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Abstract

We describe the implementation of three symbolic computation algorithms
on shared memory multiprocessors. We also evaluate the performance of the im-
plementations, point out some of their common characteristics, and describe why
these algorithms should be able to take advantage of the large scale heterogeneous
shared memory machines currently being developed. '

1 Introduction

Symbolic computation algorithms have proven useful in a wide range of applications from
formal verification to computer algebra. However, the time required by these algorithms
restricts the size of the problems which can be solved. In light of this, it is somewhat sur-
prising that there have been few parallel implementations of these algorithms. One possible
reason is the inherent complexity of these algorithms; obtaining a good sequential implemen-
tation can require deep knowledge of the problem domain and extensive programming skills.
In this paper, we consider typical symbolic algorithms from three different areas: theorem
proving, computer aided design, and computer algebra. We show that on a shared memory
multiprocessor each of the algorithms has a natural decomposition into parallel processes.
We evaluate the performance of each algorithm on several different multiprocessors in order
to gain an understanding of what architectural features facilitate the construction of such a
program.

There are two obvious ways of obtaining faster symbolic algorithms. The first is to use
new insight into the problem domain to improve the algorithm. This is certainly the most
natural way of obtaining a faster algorithm, but it may be quite difficult in practice to gain
such insight. Building a parallel implementation of the algorithm also has some drawbacks.
One of the most serious is that a parallel implementation may not be able to take advantage
of all the optimizations possible in a sequential algorithm. Nevertheless, in many cases it is
possible to obtain near linear speedup using parallelism. This can have a dramatic effect on
the usefulness of the algorithm. In this paper, we consider three implementations of symbolic
algorithms. Each required a considerable amount of programming effort as well as study of
the problem domain. We believe that our results are realistic and demonstrate what can be
achieved by using parallelism. We briefly describe each of the three problems below.

Resolution theorem proving forms the basis for logic programming and is used in many
automated reasoning systems. The OTTER [20] theorem proving system has been used to
discover new results in combinatory logic. Stickel’s Prolog Technology Theorem Prover [24]
demonstrated that resolution systems could achieve high inference rates. Parallel logic pro-
gramming languages are currently the focus of intense research [26]. We discuss a parallel
resolution theorem prover called Parthenon [3] which uses or-parallel Prolog technology to
achieve good performance.

Boolean decision diagrams are an efficient symbolic representation for boolean func-
tions [6]. They are rapidly becoming widely used in circuit verification [15, 10] and simu-
lation [5]. There have been a number of highly optimized sequential implementations [4].
Nevertheless, the enormous complexity of modern VLSI designs can strain the capabilities
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of these systems. We describe a parallel implementation of the boolean decision diagram
manipulation routines [18].

The last example is a parallel implementation of the Grobner basis algorithm. This
algorithm has a large number of applications. In particular, it can be used to find exact
solutions of systems of polynomial equations. The algorithm is a key component of most
symbolic mathematics systems such as Mathematica, Scratchpad, and Maple. There have
been several good sequential implementations such as that in the Macaulay system. An
implementation on a Cray X-MP using a vectorized big number package is described by Neun
and Melenk [22]. Vidal [25] was apparently the first to develop a parallel implementation of
the algorithm for a shared memory multiprocessor. Schwab [23] has demonstrated additional
performance benefits by utilizing two levels of parallelism.

We evaluated our implementations on three different architectures. We were primarily
concerned with three issues: speedup, memory access patterns, and difficulty in programming
and debugging. In the next four sections, we describe the machine architectures and the
three parallel implementations in more detail. We sketch how each algorithm works and
give performance statistics for the various machines. In the conclusion, we propose some
general principles about symbolic computation on shared memory multiprocessors that we
have learned from the examples we have considered.

2 Shared memory architectures

A wide variety of multiprocessor architectures have been described in the literature over the
past few years. The characteristics of these architectures vary widely and are determined by
the available technology, the class of applications addressed, the trade-offs between processor
speed, memory system complexity and communication costs, and other design decisions. In
this paper, we describe algorithms implemented on three shared memory architectures.

The Encore Multimax is a classic shared memory multiprocessor using a central bus for
communication between processors and main memory. Each processor has a local cache
and uses a snooping protocol to maintain cache coherency. The Multimax is suitable for
medium and coarse grained parallel applications [13]. The particular machine used in these
experiments had 16 National Semiconductor 32332 processors, each rated at roughly 2 MIPS,
and 32 megabytes of shared memory. The local cache size is 64K bytes.

