
Hybrid Decision Diagrams

Overcoming the Limitations of MTBDDs and BMDs

E. M. Clarke M. Fujita X. Zhao

School of Computer Science Fujitsu Labs of America Inc. School of Computer Science
Carnegie Mellon University 77 Rio Robles Carnegie Mellon University

Pittsburgh, PA 15213 San Jose, CA 95134 Pittsburgh, PA 15213
e-mail: emc@cs.cmu.edu e-mail: masahiro@eecs.berkeley.edu e-mail: xzhao@cs.cmu.edu

Abstract: Functions that map boolean vectors into the in-
tegers are important for the design and veri�cation of arith-
metic circuits. MTBDDs and BMDs have been proposed for
representing this class of functions. We discuss the relation-
ship between these methods and describe a generalization
called hybrid decision diagrams which is often much more
concise. We show how to implement arithemetic operations
e�ciently for hybrid decision diagrams. In practice, this is
one of the main limitations of BMDs since performing arith-
metic operations on functions expressed in this notation can
be very expensive. In order to extend symbolic model check-
ing algorithms to handle arithmetic properties, it is essential
to be able to compute the BDD for the set of variable as-
signments that satisfy an arithmetic relation. In our paper,
we give an e�cient algorithm for this purpose. Moreover,
we prove that for the class of linear expressions, the time
complexity of our algorithm is linear in the number of vari-
ables.

1 Introduction

Functions that map boolean vectors into the integers are im-
portant for the design and veri�cation of arithmetic circuits.
In this paper, we investigate how to represent and manip-
ulate such functions e�ciently. In a previous paper [6], we
have proposed two ways (MTBDDs and BDD arrays) for

representing this class of functions using Binary Decision
Diagrams. Recently, Bryant and Chen [4] have proposed Bi-
nary Moment Diagrams (BMDs) for representing this class
of functions. In this paper, we show that the BMD of a func-
tion is the MTBDD that results from applying the inverse
Reed-Muller transformation [9] to the function. Further-
more, it can be computed using the techniques that we have

developed. The transformation matrix in this case is the
Kronecker product [2] of a number of identical 2 � 2 matri-
ces. We show that the Kronecker products of other 2 � 2
matrices behave in a similar way. In fact, the transforma-
tions obtained from Kronecker products of other matrices

will in many cases more concise than the BMD. We have
further generalized this idea so that the transformation ma-
trix can be the Kronecker product of di�erent matrices. In
this way, we obtain a representation, called the Hybrid De-
cision Diagram (HDD), that is more concise than either the

MTBDD or the BMD.

A similar strategy has been used by Becker [7]. However,
his technique only works for the boolean domain and is not
suitable for functions mapping boolean vectors into integers.
When using his technique, all of the transformation matrices,
the original function and the resulting function must have
boolean values. Our technique, on the other hand, works
over the integers. By allowing integer values, we can handle
a wider range of functions. Moreover, we can obtain larger
reduction factors since we have more choices for the transfor-
mation matrices. When our technique is applied to boolean
functions, it can often achieve comparable and sometimes
better results than dynamic variable reordering. Thus, in
some cases, it can serve as an alternative to dynamic vari-
able reordering. We conjecture that a combination of both
techniques together may result in reductions that neither
technique can achieve alone.

One of the main limitations of Bryant and Chen's work
is that performing arithmetic operations on functions rep-
resented by BMDs is very expensive. We show how these
operations can be implemented not only for BMDs, but for
hybrid decision diagrams as well. Although the worst case
complexity of some of these operations is exponential, our
algorithms work quite well in practice. In addition, we show
how logical operations can be performed on hybrid decision
diagrams that are used to represent boolean functions.

Most of the properties that we want to verify about arith-
metic circuits can be expressed as arithmetic relations. In
order to extend symbolic model checking algorithms [5] to
handle arithmetic properties, it is essential to be able to
compute the BDD for the set of variable assignments that
satisfy a relation. Bryant and Chen do not provide an algo-

rithm for this. In this paper, we give an e�cient algorithm
for this purpose. Moreover, we prove that for the class of
linear expressions, the time complexity of our algorithm is
linear in the number of variables. Our techniques for han-
dling arithmetic operations and relations are used intensively

in the veri�cation of a SRT division algorithm similar to the
one that is used in the Pentium.

