Formally Verifying Arithmetic Circuits —
Avoiding the PENTIUM® FDIV bug

Sérgio Campos, Manpreet Khaira, Xudong Zhao —Intel Development Laboratories

Edmund Clarke — Carnegie Mellon University

Overview

This paper describes a major breakthrough in the verifica-
tion of arithmetic circuits. Using a methodology developed
by IDL, formal verification can now be applied to floating
point and integer arithmetic circuits. This is the only known
method that allows the full data path of complex arithmetic
circuits to be formally verified. Using this technology we
have reproduced the Pentium® FDIV and the P86 IDIV
bugs. Moreover, we have also been able to verify the cor-
rectness of the modified circuits.

The Pentium® FDIV bug highlighted the importance of this
technology. Several analyses of the error concluded that
the only way to avoid it was to use formal verification
because exhaustively covering all possible test cases
using simulation is impossible. They also reported that
none of the current formal verification approaches could
have been used, due to the complexity of the circuit.

This new technology sets a new standard in this area by
combining symbolic model checking [3], the engine behind
Intel's Prover formal verifier, and a new data representation
called binary moment diagrams [1]. These methods allow
much larger circuits to be formally verified. Currently, we
are verifying circuits with 600 variables, more than three
times larger than practical with previous methods. Even
though the circuits are very complex, most properties can
be verified in minutes, using 10 to 20 megs of memory. We
are currently verifying the P6 floating point multiplier and
adder. We also plan to verify most of the execution cluster.

Introduction

A very efficient technique for verifying the correctness of
sequential circuits is symbolic model checking [3]. It is
based on binary decision diagrams (BDD) and has been
very successful in verifying the control logic of industrial cir-
cuits at Intel [4] and elsewhere. However, the BDD repre-
sentation is inherently exponential for some functions that
occur frequently in the data path. This prevents their use in
the verification of arithmetic circuits.

Recently, however, data structures that allow an efficient
representation of such functions have been derived from
BDDs. These are binary moment diagrams (BMD) [1] and
multi-terminal BDDs (MTBDD). The first allows an efficient
representation of the data path, while the second effec-
tively models the control path. We have combined both
methods introducing hybrid decision diagrams. By using
this representation we are able to handle circuits with both
control logic and wide data paths.

Extensions to Binary Decision Diagrams

A binary decision diagram (BDD) is a canonical represen-
tation for a boolean formula. It is a binary decision graph
where there is a total order placed on the occurrence of
variables as one traverses the graph from root to leaf. They
are often substantially more compact than traditional repre-
sentations such as conjunctive or disjunctive normal forms.
They can also be manipulated very efficiently. Hence,
BDDs are widely used for a variety of CAD applications,
including symbolic simulation and verification of combina-
tional logic and sequential circuits.

Multi-Terminal BDDs have a similar structure. However,
while BDDs have boolean variables and leaves, MTBDDs
have boolean variables, but integer leaves. They therefore
can represent functions from booleans to integers. Func-
tions from integers to integers can also be represented
when the input is encoded in binary form. There are effi-
cient algorithms that compute many arithmetic operations,
such as addition and multiplication, when operands are
given in this form.

Recently a new representation for functions that map bool-
ean vectors to integers has been developed. This repre-
sentation is called binary moment diagram. It is also
traversed from top to bottom, and the node with variable x
is computed recursively by f=f; + x fg, where f; and fgare
the values of the left and right children of this node. This
representation gives a compact representation for certain
functions which have exponential size if represented
directly by MTBDDs.

BDD for MTBDD for BMD for
(anbv(cad 44Xy + 2X1 + Xg 4dxp + 2%y + Xg

Figure 1 Examples of Decision Diagrams
(Follow full lines if variable is true; dotted lines if it is false)

Verifying the Data Path

Though symbolic model checking techniques based on
Binary Decision Diagrams (BDDs) have successfully veri-
fied control logic, there are fundamental problems with
applying BDDs or even MTBDDs to the verification of arith-
metic circuits. The number of possible values for the data

1 - Intel Confidential

Intel Design and Test Technology Conference

Formally Verifying Arithmetic Circuits — Avoiding the PENTIUM® FDIV bug



variables is exponential in the number of bits, making their
representation also exponential.

Bryant and Chen have shown that BMDs provide a com-
pact representation for certain functions that have expo-
nential MTBDDs [1]. Their method determines that a circuit
is correct when the BMDs for the circuit and the specifica-
tion are exactly the same. They have used this representa-
tion to verify the data path of arithmetic circuits. However,
there can be cases in which the circuit is correct but the
BMDs are not identical. Since certain combinations of con-
trol variables can never occur, the behavior of the circuit in
those states is irrelevant, resulting in distinct but correct
BMDs. Moreover, this technique has other limitations. For
example, it cannot handle inequalities.