The RP3 is a large-scale research parallel processor developed at the T. J. Watson Re-
search Center. The machine consists of a number of processor-memory elements connected
by an Omega-interconnection network. Local memory references are handled immediately,
while remote memory references must be resolved over the network. The architecture pro-
vides three types of memory pages: local pages, global pages, and replicated pages. The
machine does not support automatic cache coherency; instead, cache management is the
responsibility of the programmer or compiler [17]. The virtual memory interface allows each
page to be marked as cacheable or non-cacheable, as well as allowing the cache to be flushed
under user level control. The current version of the system has 64 ROMP processors. Each
processor has 8 megabytes of storage, and a 64K byte local cache.

The Plus architecture [2] is a mesh of processor-memory elements connected by a deter-
ministic routing network. Remote memory references are transparently routed to the ap-
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propriate destination. In addition several special features enhance this basic design. Local
computation proceeds while remote writes are being completed, increasing overall through-
put. When needed, a fence operation is used to stall the local processor until all remote
writes have completed. Also, any page in memory may be replicated to other processing
nodes. Reads from these replicated pages are handled locally, while writes are directed to the
master copy of the page and transparently propagated to all replicated copies. Tuning an ap-
plication to run on this architecture involves studying reference patterns of the algorithm and
selecting a memory replication scheme that minimizes remote read references, while limiting
remote writes and overall network traffic. This type of architecture is expected to perform
better than a pure message-passing architecture because additional hardware supports the
remote memory references, as opposed to a software layer processing these memory requests.
The experiments described in the paper were run on the Plus simulator. A machine with 40
nodes is currently under construction.

These implementations were all written in C and use the C-Threads package [12], which
allows parallel programming under the MACH operating system [1]. The programming
mode] provided by C-Threads is one of many executing processes sharing a common global
address space. Synchronization is provided through locks for mutual exclusion and conditions
for waiting and signaling of events. The model is augmented on the non-uniform memory
access machines to provide for the assignment of specific threads to specific processors, and
for controlling the placement and replication policy of memory pages.

3 Parthenon: a resolution theorem prover

An area of symbolic computation where parallelism is just beginning to be applied is auto-
mated theorem proving. Most procedures for theorem proving are highly nondeterministic,
since at each step of the procedure there are typically a number of inference rules which may
be applied, and each inference rule can usually be applied to a large number of axioms. This
leads to a combinatorial explosion in the search for a proof, and while attempts to limit this
explosion have been partially successful, large search spaces still result.

Parthenon is a parallel theorem prover which uses Loveland’s model elimination proce-
dure [19). Stickel recognized that model elimination is in fact very similar to Prolog’s SLD
resolution and used this observation in his Prolog Technology Theorem Prover (PTTP) [24].
By using sequential Prolog implementation techniques, he was able to obtain a very fast
system. We have taken these ideas further by applying or-parallel Prolog implementation
technology to achieve a fast parallel model elimination implementation.

3.1 Model elimination

The model elimination procedure is a variant of resolution with two inference rules. Given a
set of input clauses, it can be used to prove that the clauses are unsatisfiable. Each inference
rule operates on a chain, which is essentially a clause with certain literals regarded as special.
We will refer to the special literals as framed literals and indicate them by placing them in
a box. The inference rules are:



Extension To perform an extension operation on a chain, we must find an input clause
which contains a literal that unifies with the rightmost literal in the chain. We then
turn the rightmost literal of the chain into a framed literal and add the other literals
of the input clause to the right of the chain, applying the unifying substitution.

Reduction If the rightmost literal of a chain unifies with a framed literal in the chain, we
may delete the rightmost literal. Again we must apply the unifying substitution.

Framed literals at the right of a chain are always deleted. The procedure starts from one of
the input clauses (which is regarded as a chain with no framed literals.)

As an example, we prove Jz p(z) from the single assumption 3aVy(-p(a) — p(y))-
Negating the desired conclusion and putting the statements into clause form gives the
two clauses —p(z) and p(a) V p(y). We start the model elimination procedure from the
chain —-p(z).

1. —p(z) initial chain
2. -p(a) |V p(y) extension, z = a
3. O (the empty clause) reduction, y = a

3.2 Searching for a proof

In an or-parallel search, multiple processes can attempt to apply different inference steps in
parallel with the restriction that if a conjunction must be proved, the individual conjuncts
must be proved sequentially. In the context of the model elimination procedure, or-parallel
search corresponds to trying the different extension and reduction possibilities for a chain in
parallel. Since it is possible to have infinite chains of inferences which do not lead to a proof,
it must be possible to guarantee that no inference is postponed indefinitely. One possible
way to insure this would be to perform a breadth first search of all possible proofs, but the
space required for this quickly becomes prohibitive. A better alternative is to perform a
depth first search to a specific depth bound, and if no proof is found, to increase the bound
and try again. This technique is called depth first iterative deepening. It would seem that
this technique is very wasteful, since some parts of the tree are searched many times, but it
is possible to show that it is within a constant factor of optimal. Furthermore, this constant
factor is the average branching factor of the search. Hence, we can expect the speedup from
parallelism to dominate this cost.

