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Abstract. We describe new techniques for model checking in the coun-
terexample guided abstraction/refinement framework. The abstraction
phase ‘hides’ the logic of various variables, hence considering them as
inputs. This type of abstraction may lead to ‘spurious’ counterexam-
ples, i.e. traces that can not be simulated on the original (concrete)
machine. We check whether a counterexample is real or spurious with
a SAT checker. We then use a combination of Integer Linear Program-
ming (ILP) and machine learning techniques for refining the abstraction
based on the counterexample. The process is repeated until either a real
counterexample is found or the property is verified. We have implemented
these techniques on top of the model checker NuSMV and the SAT solver
Chaff. Experimental results prove the viability of these new techniques.

1 Introduction

While state of the art model checkers can verify circuits with several hundred
latches, many industrial circuits are at least an order of magnitude larger. Var-
ious conservative abstraction techniques can be used to bridge this gap. Such
abstraction techniques must preserve all the behaviors of the concrete system,
but may introduce behaviors that are not present originally. Thus, if a universal
property (i.e. an ACTL* property) is true in the abstract system, it will also
be true in the concrete system. On the other hand, if a universal property is
false in the abstract system, it may still be true in the concrete system. In this
case, none of the behaviors that violate the property in the abstract system
can be reproduced in the concrete system. Counterexamples corresponding to
these behaviors are said to be spurious. When such a counterexample is found,
the abstraction can be refined in order to eliminate the spurious behavior. This
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process is repeated until either a real counterexample is found, or the abstract
system satisfies the property. In the latter case, we know that the concrete system
satisfies the property as well, since the abstraction is conservative.

There are many known techniques, some automatic and some manual, for
generating the initial abstraction and for abstraction/refinement. The automatic
techniques are more relevant to this paper, not only because our method is fully
automatic, but also because of the clear practical advantage of automation. Our
methodology is based on an iterative abstraction/refinement process. Abstrac-
tion is performed by selecting a set of latches or variables and making them
inuisible, i.e., they are treated as inputs. In each iteration, we check whether the
abstract system satisfies the specification with a standard OBDD-based sym-
bolic model checker. If a counterexample is reported by the model checker, we
try to simulate it on the concrete system with a fast SAT solver. In other words,
we generate and solve a SAT instance that is satisfiable if and only if the coun-
terexample is real. If the instance is not satisfiable, we look for the failure state,
which is the last state in the longest prefix of the counterexample that is still
satisfiable. Note that this process can not be easily performed with a standard
circuit simulator, because the abstract counter example does not include values
for all inputs.

We use the failure state in order to refine the abstraction. The abstract system
has transitions from the failure state that do not exist in the concrete system.
We eliminate these transitions by refining the abstraction, i.e., by making some
variables visible that were previously invisible. The problem of selecting a small
set of variables to make visible is one of the main issues that we address in this
paper. It is important to find a small set in order to keep the size of the abstract
state space manageable. This problem can be reduced to a problem of separat-
ing two sets of states (abstraction unites concrete states, and therefore refining
an abstraction is the opposite operation, i.e., separation of states). For realistic
systems, generating these sets is not feasible, both explicitly and symbolically.
Moreover, the minimum separation problem is known to be NP-hard [5]. We
combine sampling with Integer Linear Programming (ILP) and machine learn-
ing to handle this problem. Machine learning algorithms are successfully used in
a wide range of problem domains like data mining and other problems where it
is necessary to extract implicit information from a large database of samples[10].
These algorithms exploit ideas from a diverse set of disciplines, including infor-
mation theory, statistics and complexity theory.