We have integrated both approaches by using a combina-
tion of MTBDDs and BMDs in the verification of arithmetic
circuits. We call these hybrid decision diagrams (HDD). In
particular, for state variables corresponding to data bits,
this representation behaves like a BMD; while for state
variables corresponding to control signals, it behaves like a
MTBDD. By using this representation, we are able to han-
dle circuits with both control logic and wide data paths.

We have extended the symbolic model checking system
SMV [3] to allow the expression of properties involving
relationships among data variables. Originally, properties
could only reason about state variables. In the extended
system, we allow properties that relate the value of collec-
tions of data variables. These collections, called words, are
arrays of single bit state variables. An arithmetic expres-
sion is constructed from words in the circuit, constants and
arithmetic operations on words. These expressions are
represented by hybrid BDDs.

For example, the extended SMV system can handle prop-
erties such as DataOut = Dataln1 + Dataln2, where each
of these variables is an array of 68 bits. Such properties
cannot be expressed in the original SMV system.

Arithmetic Operations and Relations

The following operations on integer valued functions are
implemented in the extended SMV system. Addition and
scalar multiplication have linear complexity. The worst case
complexity for multiplication of two functions is exponential,
but in practice, we are able to compute it efficiently. Finally,
we have also implemented if-then-else operations.

Model checking of word level properties requires comput-
ing which variable values satisfy an arithmetic relation. We
have developed an algorithm that can substantially reduce
the cost for computing this information. Suppose that we
want to compute the values that satisfy f> 0. Each branch
in the hybrid decision diagram for fcorresponds to a subset
of variable values. If the maximum value of a branch is less
than or equal to 0, then none of the values in this branch
satisfy the inequality. If the minimum value of a branch is
greater than O, then all its values satisfy the inequality. In
both cases, we avoid checking the signs of the individual
assignments in the branch.

The improved algorithm works extremely well for verifica-
tion of arithmetic circuits if the expressions in the specifica-
tion are linear. Most of the formulas that occur in the
verification of the SRT division algorithm are linear.

Symbolic Model Checking Word Properties

Model checking is a technique that, given a state-transition
graph and a property expressed as a temporal logic for-
mula [3], determines which states in the graph satisfy the
property. There exist algorithms to perform this task in time
linear to the size of the formula and graph. However, con-
structing the state graph is an exponential problem given
its parallel components. Since most practical problems are
given in such terms, this puts a limit on the size of prob-
lems that can be handled. In symbolic model checking sys-
tems, BDDs are used to represent the transition relation
and sets of states. The model checking process is per-
formed iteratively on these BDDs. Symbolic model check-
ing techniques increased dramatically the size of the
systems that can be verified.

However, in spite of being successful in verifying control
logic, model checking algorithms cannot be directly used
for verifying arithmetic circuits. Expressions that involve
variables with integer values cannot be handled properly.
Word level model checking overcomes this problem by
extending the original algorithms to determine the value of
arithmetic expressions using hybrid decision diagrams.

With our technique, the model is represented using BDDs
as in the original algorithm. HDDs are used only to com-
pute the value of expressions. The hybrid decision diagram
representation of a word is computed by converting each
bit of the word into an HDD and summing the resulting val-
ues. Although this process is exponential in the worst case,
it is very efficient in practice. The algorithm described to
obtain the BDD representing the set of variable assign-
ments that make an algebraic relation true is used to con-
vert the HDD representation of expressions to the BDD
representation of relations. After the BDD representation
for relations is generated, the BDDs for temporal formulas
are computed in the same way as in standard model
checking. In particular, the iterative computations are
exactly the same in both cases.

Verification of the P5 Division Circuit

Using word level model checking, we have successfully
verified the circuits, both control and datapath, that imple-
ment the SRT division and square root in the Pentium®
processor. These circuits perform two different operations,
division and remainder, and its phases can be seen in the
figure below. In both cases it transitions to the DIVINIT state
and then to the DIVLOOP state. It iterates for at most 34
cycles in this state. After this phase, the upper path through
DIVRES is taken in case the operation is division. The lower
path is taken if the operation is remainder.

DIVINIT

DIVLOOP

2 - Intel Confidential

Intel Design and Test Technology Conference



We have verified the control logic and the full 70 bits data
path of the circuit. Let r be partial remainder, g be quotient,
d be the divisor and D the dividend. We have checked the
properties:

* Loop invariant: r+ gd=D

« The new partial remainder is within the bounds
defined by the algorithm: -8/3 d< r<8/3 d.

