gj
‘is already marked deleted.

markEU: Mark as deleted any node F such that Etfluleef‘ and there
does not exist some node F' reachable from F such that

f2€ F' and for all F" on some path from F' Dback to F,fle F".

markAU: Mark as deleted any node F such that A[fIUfZ]EE‘ and there
does not exist a full subdag D rooted at F such that for all
nodes F' on the frontier of D, f2€IF' and for all non-frontier

nodes F" in D, flEF".

Apply the marking rules as long a: possible. Marking must eventually

stop because each successful application of a marking rule marks as deleted

one node and there are only a finite number of nodes in T.

34

If the root of T is marked, then fo is unsatisfiable. If the root
of T is unmarked, then the subgraph of T induced by the remaining

unmarked nodes can be unraveled into a finite model of fo.

10.5 Unravelling the Tableau into a Model

Let T* be the subgraph of T that remains after all marked nodes
and incident arcs have been deleted. We will construct a finite model M
of fo by "unravelling" T*: For each AND-node H 1in T*, and for each
eventuality formula g €H, there is a full subdag rooted at H which cer-
tifies that g 4is fulfilled. (We know this subdag exists because H is
not marked by rule markAU or markEU on account of g.) We use these
subdags to construct, for each AND-node H, a model fragment MH such that

every eventuality in H is fulfilled within MH. We then splice together

these fragments to obtain M.

10.6 Selecting Subdags

If H is in T* and g€H is an eventuality formula, then there

is a full subdag rooted at H whose frontier nodes immediately fulfill g.
There may be more than one such subdag. We wish to choose one of minimal size
where the size of a subdag is the lengthrof the longest path it contains.
our approach is to tag each node in T* with the size of the smallest sub-
dag for g rooted at the node.

Suppose, for example, that g = A[fUh]. Initially, we set tag(F) ; 0
for all nodes F such that h€F and we set tag(F) =« for all other

nodes F. Then we let the size of full subdags radiate outward by making

35

*
card(T) passes over the tableau. During each pass we perform the follow-

ing step for each node F:

if F is an AND-node H such that A[fUh] €H and tag(H) = © and
tag(G) <> for all GE€Tiles(H) and f€H

then let tag(H) :=1 +max{tag(G) : GETiles (H)};

if F is an OR-node G such that A[fUh] €G and tag(G) = « and
tag(H)<® for some H € Blocks(G)

then let tag(G) :=min{tag(#) : HEBlocks(G)};

*
After executing all card(T) passes, if tag(F) k<« then there

is a full subdag for g rooted at F of minimal size k. To select a

specific full subdag D we perform a construction in stages.

Initially let D0 consist of the single node F.

In general, obtain Di+1 from D; as follows:

for all nodes F €frontier(Di+l) do
if F = some OR-node G
then choose an AND-node H € Blocks(G) with a minimal tag value
(if there is more than one H eligible,
choose one with a maximal card(Tiles(H)) value;

if there is still more than one H eligible, choose the
one of lowest index.)
attach H as the successor of G;:

if F = some AND-node H

then add each member of Tiles(H) as a successor of F

Halt with D = Di when all frontier nodes of D, are AND-nodes H with
tag(H) = 0. Let DAG[H,g] denote the subdag naturally induced by the AND-

nodes of D. (Note: 1In the case where g = E[fUh], the construction of

DAG{H,g] is similar.)

36

10.7 Construction of Fragments from Dags

*
For each AND-node H in T , we construct the fragment MH to have

these properties:

(1) MH is a dag consisting of (copies of) AND-nodes with root H.

(2) MH is generated by T" in this sense: for all nodes Hy in
MH, if {Hl,...,Hk} is the set of successors of H, in MH, then
there exist OR-nodes Gl""'Gk in T* such that Tiles(Ho) =
{Gl,...,Gk} and H €Blocks(G) for all 1€ [1:k]. If the arc
(Ho,Hi) in MH has labels jl,...,jn then the arc (HO'Gi) has
labels jl""’jn in T*.

(3) all eventuality formulae in H are fulfilled in MH.

We construct MH in stages. Let gl,gz,...,gm be a list of all even-
tuality formulae occurring in H. We build a seqﬁence of dags MHl,...,MHm =
MH so that, for each 3j€ [1l:m], MHj is a subgraph of MHj+1 and gl,...,gj
are fulfilled in MHj.

1

Let MHl = DAG[H,gl]. To obtain MHl+ from MH:L do the following:

Identify any two nodes on frcntier(MHl) with the same label;

for all H'E€ frontier (MH") do

3 L}

if 954, CH i

then attach (a copy of) DAG[H',gi+l] to MH at H'
end

Finally, let MH = MHm.

10.8 Constructing the Model from Fragments

We construct M by splicing together fragments. Again, the construc-

tion is done in stages:

37

Let Ml = MHO where I%)GBlocks({fo}) is chosen arbitrarily.

To construct M +l from M do the following:

for each H€frontier(M1) do

if there is a non-frontier node H' that is the root of fragment
MH' in Mi and has the same label as H
then merge H and H‘.
else attach MH to M at H
end

. . : . N .
The construction halts with i = N when frontier(M) is empty.

Let M= MN.

THEOREM. The root of the fully marked tableau ' for cTL formula

£, 18 unmarked i1ff £,

satisfiable in a finite model of size O

i8 satisfiable. If fo is satisfiable, it is

(clength(fo)) . for some c¢>1.

The proof of this theorem will not be given; however, the proof of

‘the corresponding theorem for UB is presented in [EH81].