The closest work to the current one that we are aware of was described
in [5]. Like the current work, they also use an automatic, iterative abstrac-
tion/refinement procedure that is guided by the counterexample, and they also
try to eliminate the counterexample by solving the state-separation problem. But
there are three main differences between the two methods. First, their abstrac-
tion is based on replacing predicates of the program with new input variables,
while our abstraction is performed by making some of the variables invisible
(thus, we hide the entire logic that defines these variables). The advantage of
our approach is that computing a minimal abstraction function becomes easy.
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Secondly, checking whether the counterexample is real or spurious was performed
in their work symbolically, using OBDDs. We do this stage with a SAT solver,
which for this particular task is extremely efficient (due to the large number of
solutions to the SAT instance). Thirdly, they derive the refinement symbolically.
Since finding the coarsest refinement is NP-hard, they present a polynomial pro-
cedure that in general computes a sub-optimal solution. For some well defined
cases the same procedure computes the optimal refinement. We, on the other
hand, avoid the complexity by considering only samples of the states sets, which
we compute explicitly. By doing so we also pay the price of optimality: this
procedure yields a refinement step which is not necessarily optimal (i.e., we do
not necessarily find the smallest number of invisible variables that should be-
come visible in order to eliminate the counterexample). Yet we suggest a method
for efficient sampling, which in most cases allows us to efficiently compute an
optimal refinement.

The work of [7] should also be mentioned in this context, since it is very
similar to [5], the main difference being the refinement algorithm: rather than
computing the refinement by analyzing the abstract failure state, they combine
a theorem prover with a greedy algorithm that finds a small set of previously
abstracted predicates that eliminate the counterexample. They add this set of
predicates as a new constraint to the abstract model.

Previous work on abstraction by making variables invisible (this technique
was used under different names in the past) include the localization reduction of
Kurshan [8] and many others (see, for example [1,9]). The localization reduction
follows the typical abstraction/refinement iterative process. It starts by making
all but the property variables invisible. When a spurious counterexample is iden-
tified, it refines the system by making more variables visible. The variables made
visible are selected according to the variable dependency graph and information
that is derived from the counterexample. The candidates in the next refinement
step are those invisible variables that are adjacent on the variable dependency
graph to currently visible variables. Choosing among these variables is done by
extracting information from the counterexample. Another relevant work is de-
scribed in [14]. They use 3-valued simulation to simulate the counterexample
on the concrete model and identify the invisible variables whose values in the
concrete model conflict with the counterexample. Variables are chosen from this
set of invisible variables by various ranking heuristics. For example, like local-
ization, they prefer variables that are close on the variable dependency graph to
the currently visible variables.

The rest of the paper is organized as follows. In the next section we briefly
give the technical background of abstraction and refinement in model check-
ing. In section 3 we describe our counterexample guided abstraction/refinement
framework. We elaborate in this section on how the counterexample is being
checked and how we refine the abstraction. We also describe refinement as a
learning problem. In sections 4 and 5 we elaborate on our separation techniques.
These techniques are combined with the efficient sampling technique, which is
described in section 6. We give experimental results in section 7, which proves the
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viability of our methods comparing to a state of the art model checker (Cadence
SMYV ). We discuss conclusions and future work in section 8.

2 Abstraction in Model Checking

We start with a brief description of the use of abstraction in model checking
(for more details refer to [6] ). Consider a program with a set of variables V' =
{z1,...,z,}, where each variable x; ranges over a non-empty domain D,,. Each
state s of the program assigns values to the variables in V. The set of all possible
states for the program is S = D,, x --- x D, . The program is modeled by a
transition system M = (S, I, R) where

1. S is the set of states.
2. I C S is the set of initial states.
3. RC S x S is the set of transitions.

We use the notation I(s) to denote the fact that a state s is in I, and we write
R(s1, s2) if the transition between the states s; and s9 is in R.

An abstraction function h for the system is given by a surjection h : S — S,
which maps a concrete state in S to an abstract state in S. Given a concrete
state s; € S, we denote by h(s;) the abstract state to which it is mapped by h.
Accordingly, we denote by h~1(3) the set of states s such that h(s) = 3.