2 Multi-terminal binary decision diagrams

Ordered binary decision diagrams (BDDs) are a canonical
representation for boolean formulas proposed by Bryant [3].
They are often substantially more compact than traditional



normal forms such as conjunctive normal form and disjunc-
tive normal form. They can also be manipulated very e�-
ciently. Hence, BDDs have become widely used for a variety
of CAD applications, including symbolic simulation, veri�-
cation of combinational logic and, more recently, veri�cation
of sequential circuits.
A BDD is similar to a binary decision tree, except that

its structure is a directed acyclic graph rather than a tree,
and there is a strict total order placed on the occurrence of
variables as one traverses the graph from root to leaf. Algo-
rithms of linear complexity exist for computing BDD repre-
sentations of :f and f _ g from the BDDs for the formulas
f and g.
Let f : Bm ! Z be a function that maps boolean vec-

tors of length m into integers. Suppose n1; : : : ; nN are the
possible values of f . The function f partitions the space
Bm of boolean vectors into N sets fS1; � � � ; SNg, such that
Si = f �x j f(�x) = ni g. Let fi be the characteristic function
of Si, we say that f is in normal form if f(�x) is represented

as
PN

i=1
fi(�x) � ni. This sum can be represented as a BDD

with integers as its terminal nodes. We call such DAGs
Multi-Terminal BDDs (MTBDDs) [6, 1]. Any arithmetic
operation � on MTBDDs can be performed in time linear
to the MTBDD size of the arguments [6].
LetM be a 2k�2l matrix over Z. It is easy to see thatM

can be represented as a function M : Bk+l ! Z, such that
Mij = M(�x; �y), where �x is the bit vector for i and �y is the
bit vector for j. Therefore, matrices with integer values can
be represented as integer valued functions using the repre-
sentation shown above. We can also perform various matrix
operations using the MTBDD representation. In particular,
matrix multiplication can be computed in the following way:
Suppose that two matrices A and B have dimensions 2k�2l

and 2l � 2m, respectively. Let C = A�B be the product of
A and B, then C will have dimension 2k � 2m. If we treat
A and B as integer-valued functions, we can compute the
product matrix C as

C(�x; �z) =
X
�y

A(�x; �y)B(�y; �z);

where
P

�y
means \sum over all possible assignments to �y".

In practice,
P

�y
M(�x; �y) can be computed as:

X
y1y2:::ym

M(�x; y1; y2; : : : ; ym)

=
X

y1y2:::ym�1

X
ym

M(�x; y1; y2; : : : ; ym)

=
X

y1y2:::ym�1

(M(�x; y1; y2; : : : ; ym�1; 0)

+M(�x; y1; y2; : : : ; ym�1; 1))

In this way, each variable in �y is eliminated by performing
an addition. Although this operation works well in many
cases, the worst case complexity can be exponential in the
number of variables.
Such integer functions can also be represented as arrays of

BDDs. These BDDs have boolean values and each of them

corresponds to one bit of the binary representation of the
function value. In general, it is quite expensive to perform
operations using this representation.

3 Hybrid decision diagrams

Recently, Bryant and Chen[4] have developed a new repre-
sentation for functions that map boolean vectors to integer
values. This representation is called the Binary Moment
Diagram (BMD) of the function. Instead of the Shannon
expansion f = xf1 + (1 � x)f0, they use the expansion
f = f0 + xf 0, where f 0 is equal to f1 � f0. After merg-
ing the common subexpressions, a DAG representation for
the function is obtained. They prove in their paper that this
gives a compact representation for certain functions which
have exponential size if represented by MTBDDs directly.
There is a close relationship between this representation

and the inverse Reed-Muller transformation [9]. The matrix
for the inverse Reed-Muller transformation is de�ned recur-
sively by

S0 = 1 Sn =

�
Sn�1 0
�Sn�1 Sn�1

�

which has a linear MTBDD representation. Let i 2 Bn be
the binary representation of integer 0 � i < 2n. A function
f : Bn ! N can be represented as a column vector where the
value of the ith entry is f(i). We will not distinguish between
a function and its corresponding column vector. The inverse
Reed-Muller transformation can be obtained by multiplying

the transformation matrix and the column vector bf = S� f

using the technique described in previous section.

