Fast Spectrum Computation for Logic Functions
using Binary Decision Diagrams

Masahiro Fujita* Jerry Chih-Yuan Yang!
Edmund M. Clarke! Xudong Zhao! Patrick McGeer$

*Fujitsu Laboratories of America,
tCenter for Integrated System, Stanford University,
tSchool of Computer Science, Carnegie-Mellon University,
SEECS, University of California at Berkeley.

ABSTRACT

We show very efficient methods to compute Walsh spec-
trum for logic functions with large numbers of inputs
30 or more) using Binary Decision Diagrams. The

DD structure is extended to have any integer val-
ues as leaf (constant) nodes. The result is an efficient
representation for integer vectors and integer matrices.
The proposed procedure works directly on an extended
BDD for the logic function, and computes the full Walsh
spectrum in the form of an extended BDD. The algo-
rithm presented is a more efficient version of the matrix-
multiplication method proposed in [2]. Our method em-
beds the Walsh transform matrix implicitly into pro-
gram code with recursive calls, which results in a signif-
icant speed improvement. Our algorithm has the same
complexity as the fastest known Walsh algorithm, and
utilizes a much more efficient data structure than tra-
ditional truth tables. Furthermore, in cases where the
complete set of spectra coefficient is either infeasible
or impractical, we also present a method to compute
subsets of Walsh coefficients. We present experimental
results showing that logic functions having more than
60 inputs which cannot be processed by other published
methods [4, 6, 3] can be computed within 30 seconds on
Sparc 2.

INTRODUCTION

Walsh spectrum computation [4] is a very important
tool to analyze Boolean functions. For example, by an-
alyzing coefficients of Walsh spectra for Boolean func-
tions, we can efficiently classify them. These classifica-
tions can then be effectively used in problems logic syn-
thesis. One problem that spectra-based techniques have
been used to solve is that of Boolean matching[2, 6].
The matching problem is to detect whether two given
Boolean functions are equivalent under input permuta-
tion and input/output polarity changes.

We first review some definitions for the meaning of
Walsh coefficients[4]:

Definition 1 For a Boolean function f with n inpul
variables, each of the 2™ coefficients of ils Walsh spec-
trum shows the closeness between f and one of the fol-
lowing funclions:

e zeroth order coefficient (1 element): 0,

o first order coefficients (n elements):
Z1,Z2;5--.yTn,

¢ second order coefficients ((g) elements:)

z) @ z2, z1 D z3, "'1:':"—1@:6") ERES)
o nt* order coeffient (1 element):
1D z2D,..., Dz,

The symbol @ denotes exclusive-OR operation.
So, Walsh spectrum gives important information for
exclusive-OR. analysis of Boolean functions. It is
therefore also used for the exclusive-OR based logic
synthesis[5, 4].

Traditional approaches to compute Walsh spectrum
is based on truth tables. The most effective truth table-
based algorithm is the fast Walsh transform [4] which is
similar to the butterfly algorithm for fast Fourier trans-
forms. Clearly the main disadvantage for truth table-
based techniques is that they cannot handle logic func-
tions with large numbers of input variables.

Recently, a method to compute Walsh spectrum di-
rectly from sum-of-products representation has been
proposed [3). However, many practical logic functions
cannot be represented in sum-of-products forms, be-
cause numbers of products can be too large.

One way to overcome the above difficulty is to use
BDD to compute Walsh spectrum, since BDDs have
been an effective data structure for Boolen function ma-
nipulation. If we extend BDD proposed by Bryant 1
by allowing any integer values as constant nodes, we can
represent integer vectors and matrices in BDD. Conse-
quently, we can perform multiplication between vectors
and matrices using BDD operations as shown in [2]. In
[2], experimental results on the computation of Walsh
spectrums for logic functions with large numbers of in-
puts are reported. These spectra cannot be computed
by other published methods, because either the number
of inputs is too large for truth table representation, or
the sum-of-product forms have too many product terms.

In this paper we improve the method proposed in (2]
by embedding the Walsh matrix into program codes in
a recursive way. As shown later, this gives a significant
speed-up over the method in [2]. In fact, the algorithm
has the same complexity as the fastest known Walsh
transform. Our algorithm has the additional advantage
of using BDDs, which offer significant storage savings.
Our results show that Walsh spectra for logic functions
with well over 60 variables can be computed within 30
seconds on Sparc 2.

For some logic functions it is not possible to compute
the full set of Walsh coefficients, even by using BDDs.
This is due to the large number of leaf (constant) nodes.
In these cases, it is often desirable to compute a partial

11 1 1 1 1 1 1 [1 [-2
1-1 1-1 1-1 1-1 -1 6
1 1-1-1 1 1-1-1 1 2
1-1-1 1 1-1-1 1 a2
11 1 1-1-1-1-1 1|7 | 2
1-1 1-1-1 1-1 1 -1 2
1 1-1-1-1-1 1 1 -1 -2
L1 -1 -1 11 1 1-1 | |-1] (-2]

Figure 1: Computation of Walsh spectrum for 122+ 23

set of coefficients. For example, the n first-order coef-
ficients often provide a good filter for Boolean function
classification. Thus, it is desirable to develop an effi-
cient method for extracting subsels of coefficients. We
present a method for extracting a subset of coefficients
using matrix and vector multiplication using BDDs. We
show that for logic functions whose full spectra cannot
be computed, their i**-order coefficients can be easily
computed using the same BDD framework.