Definition 1. The minimal abstract transition system M = (3,1, R) corre-
sponding to a transition system M = (S,I, R) and an abstraction function h is

defined as follows:

1. 8 ={5]3s. s € SAh(s) = &}.
2. I ={5]3s. I(s) Nh(s) = 3}
3. R = {(31,§2> | 351. 382. R(Sl,Sg) A\ h,(51> = §1 A\ h,(SQ) = 52}

Intuitively, minimality means that M can start in state h(s) if and only if M
can start in state s , and M can transition from h(s) to h(s') if and only if M
can transition from s to s’

For simplicity, we restrict our discussion to model checking of AGp formulas,
where p is a non-temporal propositional formula. The theory can be extended
to handle any safety property, because such formulas have counterexamples that
are finite paths.

Definition 2. A propositional formula p respects an abstraction function h if
forallse S, h(s) Ep=skEp.

The essence of conservative abstraction is the following preservation theorem[6],
which is stated without proof.

Theorem 1. Let M be an abstraction of M corresponding to the abstraction
function h, and p be a propositional formula that respects h. Then M = AGp =
M = AGp
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The converse of the above theorem is not true, however. Even if the abstract
model invalidates the specification, the concrete model may still satisfy the
specification. In this case, the abstract counterexample generated by the model
checker is spurious, i.e. it does not correspond to a concrete path. The abstrac-
tion function is too coarse to validate the specification, and we need to refine it.

Definition 3. Given a transition system M = (S, I, R) and an abstraction func-
tion h, h' is a refinement of h if

1. For all s1,s2 € S, h'(s1) = I/ (s2) implies h(s1) = h(s2).
2. There exists s1,82 € S such that h(s1) = h(s2) and W' (s1) # 1/ (s2).

3 Abstraction-Refinement

Based on the above definitions, we now describe our counterezample guided ab-
straction refinement procedure. Given a transition system M and a safety prop-

erty :

1. Generate an initial abstraction function h.

2. Model check M. If M = ¢, then M |= ¢. Return TRUE.

3. If M £ ¢, check the counterexample on the concrete model. If the coun-
terexample is real, M [~ p. Return FALSE.

4. Refine h, and go to step 2.

The above procedure is complete for finite state systems. Since each refine-
ment step partitions at least one abstract state, the number of loop iterations is
bounded by the number of concrete states. In the next subsections, we explain
in more detail how we perform each step.

3.1 Defining an Abstraction Function

We partition the set of variables V' into two sets: the set of wvisible variables
which we denote by V and the set of invisible variables which we denote by Z.
Intuitively, V corresponds to the part of the system that is currently believed
to be important for verifying the property. The abstraction function h abstracts
out the irrelevant details, namely the invisible variables. The initial abstraction
in step 1 and the refinement in step 4 correspond to different partitions of the set
of variables. As an initial abstraction, )V includes the variables in the property
. In each refinement step, we move variables from Z to V, as we will explain in
sub-section 3.3.

More formally, let s(x), x € V denote the value of variable x in a state s.
Given a set of variables U = {u1,...,u,}, U C V, sV denotes the portion
of s that corresponds to the variables in U, i.e. sV = (s(u1)...s(up)). Let V =
{v1,...,v;}. The partitioning defines our abstraction function h : S — S. The
set of abstract states is S = D,, x ---x D,, and the abstraction function is

simply h(s) = sY.
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Given h, we need to compute the minimal abstraction. For an arbitrary
system M and abstraction function h, it is often too expensive or impossible
to construct the minimal abstraction M|[6]. However, our abstraction function
allows us to compute M efficiently for systems where the transition relation R
is in a functional form, e.g. sequential circuits. For these systems, M can be
computed directly from the program text, by removing the logic that defines
the invisible variables and treating them as inputs.

3.2 Checking the Counterexample

For safety properties, the counterexample generated by the model checker is a
path (31, 382,...8y). The set of concrete paths that corresponds to this coun-
terexample is given by

Y = {<81 .. Sm> | I(Sl) VAN A R(Sl, Si+1) A /\ h(Si) = §1} (1)
=1 i=1

According to section 3.1, h(s;) is simply a projection of s; to the visible variables.
The right-most conjunct is therefore a restriction of the visible variables in step &
to their values in the counterexample.