Each process in Parthenon performs a bounded depth first backtracking search of a
different part of the search space. When a process exhausts its part of the space, it can obtain
a new subtree from one of the other processes and continue searching there. A distributed
scheduling algorithm handles the distribution of work to processes. In the remainder of this
section, we give details on the or-parallel search, details of the scheduling algorithm, and
some performance figures for Parthenon.

3.3 Representing the search space

The goal of Parthenon’s inference mechanism is to make each individual resolution step as
fast as possible. Like Stickel’s PTTP, it exploits the similarity between model elimination
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and Prolog’s SLD resolution to make model elimination efficient. In a Prolog system, each
derived clause is represented by the inferences used to derive the clause. The individual
inference steps are activation records on a stack, each describing which input clause was
used in the inference step and what variable bindings were made in the input clause. To
perform an inference step, a new activation record is added to the current stack of activation
records, and variables are bound during unification. This process will often involve making
new variable bindings in the original activation record chain, i.e., specializing some of the
variables in the original clause. If the search fails at some point, other input clauses must
be tried, and hence we must be able to undo this specialization. In order to accomplish this,
another stack called the trail is used. Whenever a variable is bound, we record this fact in
the trail and record the height of the trail in the activation record we are building. When
backtracking, we pop activation records from the stack and unbind any variables indicated
by the trail.

The model elimination extension step is almost exactly the same as Prolog’s resolution
step, and can be implemented in the above manner quite easily. The reduction operation
is only slightly more expensive; it requires searching back through the stack of activation
records to find the framed literals in the current chain.

When multiple processes can search in parallel, it is necessary to represent several chains
simultaneously. We do this by having multiple stacks of activation records. In addition, if
two chains were derived from a common ancestor chain, they will also share the activation
records corresponding to that ancestor. This is done for two reasons.

1. There is never any need to copy an entire chain from some other process when per-
forming an inference.

2. In order to ensure that inferences are not duplicated or omitted, it is necessary to
have information about the possible inferences stored in a central location. Since this
information is associated with each chain, it is natural to store it in the activation
records and use locks in the activation records to coordinate access.

Because of this sharing of activation records, it may be the case that two chains with
a common ancestor have incompatible bindings for some variables. Therefore, each process
must be able to have its own set of bindings. This is accomplished by giving each process
a semi-private binding array. This binding array corresponds directly to the variable stack
in a Prolog implementation. When a process moves to a different part of the search tree,
it must update this binding array in some manner. This is done by augmenting the trail
to record the bindings of variables as well as which variables were bound. When a process
wants to start working at an activation record, it uses the portion of the trail indicated by
that record to fill in its binding array.

One key point is that almost all references made by a process can be considered local.
Each binding array is associated with a single process, and the activation records and trail
are stored in a distributed fashion as well. In particular, activation records and trail entries
which are created by a process are created locally. The only time a process references
nonlocal memory is when moving to a part of the search tree which was created by a different
process. Measurements show that because of the large amount of work available in theorem
proving contexts, this is very rare. Thus, we expect that Parthenon would run well on
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the heterogeneous shared memory machines currently being developed. We are currently
experimenting with running Parthenon on the Plus simulator to verify this claim.

3.4 Coordinating the search

There are a number of desirable, but sometimes mutually exclusive, properties for a schedul-
ing algorithm in a system like Parthenon.

1. Tt should have low overhead in terms of time and space.
2. It should be scalable to large numbers of processes.
3. It should keep all the processes busy.

4. It should assign large jobs to processes so as to minimize context switch overhead.

Fortunately, in a theorem proving context, there is a large amount of available parallelism
due to the high branching factors' in many problems. Hence, simple distributed scheduling
algorithms which have the first two properties may also satisfy the last two constraints. A
more complicated distributed scheduling algorithm (such as those used in or-parallel Prolog
systems [11]) or a global scheduling algorithm might be better able to assign processes to
jobs when work is scarce. However, because of the nature of the problem, any advantage
is likely to be slight. In addition, complicated distributed algorithms typically have more
overhead than simple schemes, and global scheduling algorithms do not scale well.

In Parthenon, when a process searches for a job, it essentially performs a depth first, left
to right traversal of the search tree. There are a few refinements to this basic strategy.

1. A process begins searching at its current node. Because long distance moves correlate
with extensive updates to the binding array, it is best if a new job can be found close
to the old one.