For example, we have proven that at the DIVINIT state, the
remainder is the dividend, the quotient is zero and there-
fore, both properties hold. The formulas verified are:

AG(state=DIVINIT -> r = dividend & q = 0)
AG(state=DIVINIT -> -8*d <= 3*r <= 8*d)

We have also shown that the second property always holds
in the DIVLOOP state, and that r + g d is invariant with
respect to left shifting (the results of iteration i are left
shifted to be used in iteration i + 7):

AG(state=DIVLOOP -> (-8*%d <= 3*r <= 8*d))

AG((state=DIVLOOP & (-8*3 <= 3*r <= 8%*d)) ->
((r + g*d) * 4 = next(r + g*d)))

These properties guarantee that the invariant above holds
in the DIVLOOP state, Similar properties have been proven
for the DIVLAST, DIVRES, PREMFLX and PREMRES states.

Error in the Old Quotient Prediction Table

This verification procedure was also applied to the old
design of P5 division circuit. We have built an SMV model
manually translated from the iHDL code. The exact same
error that appears on the Pentium® processor was then
reproduced.

However, the verification of the second property generates
an exponential size BDD, and does not finish. Thus, an
indirect approach was used. We broke the property into
three subproperties:

* The inequality holds for the initial state.

+ If the inequality holds in the current state, then it is
also satisfied in the next state.

« All reachable states are defined in the table.

The error appears when the third property is checked.
There can be a maximum of 4096 entries in the quotient
table, even though many are unreachable. The corrected
quotient table redundantly includes all 4096 entries, but the
old one attempts to exclude redundant entries. Let error
stand for a state not in quotient table. To show that all
reachable states are defined we must prove:

AG (state=DIVLOOP -> l!error)

However, this property also generates an exponential size
BDD. We overcome this problem by restricting the search
depth, since the circuit always completes the division in
less than 34 cycles. We use the bounded operator:

ABG 0..34 (state=DIVLOOP -> lerror)

We proved that for the old quotient table, only 5 terms are
missing. These correspond to the terms in which the lead-
ing S bits of the divisor are 10001, 10100, 10111, 11010
and 11101. We have found counter examples for each of

them. The counterexamples that generate erroneous divi-
sion results for each of the 5 missing terms are:

10001 7865467 / 4718591
10100 7341819 /5505023
10111 8391671 /6291455
11010 9437175 /7077887
11101 20979183 / 15728639

Moreover, in each of the 5 assignments of the leading bits
of the divisor, the error can only possibly appear when
those bits are followed by one of the following patterns:

111111000000,
111111110111,
111111110000000,
111111111000,
11111100100000,
111111111101,
11111111111001111,
11111111111,

The following properties provide some insight into the mag-
nitude of the error due the missing terms in the quotient
table. The error can never appear in the first 6 radices. It
can only appear at the 12th bit (4th digit) or later. This is
guaranteed by the property ABG 0..5 lerror. An error
can appear at the seventh radix only when the leading divi-
sor bits are followed by 11111111111, For all the other bit
patterns, property ABG 0..6 !error is true. These
results can potentially be used to provide a formal proof for
some of Intel’s claims in [2].

Verification of the square root circuit

We have also proved the correctness of the circuit for com-
puting square roots. We have manually built a SMV model
for the Pentium® square root circuit from the iHDL code.
We verified the following property that immediately guaran-
tees the correctness of the square root.
partial_result = (sum + sgrt0 * sqrt0)<<68 + gpos) &
next(partial_result) = partial_result * 4

Where, gneg is the square root being computed; gpos con-
tains the value of the radicand; and sum contains the value
of the remainder. The value of sgri0 is the value of
gneg[2:69] followed by a ‘1’ bit. The above formula states
that (sum + sqrt0 * sgri0)<<68 + qpos) stays constant with
respect to left shifting. The initial value of the expression is
the radicand, guaranteeing that when the algorithm ends,
the square of the square root computed plus the remainder
is equivalent to the radicand, the expected behavior.

Verification of the P6 IDIV circuit

The examples described above have been manually trans-
lated from iHDL to SMV. This makes the verification pro-
cess more complex, because knowledge of the SMV
system is required to perform it. The Prover system has
been developed to overcome this constraint by automati-
cally translating iHDL code into SMV. Unfortunately, the
exponential behavior of BDDs prevents manual interven-
tion from being completely eliminated. Prover, however,
offers several ways to improve the final code, reducing
manual intervention significantly, and simplifying the verifi-
cation process. Using this approach we have verified the
P6 integer division circuit.

Intel Design and Test Technology Conference

Intel Confidential - 3



Integer division on the P6 uses a non-restoring radix-2
algorithm. At each iteration one quotient bit is generated
based on the signs of the divisor d and partial remainder R.
A is then multiplied by 2 and the divisor added (or sub-
tracted) to it to generate the next partial remainder A", The
quotient bit is shifted into the LSB of R". After 32 iterations
the final remainder occupies the upper half of the register
R, while the quotient Q occupies the lower half. A last step
is needed. In some cases the quotient and the remainder
have to be fixed in the following way: The quotient is fixed
by adding one, the remainder by adding (or subtracting)
the divisor. More information can be found in the P6 MAS.