The counterexample is spurious if and only if the set v, is empty. We check
for that by solving 1, with a SAT solver. This formula is very similar in structure
to the formulas that arise in Bounded Model Checking(BMC)[3]. However, t,,
is easier to solve because the path is restricted to the counterexample. Most
model checkers treat inputs as latches, and therefore the counterexample includes
assignments to inputs. While simulating the counterexample, we also restrict the
values of the (original) inputs that are part of the definition (lie on the RHS) of
the visible variables, which further simplifies the formula.

If a satisfying assignment is found, we know that the counterexample corre-
sponds to a concrete path, which means that we found a real bug. Otherwise, we
try to look for the ‘failure’ index f, i.e. the maximal index f, f < m, such that
1y is satisfiable. Given f, (81,...8y) is the longest prefix of the counterexample
that corresponds to a concrete path. Our implementation sequentially searches
in the range 1..m for the highest value f such that s is satisfiable. For long
counterexample traces, we also have an option of performing a binary search
over this range, in which case the number of SAT instances we solve is bounded
by logm.

3.3 Refining the Abstraction

As before, let f denote the failure index. Let D denote the set of all states dy
such that there exists some (d;...ds) in ;. We call D the set of deadend states.
By definition, there is no concrete transition from D to h™'(5741).

Since there is an abstract transition from 5 to 57,1, there is a non-empty set
of transitions ¢ from h=!(37) to h™1(5741) that agree with the counterexample.
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Fig. 1. A spurious counterexample corresponds to a concrete path that ‘breaks’
in the failing state. The failing state unites concrete ‘deadend‘ and ‘bad‘ states
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The set of transitions ¢ is defined as follows:

dr ={(s,8p+1) | R(sg,sp41) Ah(sp) =85 ANh(spi1) =8¢} (2)

Given the definition of h, ¢ represents all concrete paths from step f to step
f + 1, where the visible variables in these steps are restricted to their values in
the counterexample. Let B denote the set of all states by such that there exists
some (by,byi1) in ¢y. We call B the set of bad states (see figure 1).

The counterexample exists because there is an abstract transition from sy
to sy41 that does not correspond to any concrete transition. The transition exists
because the deadend and bad states lie in the same abstract state. This suggests
a mechanism to refine the abstraction. The abstraction h is refined to a new
abstraction h’ such that Vd € D,Vb € B (h/(d) # h'(b)). The new abstraction
puts the deadend and bad states into separate abstract states and therefore
eliminates the spurious transition from the abstract system.

3.4 Refinement by Separation and Learning

Let S = {s1...8;} and T = {t1...t,} be two sets of states (binary vectors) of
size [, representing assignments to a set of variables WW.

Deﬁnition 4. (The state separation problem) Find a minimal set of variables
= {uy..up}, U C W, such that for each pair of states (s;,t;), 1 < i < m,
1 < j <m, there exists a variable u, € U such that s;(u,) # t; (ur)

Let Dy and By denote the restriction of D and B, respectively, to their invisible
parts, i.e., D; = {s!|s € D} and By = {s’|s € B}. Let H € T be a set of
variables that separates D; from Bj. The refinement is obtained by adding H
to V. Minimality of H is not crucial, rather it is a matter of efficiency. Smaller
sets of visible variables make it easier to model check the abstract system, but
can also be harder to find. In fact, it can be shown that computing the minimal
separating set is NP-hard[5].

Lemma 1. The new abstraction function h' separated D from B in the abstract
system.
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Proof. Let d € D and b € B. The refined abstraction function h’ corresponds
to the visible set V' = V U H. Since H separates D; and By, there exists a
u € H s.t. d(u) # b(u). Thus, for some u € V', d(u) # b(u). By definition,
R'(d) = (d(uq)...d(ug)) and h/(b) = (b(uq)...b(ug)), u; € V'. Thus, h'(d) # h'(b).