2. If a process finishes traversing the tree without having found a job, it repeats the search
starting from the root of the tree.

3. A pure left to right traversal tends to result in situations where many processes are
working in the left part of the tree and few are working in the right part. In order
to achieve a better distribution of work, subtrees where there are few other processes
should be preferred to subtrees where there are many other processes. To implement
this, each node in the tree contains a count of the number of processes working in the
subtree rooted at that node. When a process moves deeper in the tree, it moves to the
subtree with the smallest count. Ties are broken by favoring nodes to the left.

Some care must be taken during traversal and modification of the tree to ensure mutual
exclusion at various points. For example, when a node is being removed from the tree, we
must make sure that other processes do not try to enter the node. Another error which must
be prevented is having two processes both take the same job. To avoid such problems, each
node in the tree contains a lock. The rules for using these locks are as follows.

10Often considerably greater than 2, unlike typical Prolog programs.
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1. When checking for alternatives, creating a child node, etc., the current node must be

locked.

2. When moving from the current node to one of its children or to its parent, both the
current node and the destination node must be locked.

To avoid deadlocks, whenever a process must acquire two locks the node closest to the root
of the tree is always locked first.

3.5 Implementation, performance and evaluation

We have tested Parthenon on a large number of examples used by Stickel. For the problems
requiring more extensive searches, the inference rates show an almost linear speedup with
the number of processes. This is probably because most theorem proving problems have
relatively high branching factors. The data in this section represent single runs, but the
measurements are repeatable.

Figure 1 gives speedup curves for the Multimax, and figure 2 gives speedup curves for
the RP3. Each figure consists of two graphs, representing two different problems. Each
graph has two curves which show the speedup in inferences per second (solid curve) and the
speedup in execution times (dotted curve). For the RP3, the speedup values were calculated
relative to the 10 or 20 process case, i.e., a factor of 2 speedup going from 10 to 20 or 20 to 40
processes was considered perfect. For the problem which was not run with 10 processes, we
calculated the speedups by assuming that the 20 process case had a speedup of exactly 2.
We should point out that the RP3 does not support cache coherency in hardware, and
that Parthenon was originally written assuming that such support would be available. We
modified Parthenon slightly for the RP3; for example, the variable stacks were made to
reside in the local memory of the appropriate process. However, the RP3 implementation
certainly does not take full advantage of the machine.

4 Boolean decision diagrams

An ordered boolean decision diagram [6] is an acyclic graph representation for boolean
functions. Because this representation provides a canonical form (two functions are logically
equivalent if and only if they have the same form) and is quite succinct in many cases,
it has become widely used in CAD applications. However, the construction of boolean
decision diagrams for certain large or particularly complex boolean functions can be very
time consuming. In this section, we present a parallel algorithm for this task and describe
its implementation.

4.1 Boolean decision diagrams and finite automata

Our approach to boolean decision diagrams uses some simple ideas from finite automata
theory. If we fix an ordering of the variables, then an n-argument boolean function can
be identified with the set of boolean vectors that make it true. For example, the function
denoted by the boolean expression z; A ¢, + —; A z3 with the variable ordering z; < z, <

7



10

A " i N 1 " )

Speedup

4 [ 3 10 12 14 16
Processors
Speedups for Problem APABHP

Spoodup

12

10

i 3. X i A 2 . )

2 4 6 8 10 12 14 16
Speedups for Problem WOS21

Figure 1: Multimax speedup curves for Parthenon

10 20 30 40 50 50
Processons
Speedups for Problem APABHP

i 2 A 1 n :

10 20 30 40 50 60
Speedups for Problem WOS21

Figure 2: RP3 speedup curves for Parthenon



z3 is uniquely represented by the set of vectors {(1,1,0),(1,1,1),(0,0,1),(1,0,1)}. The
corresponding set of strings {110,111,001,101} is a finite language. Since all finite languages
are regular, there is a minimal finite automaton that accepts this set. This automaton
provides a canonical representation for the original boolean function. Since each node in the
state-transition graph for a boolean function will have at most two successors (one for 0 and
one for 1), we can view this graph as a boolean decision diagram for the function.