Automatic Generation of SMV Code

In order to verify this circuit, we have translated the iHDL
code using Prover. A direct translation does not work, how-
ever, because the circuit is too complex. Prover’s pruning
options were used to avoid this problem. These options let
the user identify the signals that are relevant to the proper-
ties being verified. Prover only generates the code for the
signals that are in the fan-in cone of those identified. More-
over, prover also lets the user set specific signals to
constant values, simplifying even further the SMV code.

The resulting code was considerably more efficient than
the previous one, but not efficient enough to allow the com-
plete verification. Manual changes were needed, such as
retiming parts of the circuit and removing lines of source
code that were not relevant to the verification. The main
change, however, consisted of breaking the model into two
separate steps, the loop and the remainder/quotient fixes.

Properties Verified

To verify that each iteration of the circuit is correct, we must
check the following invariants:

* Loop invariant: 2R + d = R" (dis added or subtracted
depending on the quotient bit)
= Safety condition: -d< R< d

We have proven that any values of d and A that satisfy the
safety condition also satisfy the loop invariant. By showing
that the initial values of d and R satisfy that inequality we
conclude that each iteration is correct. We can restrict the
search to only one iteration, since the results are valid for
any values of dand R. We have checked the property:

AG((-d <= R <= d) -> (2*R +[-] @ = next(R)))

To verify that the remainder and quotient fixes are correct
we have checked that if no fixes are needed, the output is
the value computed in the last iteration. Otherwise, if a
quotient fix is needed, the output is @ + 1, and if a remain-
der fix is needed, the output is R + &
AG (!quofix -> (Q = 0l1dQ))
AG (quofix -> (0 = 0ld0 + 1))
AG (remfix -> (R = oldR +[-] d))

AG (!remfix -> (R = oldR))

We found an error in each case. Both values of R and Q
are stored in the same register, R in the upper half, and Q
in the lower half. However, when the last value of the quo-
tientis FFFFFFFFh, adding one to it will cause a carry into
the upper half, adding one to R. This efror was known to
the designers, and it was reproduced in our model.

Another problem occurs when the last value of the quotient
is 7FFFFFFFh. In that case, fixing the quotient changes its
sign, and the output is not the previous value plus one.
However, this is the expected behavior, and the specifica-
tion of what the quotient fix phase does is not accurate.

Prover has been extremely useful in the verification of the
IDIV circuit. The use of tools such as Prover allows formal
verification to be performed by non-experts, significantly
increasing the range of applications of the method. How-
ever, some aspects of the verification, such as retiming and
breaking the model into two steps in our example, cannot
be easily automated. This indicates that while formal verifi-
cation can be done systematically and efficiently, it is still
not a completely automatic process. Current research aims
at reducing manual intervention to a minimum.

Conclusions

The method described in this paper is the only one known
to the authors that is able to formally verify arithmetic cir-
cuits with wide data paths. Using this method we have
been able to reproduce the Pentium® FDIV as well as the
P& IDIV errors. In both cases we have also been able to
verify the corrected circuit. We are currently verifying the
P6 IMUL and FADD circuits and plan to verify most of the
units in the P6 execution cluster.

Our method is a breakthrough in the verification of arith-
metic circuits, opening several possibilities for future appli-
cations. It is now possible to formally verify circuits that
were beyond the scope of formal methods. This can help
creating more reliable circuits and makes the design pro-
cess more efficient. We believe that this method can be of
great use in the design of future generations of products.

Acknowledgments

The authors would like to thank Shtadler Ze’ev and Fix
Limor for several invaluable discussions on how to use
Prover in the most efficient way.

References

[1] Verification of Arithmetic Functions with Binary Moment
Diagrams, R. Bryant and Y. Chen, tech. report CMU-
CS-94-160, Carnegie Mellon University, May 1994.

(2] Statistical Analysis of Floating Point Flaw in the Pen-
tium® Processor(1994), H.P. Sharangpani, M.L. Barton,
Intel Corporation, November, 1994,

[3] Symbolic Model Checking: An Approach to the State
Explosion Problem, K. McMillan, Ph.D. Thesis, Carn-
egie Mellon University, 1892,

[4] Formally Verifying Bus Designs. S. Campos, M. Khaira,
X. Zhao. Intel Design Technology Conference, 1994,

[5] Prover EPS. Y. Kimchi, Z. Shtadler, S. Rotem and K.
Pines. Intel Corporation, November, 1992.

4 - Intel Confidential

Intel Design and Test Technology Conference