O

The naive way of separating the set of deadend states D from the set of bad
states B would be to generate and separate D and B, either explicitly or sym-
bolically. Unfortunately, for systems of realistic size, this is usually not possible.
For all but the simplest examples, the number of states in D and B is too large
to enumerate explicitly. For systems with moderate complexity, these sets can be
computed symbolically with BDDs. However, even this is not possible for larger
systems. Moreover, even if it were possible to generate D and B, it would still
be computationally expensive to identify the separating variables.

Instead, we select samples from D and B and try to infer the separating
variables for the entire sets from these samples. Of course, there is a tradeoff
between the computational complexity of generating the samples, and the quality
of the separating variables. Without a complete separation of D and B it can
not be guaranteed that the counterexample will be eliminated. However, our
algorithm is complete, because the counterexample will eventually be eliminated
in subsequent refinement iterations. Our experience shows that state of the art
SAT solvers like Chaff[1 1] can generate many samples in a short amount of time.
The fact that D and B are large makes it relatively easy for SAT solvers to find
satisfying assignments to equations 1 and 2 compared to typical SAT instances
of similar size.

The idea of learning from samples has been studied extensively in the ma-
chine learning literature. A number of learning models and algorithms have been
proposed. In the next two sections, we describe the techniques that we used to
separate sets of samples of deadend and bad states, denoted by Sp, and Sg,
respectively.

4 Separation as an Integer Linear Programming Problem

A formulation of the problem of separating Sp, from Sp, as an Integer Linear
Programming (ILP) problem is depicted in Figure 2.

Min Zlﬂl Vi
subject to: (Vs € Sp,) (Vt € SB;) Z v; > 1
1<i<|z),

s(vy)#t(vy)

Fig. 2. State separation with integer linear programming
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The value of each integer variable! v1...v|7| in the ILP problem is interpreted
as: v; = 1 if and only if v; is in the separating set. Every constraint corresponds
to a pair of states (s;,t;), stating that at least one of the variables that separates
(distinguishes) between the two states should be selected. Thus, there are |[Sp, | %
|Sp, | constraints.

Ezample 1. Consider the following two pairs of states: s; = (0,1,0,1),82 =
(1,1,1,0) and ¢; = (1,1,1,1),t2 = (0,0,0,1). The corresponding ILP problem
will be

Min Z?:l v;

subject to:
v1 + U3 >1 /* Separating s; from tq * /
Vg >1 /* Separating s from tg * /
N >1 /* Separating s from tq * /

v +ve +v3+vy >1 /* Separating sz from to * /
The optimal value of the objective function in this case is 3, corresponding to
one of the two optimal solutions (v, ve2,v4) and (vs, va, v4).

5 Separation Using Decision Tree Learning

The ILP-based separation algorithm outputs the minimal separating set. How-
ever, the algorithm has a high complexity and cannot handle a large number of
variables or samples. In this section, we formulate the separation problem as a
Decision Tree Learning(DTL) problem, which is polynomial both in the number
of variables and the number of samples.

Learning with decision trees is one of the most widely used and practical
methods for approximating discrete-valued functions. A DTL algorithm inputs
a set of examples and generates a decision tree that classifies them. An example
is described by a set of attributes and the corresponding classification. Each
internal node in the tree specifies a test on some attribute, and each branch
descending from that node corresponds to one of the possible values for that
attribute. Each leaf in the tree corresponds to a classification.

Data is classified by starting at the root node of the decision tree, testing
the attribute specified by this node, and then moving down the tree branch
corresponding to the value of the attribute. The process is repeated for the
subtree rooted at the branch until one of the leafs is reached, which is labeled with
the classification. The problem of separating Sp, from S, can be formulated
as a DTL problem as follows:

— The attributes correspond to the invisible variables.
— The classifications are +1 and —1, corresponding to Sp, and Sp,.
— The examples are Sp, labeled +1, and Sp, labeled —1.

L Although the ILP problem is stated for integer variables, the constraints and ob-
jective function guarantees that their value will be either 0 or 1. Thus, they can be
thought of as Boolean variables.
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We generate a decision tree for this problem. The separating set that we output
contains all the variables present at an internal nodes of the decision tree.

Lemma 2. The above algorithm outputs a separating set for Sp, and Sp,.