Logical operations on boolean functions can be implemented by set operations on the
languages accepted by the finite automata: logical and corresponds to set intersection, logical
or corresponds to set union, and logical not corresponds to set complement (with respect to
the set of all boolean strings of length n.) Standard constructions from elementary automata
theory are used to perform these set operations. For example, let M; = (Q1, {0, 1}, 61, ¢,
Fi) and M, = (Q, {0, 1}, &, ¢%, F») be the boolean decision diagrams for two n-variable
boolean functions f, and f,. Then an automaton for f; A f> is given by M = ((Q1x @2)U{L},
{0, 1}, 6, (44,42), Fi x F;), where L denotes the sink state (6a(L,0) = éa(L,1) =.L1) for
the product automaton. é, is defined as

(61(q1,@),62(g2,0)) :
6n((q1,92),0) = if 81(q1,a) #L1 and 65(gz,a) #L2

L otherwise

1, and 1, are sink states of M; and M, respectively. An example of this procedure is
shown in figure 3. In this figure, M; corresponds to (—z; A —z3 V 1), and M; corresponds
to (mzy A2y Aza) V(=23 A—z2) V(21 Az2) V (21 A ~22 A —z3). The result of the logical and
operation is (mzy A =22 A —z3) V (21 A "2y A Ta) V (21 A 22).

M, NM,
(Product machine) M0 M,
G14 (Minimized)

q140

an

Figure 3: Product automaton generation for boolean decision diagrams

Automata for the other logical operations can be constructed in a similar manner. In
general, determining the state set of the finite automaton for each of these operator involves
a product construction. Also, in each case the resulting automaton may not be minimal.
For this reason, a final minimization stage is needed after the product construction.
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4.2 Implementation

We first describe the implementation of a single operation. Each operation consists of a
product construction phase followed by a minimization phase. The construction of a product
automaton begins with its initial state, i.e., the pair consisting of the initial states of the
two argument automata. The successors of this state are determined for the inputs 0 and 1.
As each pair of states is generated, it is entered into a queue of states to expand and into a
hash table of generated pairs. When a pair is about to be produced, we check the hash table
to see if it already exists. Pairs are removed from the queue and expanded in this manner
until the queue becomes empty. In the minimization phase, states are processed starting at
the lowest level and working upward. For each state, we hash its two successors and check a
global hash table to determine if a state with those successors already exists. If not, the pair
of successors is entered into the hash table along with a pointer to the state, and the state is
returned. If such a state does exist, that state is returned. This procedure guarantees both
that the result of an operation is a minimal automaton and that there are no equivalent
states generated by operations which proceed in parallel. This last property is essential to
control the storage requirements of the algorithm.

The above process of machine composition and state minimization is repeated once for
each operation in the boolean formula. Some of these operations will be independent and
may be performed in parallel. For example, to construct the boolean decision diagram for
f1 A fa, we may construct the decision diagrams for f; and f; in parallel before performing
the final conjunction. More precisely, given a formula for which we wish to build the boolean
decision diagram, the first step is to determine the level of each node in the parse tree for
the formula. The leaf nodes of the tree are input variables; the non-leaf nodes correspond
to the boolean operators that occur in the formula. The level of each node is determined by
the rule:

1. The level of an input variable is 0.
2. The level of a non-leaf node is ma=z(ly,ls)+ 1, where I; and I, are levels of its operands.

The construction of the boolean decision diagram begins with level 0 nodes, which can be
constructed immediately. In general, we can process a level i node as soon as all the level
1,2, ...,1— 1 nodes beneath it have been processed. Operations at the same level in the
tree can be performed in parallel, since they do not conflict.

The levels at the top of the parse tree have only a few operations that can be performed
in parallel. In order to extract more parallelism, we divide operations on such levels into
several sub-operations. This can be done using Shanon’s expansion:

(21, rzn) = 21 A f(0,20,...,20) V1L A f(1, 22y ., Zn).

In the product and minimization phases, the 0 and 1 successors of the initial pair are gener-
ated. This corresponds to producing the initial states for f(0,za,...,2,) and f(1,22,...,2x).
Then the product and minimization phases are performed (in parallel) for these two func-
tions. We need one last merge step for the root state to complete the operation. Note that
an operation can be decomposed further if needed using the above expansion.
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# of processors 1 2 3 4 5 8 11 14 15
time.(seconds) | 1465.8 | 732.1 | 499.9 | 384.1 | 311.4 | 211.8 | 171.6 | 148.5 | 140.6

Table 1: BDD construction times for a 10 bit multiplier on the Multimax

An example of this procedure is shown in figure 4. This example is the same as that
depicted in figure 3. To perform the operation, processor P; expands the 0 and 1 successors of
the initial pair. Processor P, takes the 0 successor (g, gs), generates the product automaton
and minimizes it. Processor P; takes the 1 successor and does the same thing. After P,
and P; have completed the minimization phase for their product automata, processor Py
generates gi4. '

Product Construction Phase

Minimization Phase
Processor

P

14
IN
q1s die

21 (an ¢13) Je, q13) G2

Figure 4: Decomposition of an operation for boolean decision diagrams

4.3 Performance evaluation

We experimented with building the boolean decision diagrams for boolean multipliers to
evaluate the program. The decision diagrams for multipliers are known to grow quite rapidly
(exponentially in the size of the operands, in fact.) Table 1 shows the execution time on the
Multimax to construct decision diagrams for a multiplier with 10 bits (20 boolean variables).
In the construction, there are 1726 operations (and: 527, or: 562, not: 0, zor: 307, merge:
330).