Theorem 1 The MTBDD of bf is isomorphic to the BMD

of f .

Proof: The theorem is easy to prove by induction on the
number of variables.
Base Case: If the number of variables is 0, the function is

a constant and bf = f . Both the MTBDD of bf and the BMD
for f are terminal nodes and therefore isomorphic.
Induction Step: Let f : Bn ! N . The roots of both the

BMD for f and the MTBDD for bf are xn. The left child
of the root of the BMD for f is the BMD for f0, while the
right child is the BMD for f1�f0. When f is represented as
a column vector, the upper half is f0 and the bottom half is

f1. The inverse Reed-Muller matrix is

�
Sn�1 0
�Sn�1 Sn�1

�
.

The result of the transformation is therefore:�
Sn�1 0

�Sn�1 Sn�1

�
�

�
f0
f1

�
=

�
Sn�1 � f0

Sn�1 � (f1 � f0)

�

If this vector is represented by MTBDD, the left child is the

MTBDD for the inverse Reed-Muller transform of f0 and
the right child is the MTBDD for the inverse Reed-Muller
transform of f1�f0. By induction hypothesis, both children

are isomorphic to the children of the root of the BMD for f .
Therefore the BMD of f is isomorphic to the MTBDD forbf.



The Kronecker product of two matrices is de�ned as fol-
lows:

A
B =

0
@ a11 : : : a1m

.

.

.

.

.

.

an1 : : : anm

1
A
B =

0
@ a11B : : : a1mB

.

.

.

.

.

.

an1B : : : anmB

1
A

The inverse Reed-Muller matrix can be represented as the
Kronecker product of n identical 2� 2 matrices:

Sn =

�
Sn�1 0
�Sn�1 Sn�1

�
=

�
1 0
�1 1

�

 Sn�1

=

�
1 0
�1 1

�

 : : :


�
1 0
�1 1

�
| {z }

n

The inverse Reed-Muller transformation is not unique in
this respect. Other transformations that are de�ned as Kro-
necker products of 2� 2 matrices may also provide concise
representations for functions mapping boolean vectors into
integers. In particular, Reed-Muller matrix Rn and Walsh
matrix Wn can be represented as Kronecker products of sim-
ilar form. In fact, the Kronecker product of any non-singular
2 � 2 matrices can be used as a transformation matrix and
will produce a canonical representation for the function.
The possibility of using BMDs to represent boolean func-

tions is discussed in [4]. In general, the BMD does not ap-
pear to be better than the ordinary BDD for representing
boolean functions. In order to see why this is true, consider
the boolean Reed-Muller transformation, which is sometimes
called the Functional Decision Diagram or FDD[8]. This
transformation can be obtained by applying the modulo 2
operations to all of the terminal nodes of the BMD. Conse-
quently, the size of FDD is always smaller than the size of the
BMD. Since the inverse boolean Reed-Muller transformation
is the same as the boolean Reed-Muller transformation, the
FDD of the FDD is the original BDD. Therefore, for every
function f such that jFDDf j < jBDDf j, there exists another
function f 0 which is the boolean Reed-Muller transform of
f such that jBDDf 0 j < jFDDf 0 j. In particular, both the
BMD and the FDD representations for the middle bit of a
multiplier are still exponential.
We have discussed transformations that can be repre-

sented as the Kronecker product of a number of identical
2� 2 matrices. If the transformation matrix is a Kronecker
product of di�erent 2 � 2 matrices, we still have a canoni-

cal representation of the function. We call transformations
obtained from such matrices hybrid transformations.
We can apply this idea to reduce the size of BDD repre-

sentation of functions. Since there is no known polynomial
algorithm to �nd the hybrid Kronecker transformation that