Proof. Let d € Sp, and b € Spg,. The decision tree will classify d as +1 and b
as —1. So, there exists a node n in the decision tree, labeled with a variable v,
such that d(v) # b(v). By construction, v lies in the output set. O

Ezample 2. Going back to example 1, the corresponding DTL problem has 4 at-
tributes (vy, v2, v3,v4) and as always, two classifications (+1, —1). The set of ex-
amples is F = {((0,1,0,1),+1) , ((1,1,1,0),+1) , ((1,1,1,1),-1),
((0,0,0,1), —1) }. The following tree corresponds to the separating set (vy, va, v4).

A number of algorithms have been developed for learning decision trees, e.g.
ID3[12], C4.5[13]. All these algorithms essentially perform a simple top-down
greedy search through the space of possible decision trees. We implemented a
simplified version of the ID3 algorithm, which is described in Figure 3[10]. At
each recursion, the algorithm has to pick an attribute to test at the root. We
need a measure of the quality of an attribute. We start with defining a quantity
called entropy, which is a commonly used notion in information theory. Given a
set S containing ng positive examples and ng negative examples, the entropy
of S is given by:

Entropy(S) = —pglogape — pslogape

where pg, = (ng)/(ne + ne) and ps = (ng)/(ng + ng). Intuitively, entropy
characterizes the variety in a set of examples. The maximum value for entropy

DecTree(Examples, Attributes)

Create a Root node for the tree.

If all examples are classified the same, return Root with this classification.

Let A = BestAttribute( Examples, Attributes). Label Root with attribute A.

For i € {0,1}, let Examples; be the subset of Exzamples having value i for A.
For i € {0,1}, add an ¢ branch to the Root pointing to subtree generated by
Dectree( Examples;, Attributes — {A}).

6. Return Root.

AR

Fig. 3. Decision tree learning algorithm
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is 1, which corresponds to a collection that has an equal number of positive and
negative examples. The minimum value of entropy is 0, which corresponds to a
collection with only positive or only negative examples. We can now define the
quality of an attribute A by the reduction in entropy on partitioning the examples
using A. This measure, called the information gain is defined as follows:

Gain(E, A) = Entropy(E)— (|Eo|/|E|)- Entropy(Ey) — (|E1|/|E]) - Entropy(Er)

where Ey and E; are the subsets of examples having the value 0 and 1, respec-
tively, for attribute A. The Best Attribute( Examples, Attributes) procedure re-
turns the attribute A € Attributes that has the highest Gain(Ezamples, A).

Ezxample 3. We illustrate the working of our algorithm with an example. Con-
tinuing with our previous example, we calculate the gains for the attributes at
the top node of the decision tree.

Entropy(E) = —(2/4)log2(2/4) — (2/4)log2(2/4) = 1.00

Gain(E,v1) = 1—(2/4)-Entropy(Ey, —0)—(2/4)- Entropy(y,—1) = 0.00
Gain(E,ve) = 1—(1/4)-Entropy(Ey,—0)—(3/4)-Entropy(y,—1) = 0.31
Gain(E,v3) = 1—(2/4)-Entropy(Ey,—0)—(2/4)- Entropy(y,—1) = 0.00
Gain(E,vy) = 1—(1/4)-Entropy(Ey,—o0)—(3/4)-Entropy(y,—1) = 0.31

The DecT'ree algorithm will pick vy or vy to label the Root.

6 Efficient Sampling of States

Sampling D; and B does not have to be arbitrary. As we now show, it is possible
to direct the search for samples that contain more information than others. Let
0(Dy, Br) denote the minimal separating set for D; and B;. Finding 6(Dy, By)
by explicitly computing Dy and B; and separating them is too computationally
expensive, because both the size of these sets and the optimal separation tech-
niques are worst-case exponential. We therefore look for samples Sp, and Sg,
that are small enough to compute and separate, and, on the other hand, main-
tain 0(Sp,,Sp,) = 6(Dy, Br). Finding these sets is what we refer to as efficient
sampling.