The execution time for a single processor is roughly the same as for the (sequential)
program for constructing boolean decision diagrams described by Fisher and Bryant {14].
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The graph in figure 5 shows the execution time speedup curve on the Multimax and Plus
machines.

4.4 Manipulation of large decision diagrams

Even on a large machine, in some examples the number of states required is too large to fit
in available memory. For example, we were originally unable to construct a boolean decision
diagram for a 13-bit multiplier. To overcome this problem, we use the above decomposition
to split the task into manageable pieces. Since the original parallel algorithm guarantees
high-speed execution, each part of the boolean formula can be processed in reasonable time,
and the total execution time is also reasonable. We were able to use this method to avoid
running out of memory when it comparing the decision diagrams for two 16-bit multipliers.
We divided the problem into 2048 parts. Each part required about 800,000 states for the
decision diagrams took about 220 seconds to complete. The total execution time was about
100 hours.

5 Grobner bases

Grdbner bases are one of the basic tools of computational algebraic geometry, the branch
of mathematics which deals with the solution of sets of algebraic equations. Grobner bases
give a normal form to ideals in polynomials rings. Once a Grébner basis is found for the
corresponding ideals, it becomes easy to test if a polynomial belongs to an ideal, if two
ideals are equal, if an ideal is contained in another, and so on. The interested reader is
referred to Buchberger [7, 9], where one will find a complete introduction to Grébner bases,
a description of their computation, as well as a list of many applications. A review of the
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various attempts to parallelize the algorithm can be found in [25].

The algorithm transforms a set of polynomials into another set of polynomials, a Grobner
basis generating the same ideal. These polynomials are rational polynomials over some
finite set of variables. While the theory behind the algorithm is quite complex, the actual
computation is relatively simple to describe. This implementation is based on an algorithm
given by Gebauer and Méller [16].

5.1 The basic algorithm

The primitive step of the computation, called reduction, involves deleting the first term of
the current working polynomial, called the S-polynomial, by subtraction of an appropriate
multiple of a polynomial already in the set. The result of this reduction is of lower order, but
not necessarily smaller. A polynomial is totally reduced with respect to a set of polynomials
when no further reduction is possible.

The S-polynomial of two polynomials already in the set is computed by finding the least
common multiple of the leading terms, multiplying by appropriate monomials to make the
two leading terms equal, and then finding the difference of these polynomials. Intuitively,
each polynomial is scaled by the smallest factor such that the lead terms become equal;
subtracting them cancels out the lead terms.

Spol(P,Q) := {
G := LCM(LeadingTerm(P), Leading Term(Q))
M, := G/ LeadingTerm(P)
M, := G/ Leading Term(Q)
Spol :=M, - P—-M,-Q
}

Spol(2z%y + 3zy + 1,3zy® + 2y + 2y + 2) :=
G = LCM(22%y, 3zy?) = 6zy?
M, = 6z%y?/2z%y = 3y, M, = 62?y*/3zy® = 2z
Spol = 3y - (2z%y + 3zy + 1) — 2z - (3zy® + zy + 2y + 2)
= —2z%y + 9zy® — dzy — 4z + 3y

The simplest form of the algorithm can now be stated. Termination is guaranteed by
restrictions on the ordering of terms in each polynomial. For our discussion, it is enough
that such orderings exist.

The algorithm begins with the input set B, and constructs the set P of all pairs of
distinct polynomials in B. Then, while pairs remain, the algorithm processes a pair from
P. This processing consists of computing the S-polynomial of the pair, and then reducing
it with the polynomials in B until no further reductions are possible. Sometimes, the S-
polynomial reduces all the way to 0, in which case the algorithm proceeds to the next
iteration of the loop with no additional work. However, if the S-polynomial reduces to a
non-zero polynomial, then this new polynomial is added to the set B. In addition, the new
polynomial is paired with each polynomial already in B, and these additional pairs are added
to the set P. Eventually, the set of pairs is empty, and the algorithm terminates. It should
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be noted that while B is a Grobner basis upon termination, a follow-up step to transform
B into a reduced Grébner basis is often needed. We have not addressed that step in this
paper, although some of the techniques presented here can also be applied.