minimizes BDD size, we use a greedy algorithm to reduce
the size. If we restrict the entries in the matrix to the set
f0; 1;�1g, then there are six matrices we can try. For each
variable, we select the matrix that gives the smallest BDD
size. The BDDs obtained from such transformations are
called Hybrid Decision Diagrams (HDDs). We have tried
this method on the ISCAS85 benchmark circuits. In some
cases we have been able to reduce the size of BDD repre-
sentation by a factor of 1300. However, reductions of this

magnitute usually occur when the original function has a
bad variable ordering. If dynamic variable ordering is used,
then our method gives a much smaller reduction factor.
Note that our technique can achieve comparable and

sometimes better results than dynamic variable reordering.
Thus, in some cases, it can serve as an alternative to dynamic
variable reordering. We conjecture that the combination of
both techniques together may result in reductions that nei-
ther technique can achieve alone.

4 Arithmetic operations

In order to make the techniques described in the previous
sections more useful, it is desirable to be able to perform
various arithmetric operations on hybrid decision diagrams.
In this paper, we only consider the cases of addition and
multiplication of two integers.
Suppose that f is transformed into f 0 by the matrix T1

and g is transformed into g0 by the matrix T2 using the
techniques discussed in the previous sections. Scalar multi-
plication is simple to perform.

(cf)0 = T1 � (cf) = cT1 � f = cf
0

When T1 = T2, �nding the sum of two function is also simple.

(f + g)0 = T1 � (f + g) = T1 � f + T1 � g = f
0 + g

0

If T1 6= T2, the transformation applied to the sum must be
determined �rst. Suppose we use T2 as the transformation
matrix for the result,

(f+g)0 = T2�(f+g) = T2�f+T2�g = T2�T
�1

1 �f
0+g0:

Next, we consider how to perform multiplication. We choose
T2 as the transformation matrix for (f � g). Suppose the
top level variable is xi. Assume the top level transform for

f is

�
a11 a12
a21 a22

�
with inverse

�
a011 a012
a021 a022

�
. Assume

also the top level transform for g is

�
b11 b12
b21 b22

�
with

inverse

�
b011 b012
b021 b022

�
. Then T2 =

�
b11 b12
b21 b22

�

 S2 =�

b11S2 b12S2
b21S2 b22S2

�
.

(f � g)0 = T2 � (f � g)

=

�
b11S2 b12S2
b21S2 b22S2

�
�

�
f0 � g0
f1 � g1

�

=

�
b11(f0 � g0)

0 + b12(f1 � g1)
0

b21(f0 � g0)
0 + b12(f1 � g1)

0

�
:

Consequently, the left child for the hybrid decision dia-
gram representing f � g

(f � g)0l = b11(f0 � g0)
0 + b12(f1 � g1)

0

= b11((a
0

11fl + a
0

12fr) � (b
0

11gl + b
0

12gr))
0

+b12((a
0

21fl + a
0

22fr) � (b
0

21gl + b
0

22gr))
0



example circuit without reordering with reordering

circuit jinputj output jBDDj jBMDj jHDDj jBDDj j BMD j jHDDj

c1355 41 1327 9419 1217689 2857 4407 478903 1518

c1908 33 12 3703 140174 1374 1581 154488 632

c5315 178 676 679593 2820 521 108 5106 107

Table 1: Experimental results for hybrid transformations of some ISCAS85 circuits

= (b11a
0

11b
0

11 + b12a
0

21b
0

21)(fl � gl)
0

+(b11a
0

11b
0

12 + b12a
0

21b
0

22)(fl � gr)
0

+(b11a
0

12b
0

11 + b12a
0

22b
0

21)(fr � gl)
0

+(b11a
0

12b
0

12 + b12a
0

22b
0

22)(fr � gr)
0

while the right child

(f � g)0r = b21(f0 � g0)
0 + b22(f1 � g1)

0

= b21((a
0

11fl + a
0

12fr) � (b
0

11gl + b
0

12gr))
0

+b22((a
0

21fl + a
0

22fr) � (b
0

21gl + b
0

22gr))
0

= (b21a
0

11b
0

11 + b22a
0

21b
0

21)(fl � gl)
0

+(b21a
0

11b
0

12 + b22a
0

21b
0

22)(fl � gr)
0

+(b21a
0

12b
0

11 + b22a
0

22b
0

21)(fr � gl)
0

+(b21a
0

12b
0

12 + b22a
0

22b
0

22)(fr � gr)
0

Since both (f � g)0l and (f � g)0r can be computed in term
of (fl � gl)