We suggest an iterative algorithm for efficient sampling. Let SepSet denote
the current separating set. Initially, SepSet = (). In each step, the algorithm
finds samples that are not separable by SepSet that was computed in the pre-
vious iteration. Computing a new pair of dead-end and bad states that are not
separable by SepSet, can be done by solving &(SepSet), as defined below:

P(SepSet) =y Ay A /\ v =) (3)

v;ESepSet

where 1¢ and ¢ are the formulas representing the deadend and bad states as
defined in equations 1 and 2. The prime symbol over ¢; denotes the fact that
we replace each variable v € ¢y with a new variable v’ (note that otherwise, by
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SepSet = ;
1 =0;
repeat forever {
If @(SepSet) is satisfiable, derive d; and b; from solution; else
exit; ) _
SepSet = 6(U;_o{dsi}, Uj_o{bi});
i=1+1; }

Fig. 4. Algorithm Sample-and-Separate implements efficient sampling by itera-
tively searching for states that are not separable by the current separating set

definition, the conjunction of ¢y with ¢ is unsatisfiable). The right-most clause
in the above formula guarantees that the new samples of deadend and bad states
are not separable by the current separating set.

Algorithm Sample-and-Separate, described in Figure 6, uses formula 3 to

compute the minimal separating set of D; and B; without explicitly computing
or separating them. In each step i, it finds samples d; € Dy and b; € B that
are not separable by the current separating set SepSet. It then re-computes
SepSet for the union of sets that were computed up to the current iteration.
By repeating this process until no such samples exist, it guarantees that the
resulting separating set separates D; from Bj. Note that the size of SepSet can
either increase or stay unchanged in each iteration.
The algorithm in Figure 6 finds a single solution to @(SepSet) and hence a
single pair of states d; and b;. However, the size of each sample can be larger.
Larger samples may reduce the number of iterations, but also require more time
to derive and separate. The optimal number of new samples in each iteration
depends on various factors, like the efficiency of the SAT solver, the separation
technique and the examined model. Our implementation lets the user control
this process by adjusting two parameters: the number of samples generated in
each iteration, and the maximum number of iterations.

7 Experimental Results

We implemented our framework inside NuSMV[4]. We use NuSMV as a front-
end, for parsing SMV files and for generating abstractions. However, for actual
model checking, we use Cadence SMV, which implements techniques like cone-
of-influence reduction, cut-points, etc. We implemented a variant of the ID3[12]
algorithm to generate decision trees. We use a public domain LP solver[2] to
solve our integer linear programs. We use Chaff[11] as our SAT solver. Some
modifications were made to Chaff to efficiently generate multiple state samples
in a single run. Our experiments were performed on the “IU” family of circuits,
which are various abstractions of an interface control circuit from Synopsys. All
experiments were performed on a 1.5GHz Dual Athlon machine with 3Gb RAM
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Circuit SMV Sampling - ILP Sampling - DTL Eff. Samp. - DTL
Time|BDD Time|BDD |S |L ||Time|BDD S |L [|Time|BDD S |L

1U30 0.7 [116909 0.1 |1731 of1][0.1 [1731 of 1{/0.1 [1731 0] 1
1U35 0.6 [149496 0.1 [2357 0| 1][0.1 |2357 0| 1]lo.1 |2357 o 1
1U40 1.2 225544 6.3 21249 | 3| 4(/0.9 18830 51 6]/0.6 [11028 2| 3
1U45 37.5 |2554520 [|6.1 [17702 | 3| 4|[1.1 [18847 5| 6(/0.7 [10634 2| 3
IU50 23.3 [2094723 [[19.7 [100647[13[14[[9.8 [90691 13[14[[24.0 [1274240] 4[17
1U55 - - - - - |- []2072]51703825] 6] 9{[3.0 [64386 1] 6
1U60 - - 7.8 |183811| 4| 7|[7.8 [183811 4| 7]|4.5 [109393 | 1| 6
1U65 - - 7.9 [192806| 4| 7([7.9 [192806 4] 7]|3.8 [47546 1|5
1U70 - - 8.1 [192806| 4| 7([8.2 [192806 4] 71|3.8 [47546 1] 5
1U75 102.9{7068752 [{32.0 [142546| 9[10[|24.5 [397620 [13|14||24.1 550872 | 2| 7
1U80 603.7|39989682(|31.7 [215404| 9|10{[44.0 (341018 [13]|14]|24.1 |186662 | 2| 7
1U85 2832 |76232788]|33.1 {230979| 9|10([44.6 [443785 [13]|14]|25.2 |{198359 | 2| 7
1U90 - - 33.0 [230979] 9[10][[44.6 [443785 [13][14][25.4 [198359 [ 2] 7