Of course, the order in which the pairs are selected is very important to the practical
efficiency of the algorithm. One heuristic is to select the pair whose S-polynomial has
the smallest leading term under the selected order. In addition, several tests have been
developed to delete pairs whose S-polynomial will reduce to zero. These criteria can be
found in [8, 16] and involve testing for certain constraints on the leading terms. The order in
which reductions are performed is less well defined; in this implementation we use the order
in which the polynomials first appear when searching for a reducing polynomial. Most of
the computation time is spent in the S-polynomial and Reduction steps.

The typical computation described below consists of tens to hundreds of S-polynomial
computations and hundreds to thousands of reduction steps. Because of the very rapid
growth in the actual complexity of the problem, larger inputs will tend to produce polyno-
mials with more terms and larger coefficients. In our sample executions, we observed that
the total number of S-polynomials actually reduced does not grow as | B|?, but at a somewhat
greater than linear rate.

5.2 Coarse grain parallelism

The coarse grain parallelism in this algorithm consists of expanding and reducing several S-
polynomials in parallel. A lock is used to ensure mutually exclusive access to the set of pairs
P and the set of polynomials B. One potential bottleneck is access to these shared structures,
which is minimal in the actual implementation. A greater problem, for small examples, is
that processors may be left idle. This occurs because only a few pairs are produced at each
stage in the algorithm. Also, in the parallel case, some pairs are expanded that would have
been deleted in the sequential case. Typical data runs vary over a wide range, with small
inputs taking milliseconds and modest ones hundreds or thousands of seconds on a sequential
2-MIPS processor. Other examples show greater than linear speedup, due to early reduction
of pairs that prune part of the search space. As expected, larger inputs benefit the most
from larger numbers of processors. However, inputs with very few large polynomials, or
which produce only a limited number of pairs at any stage in the computation, benefit less
from additional processors. Figure 6 presents the speedup versus number of processors for
two examples from the research literature. (Box indicates Encore Multimax, Circle indicates
IBM RP3, Triangle indicates Plus Simulator). On a single Multimax processor, the Rose
example requires about 35 seconds, while the Trinksl example requires only 10 seconds.

5.3 Fine grain parallelism

At the heart of the Grobner basis computation is the operation of reduction, in which
one polynomial is used to eliminate the most significant term from an initial polynomial.
Speeding up this step is critical to improving the performance of the algorithm.

The source of fine-grain parallelism in the algorithm occurs in the reduction loop. The
key observation of Melenk and Neun [21] is that the algorithm only branches based on the
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Figure 6: Grobner Bases speedup curves

leading power product of the polynomials. This means that as soon as the first term of
any polynomial is computed, the next step of the algorithm may begin concurrently with
the computation of the remainder of the polynomial. We have implemented this approach
explicitly in the program, as opposed to implicitly in a dataflow style as Melenk and Neun
described.

The reduction loop consists of searching the list of polynomials for a reducing polyno-
mial, then setting up the reduction, and finally performing it term by term. The critical
observation here is that the next iteration of the loop will examine the terms in the same
order as they are produced.

In order to exploit this parallelism, this implementation stores two synchronization fields
with the polynomial. A size field keeps track of the number of terms and a done flag
indicates that this polynomial is complete or still under construction. The reduction process
begins as in the sequential case with an examination of the leading term and a search for a
reducing polynomial. Then before actually computing the reduction, a second processor is
assigned the task of performing the next loop iteration. The second processor busy waits,
checking for either a new term or a done indication, while the first processor computes the
polynomial term by term. When the first processor finishes, it will wait once more in a queue
to be assigned additional work. The second processor, meanwhile, waits for a term to be
produced. Once a term is produced, the polynomial is definitely known to be non-zero, and
the second processor will search for another reducing polynomial. If the search is successful,
the second processor will assign a third processor to consume the next intermediate result,
and the process repeats. If no terms are produced, and the done flag is set, then the second
processor has detected a zero polynomial. There is no need to update the pairs set, and a
new pair may be expanded. If the search for another reduction fails the second processor
begins the update-pairs routine, in which useless pairs are deleted and the new pairs are
added. This overlaps with the previous computation. This processor then begins expansion
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of the next pair. The S-polynomial expansion may be forced to wait because one of the
polynomials in the pair may still be incomplete. The code to compute the S-polynomials
uses the same synchronization technique to consume terms as they are produced, overlapping
additional computation and providing better speedup.