0; (fl � gr)
0; (fr � gl)

0, and (fr � gr)
0, we can compute

the transformation of the product in a recursive manner.
If we store these intermidiate results, the total number of
recursive calls to compute (f � g)0 will be at most jf 0jjg0j.
Because of the additions that are needed in the computation,
the worst case complexity can still be exponential. However,
in practice, this algorithm works quite well.

Now that we are able to add and multiply functions, we
can perform all of the standard logical operations. For ex-
ample (:f)0 = (1 � f)0 = 10 � f 0 and (f ^ g)0 = (f � g)0.

5 Equations and inequalities

Frequently, it is useful to be able to compute the set of
assignments that make f1 � f2, where � can be one of
=; 6=;<;�;>; or �. For example, the following inequality is

extremely important for the correctness of the radix-4 SRT

oating point division algorithm.

�2 � divisor � 3 � remainder � 2 � divisor

Both divisor and remainder in the inequality can be regarded
as arrays of boolean variables. In order to verify the correct-
ness of the algorithm, it is necessary to determine the set
of assignments to these variables that make the inequality
true.

Finding the set of assignments that satisfy an inequality
can be reduced to the problem of �nding the set of assign-
ments that make a function f positive. Equations can be

handled in a similar manner. A straightforward way of solv-
ing the problem is to convert f to an MTBDD and then
pick the terminal nodes with the correct sign. However,
this does not work very well in general, because some func-
tions have MTBDDs with exponential size but hybrid BDDs
of polynomial size. For example, let f1 =

Pm

i=0
xi2

i and

f2 =
Pm

j=0
yj2

j . Both of these functions and their di�erence
have linear size BMDs. The BDD for the set of assignments
satisfying f1� f2 > 0 also has linear size. But the MTBDD
size for f1 � f2 is exponential.
We have developed an algorithm that can substantially

reduce the cost for computing arithmetic relations between
certain functions. In the process, we only need to know
the sign of the function values. Thus, if we �nd out that
all of the values in a sub-HDD have the same sign, we can
conclude that all assignments in the sub-HDD will have the
same value for the relation. Consequently, we don't need to
continue to expand this sub-HDD.
To obtain a good algorithm for this problem, it is neces-

sary to determine e�ciently if a sub-HDD has uniform sign.
This can be achieved by computing upper and lower bounds
for the sub-HDD. The algorithm given below determines this
information. If the intermediate results are stored, the algo-
rithm takes time linear in the number of BDD nodes.

bound_values(f, upper, lower)

begin

if(f is terminal node)

upper = lower = f.value;

bound_values(left(f), upper1, lower1);

bound_values(right(f), upper2, lower2);

let {{a11, a12}, {a21, a22}}

be the inverse matrix at node f;

upper11 = a11*(if a11>0 then upper1 else lower1);

upper12 = a12*(if a12>0 then upper2 else lower2);

upper21 = a21*(if a21>0 then upper1 else lower1);

upper22 = a22*(if a22>0 then upper2 else lower2);

lower11 = a11*(if a11>0 then lower1 else upper1);

lower12 = a12*(if a12>0 then lower2 else upper2);

lower21 = a21*(if a21>0 then lower1 else upper1);

lower22 = a22*(if a22>0 then lower2 else upper2);

upper = max(upper11+upper12,upper21+upper22);

lower = min(lower11+lower12,lower21+lower22);

end



The improved algorithm for computing the BDD for the set
of assignments that make the function f positive is given
below. A similar algorithm is used to �nd the set of assign-
ments that make a function zero.