Fig. 5. Model checking results for property 1

and running Linux. No pre-computed variable ordering files were used in the
experiments.

The results are presented in Figure 5 and Figure 6. The two tables correspond to
two different properties. We compared the following techniques: 1) ‘SMV’: Ca-
dence SMV, 2) ‘Sampling-ILP’: Sampling, separation using Integer Linear Pro-
gramming, 50 samples per refinement iteration, 3) ‘Sampling-DTL’: Sampling,
separation using Decision Tree Learning, 50 samples per refinement iteration,
4) ‘Eff. Samp.-DTL’: Efficient sampling, separation using Decision Tree Learn-
ing. For each run, we measured the total running time (‘Time’), the maximum
number of BDD nodes allocated (‘BDD’), the number of refinement steps (‘S’),
and the number of latches in the final abstraction (‘L’). The original number of
latches in each circuit in indicated in its name. A ‘—’ symbol indicates that we
ran out of memory. We could not solve Property 2 for circuits IU55...1U70 with
any of the methods.

The experiments indicate that our technique expedites standard model check-
ing, both in terms of execution time and required memory. As predicted, the
number of iterations is generally reduced when either ILP or efficient sampling
is applied. In most cases, this translates to a reduction in the total execution
time. There were cases, however, when smaller sets of separating variables re-
sulted in larger BDDs. Such ‘noise’ in the experimental results is typical of BDD
based techniques.

8 Conclusions and Future Work

We have presented an automatic counterexample guided abstraction-refinement
algorithm that uses SAT, ILP and techniques from machine learning. Our al-
gorithm outperforms standard model checking, both in terms of execution time
and memory requirements. Our refinement technique is very general and can be
extended to a large variety of systems. For example, in conjunction with predi-
cate abstraction, we can apply our techniques to software model checking. There
are several future research directions to our work. We are currently exploring
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Circuit SMV Sampling - ILP Sampling - DTL Eff. Samp. - DTL

Time|BDD Time|BDD S |L [|Time|BDD S |L ||Time |BDD S |L

1U30 7.3 324268 8.0 |113189 | 3(20(|7.5 [113189 20||6.5 113189

1U35 19.1 [679224 11.8 |186097 | 4]21]{12.7 |186097 11.0 |186097

T =
[\~
=

1U40 53.6 |1100956 [[25.9 [260299 | 6(23(|19.0 [207199 22([16.1 |207199

3

4

5
1U45 226.1|6060256 [[28.3 [411952 | 5(22(|25.3 (411952 | 5|22|[22.1 |411952 | 5|22
1U50 1754 [25102082((160.4|{2046981|13|32(|85.1 |605501 [10]|27(/15120(3791826| 7|31
1UT5 - - 1080 [3716255|21(38([586.7{1178039(16|33]|130.5|1050007| 5|26
1U80 - - 1136 [3378860|21|38((552.5{1158076|16|33||153.4|1009030| 5|26
1U85 - - 1162 [3493143|21|38|[581.2{1272915|16|33||167.7|1079043| 5|26
1U90 - - 965 |3712477(20(37(|583.3[1271915|16|33|[167.1{1079043| 5|26

Fig.6. Model checking results for property 2

criteria other than the size of the separating set for characterizing a good refine-
ment. We also want to explore other machine learning techniques to solve the
state separation problem.
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