There are several issues to point out about this pipelined reduction process. (1) The
busy waiting loops all spin on two cached variables. This means that the busy waiting does
not saturate the bus and slow other processors down. (2) Once the reduction begins, each
processor in the pipeline consumes terms at approximately the same speed as the previous
processors produces them; therefore very little time is spent busy-waiting in the middle
of a reduction pipeline. (3) Because the synchronization constraints flow in one direction
only, no synchronization primitives are used beyond strong ordering of reads and writes. (4)
There is no speculative parallelism in this part of the computation. Each reduction must be
performed, and this approach simply overlaps the computation performed by the inner loop
as much as possible.

5.4 Combining the two techniques

The two forms of parallelism described above combine in a complementary fashion. The
coarse-grain method performs many reductions in parallel; the fine-grain method parallelizes
the reduction chains. We experimented with a number of processor scheduling mechanisms
before choosing the one used in the implementation. One version used a single work queue,
another separate queues with locks, and the final version uses a fixed ordering among pro-
cessors. We expect that the two forms of parallelism are independent, since performing the
pair expansions in parallel, only faster, reduces the average time between pair expansion and
updating the set of pairs. Because of this speedup, the fraction of time spent in the critical
section updating the shared data increases. We believe that this will not become a bottle-
neck until hundreds of processors are used, but varying ratios of processor to synchronization
speed across different architectures may make this an important consideration.

In figure 7 below, we present performance results for the full algorithm with both levels
of parallelism. (Box indicates Encore Multimax, Triangle indicates Plus Simulator). The
Rose example is large enough to benefit from the fine-grain parallelism, while the Trinksl
example is too small to speed up using this approach. The difference between these two
problems is that the polynomials that appear in the first example tend to have 20 or more
terms, while the second example has polynomials with 10 or fewer terms. The fine-grain
parallelism only works when there are many terms to process in each polynomial. The Rose
example seems to be more typical of the type of problems which arise in practice. A large
multiprocessor will be able to operate on polynomials with hundreds of terms, allowing even
better speed up from the fine-grain parallelism.

6 Conclusion

We observed essentially linear speedup for all three algorithms on many examples. There
were also small examples where virtually no speedup was obtained regardless of the number

16



Speedup

151

L ) . " s s 2 1 .
0 5 10 15 20 25 [ s 0 . 15 20

Processors Processors

Speedups for Problem ROSE Speedups for Problem TRINKS1

Figure 7: Grébner Bases speedup curves

of processors used. Furthermore, we occasionally observed superlinear speedup in Parthenon
and the Grobner bases algorithm. This is a well-known artifact of parallel tree searches.

There are two main difficulties which arise in parallel implementations of symbolic algo-
rithms. The first is that it is essentially impossible to implement any type of static scheduling.
Given an instance of the problem, there is no way to predict the number of steps that the
algorithm will require, the types of steps that will be needed, or the amount of work which
will be available at any point in time. In order to get good speedup, it is often necessary to
resort to speculative parallelism; trying to interrupt processors which are found to be doing
useless work can further increase the complexity of the scheduling problem.

The second problem is the difficulty of debugging a parallel implementation. The schedul-
ing problem contributes greatly to this. In addition, symbolic algorithms often must deal
with numerous cases. When many processors are operating in parallel, the number of com-
binations of cases which can be active at a given time, and hence the number of possible
interactions, is large. Because of this and the nondeterminism associated with the schedul-
ing, it is not unusual to encounter bugs which only occur once every hundred runs and only
in large problems.

We feel shared memory machines have some advantages over message passing machines
as platforms for implementing symbolic algorithms. First, the implementation on a shared
memory machine should be easier. On a message passing machine, references to remote
data must either be handled by a separate thread running at the remote node or by the
application itself, typically at the beginning of a main loop. In the first case, the code
for synchronization is likely to be just as complex as on a shared memory machine, and the
message handling itself is usually nontrivial. In the second case, there is a loss of parallelism,
and the application becomes more monolithic. In addition, having to check explicitly whether
references are local or remote increases the complexity of the implementation.

Second, the software overhead of handling messages would probably make it difficult to
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obtain good performance. Typical symbolic algorithms access many small objects scattered
throughout memory as they work, so there is little opportunity to use large block transfers;
instead, it is message latency which is critical. Experiments with Parthenon and the Grobner
basis algorithm on the Plus simulator indicate that about one percent of references are
remote. On the Plus, this would mean about twenty percent of the execution time would be
spent waiting for the network. Another order of magnitude of overhead for remote references
would seriously degrade the performance of these applications.

Our experiences lead us to believe that it is possible to develop useful parallel imple-
mentations of symbolic algorithms. We also feel that these implementations can usually be
structured so that almost all their memory references can be considered local. Thus, they
should map extremely well onto the non-uniform shared memory machines currently being
developed. We hope to demonstrate this in the near future on the Plus machine which is
currently being built.
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