bdd greater_than_0(f)

begin

if(f is terminal node)

if(f.value > 0) return(True);

else return(False);

bound_values(f, upper, lower);

if(upper <= 0) return(False);

if(lower > 0) return(True);

let {{a11, a12}, {a21, a22}}

be the inverse matrix at node f;

left=greater_than_0(a11*left(f)+a12*right(f));

right=greater_than_0(a21*left(f)+a22*right(f));

return(bdd_if_then_else(level(f), left, right));

end

This algorithm works extremely well for veri�cation of arith-
metic circuits. The following theorem guarantees the e�-
ciency of this algorithm for the set of linear expressionswhen
the Hybrid Decision Diagrams are BMDs. Most of the for-
mulas that occur duing the veri�cation of the SRT division
algorithm are in this class. These expressions have the form
f =

Pm

i=1
cifi, where fi =

Pn

j=0
xij2

j for 1 < i < m and
the ci's are integer constants. We use the variable ordering
x1n; x2n; : : : ; xmn; : : : ; x10; x20; : : : ; xm0.

Theorem 2 The complexity of greater than 0 for f is

O(n2
Pm

k=1
jckj).

In the case of linear inequalities, all the new BMDs that
are generated have the form of c+g, where c is a constant and
g is an existing BMD. If we remember the constant without
actually adding it to the BMDs, we are able to avoid gener-
ating new BMD nodes. After introducing this technique, the
complexity for compute greater than 0(f) can be further
reduced to O(n

Pm

k=1
jckj).

6 Directions for future research

In this paper, we have discussed the relationship between
MTBDDs and BMDs. We have also described a general-

ization called hybrid decision diagrams which is often much
more concise. An e�cient implementation of arithemetic
operations on hybrid decision diagrams is also given.

Computing the BDD for the set of variable assignments
that satisfy an arithmetic relation is important for reasoning

about arithmetic circuits. We give an e�cient algorithm for
this purpose. Moreover, we prove that for the class of linear
expressions, the time complexity of our algorithm is linear
in the number of variables.

There are a number of directions for future research. Cur-
rently, we use a greedy algorithm to choose the appropriate
transformation matrix at each level in a hybrid decision di-
agram. Although it seems unlikely that there is an e�cient

algorithm to �nd the optimal transformation, it may be pos-
sible to develop a better heuristic that would permit an even
more concise representation.
In hybrid decision diagrams, the transformation matrices

for all the nodes at one level must be the same. If we allow
these transformation matrices to di�er, we should have more
freedom in selecting the transformation and, therefore, be
able to reduce the representation further.
Finally, our algorithm for solving arithmetic relations

works extremely well for linear equations and inequalities.
Although the current algorithm can handle some nonlinear
equations and inequalities as well, it may be possible to ex-
tend this algorithm or to �nd a new algorithm that can han-
dle more complicated nonlinear equations and inequalities.

References

[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi. Algebraic decision
diagrams and their applications. In Proceedings of the

1993 IEEE International Conference on Computer Aided

Design. IEEE Computer Society Press, November 1993.

[2] R. Bellman. Introcution to matrix analysis, chapter 5.
McGraw-Hill, 1970.

[3] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers,
C-35(8), 1986.

[4] R. E. Bryant and Y. A. Chen. Veri�cation of arithmetic
functions with binary moment diagrams. In Proceedings

of the 32nd ACM/IEEE Design Automation Conference.
IEEE Computer Society Press, June 1995.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states
and beyond. Information and Computation, 98(2):142{
170, June 1992.

[6] E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and
J. Yang. Spectral transforms for large boolean functions
with applications to technology mapping. In Proceedings

of the 30th ACM/IEEE Design Automation Conference.
IEEE Computer Society Press, June 1993.

[7] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and
M. A. Perkowski. E�cient representation and manipula-
tion of switching functions based on ordered kroenecker
functional decision diagrams. In Proceedings of the 32nd

ACM/IEEE Design AutomationConference. IEEE Com-
puter Society Press, June 1994.

[8] R. Drechsler, M. Theobald, and B. Becker. Fast ofdd
based minimization of �xed polarity reed-muller expres-
sions. In Proceedings of the 1994 European Design Au-

tomation Conference. IEEE Computer Society Press,
June 1994.

[9] D. E. Muller. Application of boolean algebra to switching
circuit design and error detection. IRE Trans., 1:6{12,
1954.


	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index