This paper is organized as follows. In section 2, we re-
view the original Walsh spectrum computation method.
In section 3, we show the algorithm to compute the
full set Walsh spectrum coefficients efficiently. Section
4 gives the partial coefficients computation procedure.
We report on the experimental results in section 5, and
we conclude in section 6.

WALSH TRANSFORMATION

The Walsh matriz is defined recursively as follows (5, 4]:

Tl o

—4in-1

To-
To=1 T, = [Tn—:

In Walsh matrix computation, the logical 0 is encoded
to 1, and logical 1 is encoded to —1. As a result, if two
values are the same, their product is always 1 and if two
values are different, their product is always —1.

The meanings of each row in Walsh matrix can be re-
lated to Definition 1. The first row in the matrix is the
truth table for the constant logic 0, since it is encoded
to 1, and correspond to the zeroth-order coefficient. The
second row in the matrix is the truth table for the func-
tion z; and the third row is the function z2. The fourth
row is the function z; @ z,, and so on.

We show the computation of Walsh spectrum for a
Boolean function with the following example.

Example 1 Given a Boolean function f = 2,2, + z3,
the Walsh spectrum is computed as follows:

The matriz in the left hand side of Figure 1 is the
Walsh matriz defined above (in this case, n is 3,since
there are three variables, rq,z, and z3). The vector in
the left hand side of Figure 1 1s an encoded iruth table
representation of the logic function z1z5+ 3 with logical
false encoded to “1”, and logical true encoded (o “1”,

The computed Walsh spectrum is shown in the right
hand side in the figure. Each element in the Walsh
spectrum shows the closeness between the logic Sfunction
z123 + z3 and the logic functions appeared in the rows
of Walsh matriz. O

—_———o—~Oo~0
o . '

0,1 representation 1,-1 representation

Figure 2: BDD for the logic function z1z5 + z3

Please refer to [4] for detailed description of Walsh ma-
trix properties.

As can be seen from this example, computing Walsh
spectrum using truth tables is not applicable to logic
functions with large numbers of inputs

In fact, using the matrix by vector method above,
the computation of the transform involves summation
of 27 x 2" product terms. In [4], a fast Walsh procedure
which utilizes common subsets of product terms can re-
duce the number of product terms involved to 2" x n.
Even with the fast algorithm, because the truth-table
grows exponentially with n, it is unfeasible to compute
Walsh spectrum for functions with more than 30 inputs.

BDDS AND WALSH COMPUTATION

Binary Decision Diagrams (BDDs) are an efficient way
to represent logic functions [1]. Here we extend it by
allowing any integer values as constant nodes instead
of just 0 and 1. An example BDD which represents
the logic function z,z; + z3 is shown in Figure 2. In
the figure, both 0,1 representation and the encoded 1,-1
representation are shown. Since we allow any integer
values as constant nodes, we can represent in BDD “1,-
I representation” of truth tables which is necessary to
compute Walsh spectrums.

In [2], a method to compute Walsh spectrum in BDD
by computing the matrix product directly. Although
this method 1s very efficient compared to the previous
approaches, such as [4, 6, 3], it can be further improved
by embedding the Walsh matrix into program codes in
the following way.

Computing Walsh spectrum is to compute the prod-
uct of the matrix defined in (1) (section 2) and truth
tables (values in truth tables are changed to 1 and -1
from 0 and 1). As can be seen from (1), given an en-
coded truth table of a function g, we can compute the
Walsh matrix multiplied by the vector recursively as:

Walsh(g,n) = T,-g
_ To1 Thoa 97,
- Ty —Thoa 9z,
—_ Tho1 “ 9z, +Tha e
- 7;:—1 ‘gz, — Tn—l ‘gz,

Walsh(gz,,n — 1) + Walsh (g,,,n — 1; @)
Walsh (gz,,n — 1) — Walsh(gz,,n — 1

In the above equations, g,, is the cofactor of g with
respect to z; and gz, is the cofactor of g with respect to
the complement of ;.

Here Walsh(g,n) returns the Walsh spectrum for the
logic function g assuming that there are n variables to-
tal.

From Eq. 2, we can derive the following algorithm
for computing the Walsh spectrum of a function g. It
can be seen as a recursive algorithm in which the Walsh
matrix definition is implicitly embedded. No explicit
matrix product is formed.

Walsh(g,n){
if (lookup(hash,g,n, &result)) return result;
if (g is a constant) return the appropriate
constant vector;
i is the index of the top var of g;
Wz = Walsh(g,,,n - 1);
Wes = Walsh(gz,,n — 1);
result = yi « (W, + We) + yi' « (W,
—Wzb);
store (hash, g, n, result);
return result;

In the algorithm, y; is defined as a vector having all
I’s in the first half elements, and all 0’s in the second
half elements. Similarly, yi is a vector having all 0’s
in the first half elements and all 1’s in the second half
elements.

Please note that each operation in the above can be
efficiently realized using BDD operations, which is a key
point of our method. The recursive paradigm especially
suits the recursive nature of BDD data structure.

In order to clarify how the procedure works, now we
show an example.

Example 2 The trace for the Walsh spectrum compu-
tation for the logic function z1z, + z3 using BDD are
shown tn Figure 3.

Node Ny shows the logic function z1x3 + z3, from
which we want to obtain” Walsh spectrum. The proce-
dure descends BDD for the logic function TiT2+T3in a
recursive way, i.e., nodes Ny, No, N3, and the constant
nodes are processed one by one. Firsl we compute the
Walsh spectrum for the constant 1 and -1. These are
Walsh(0,1) and Walsh(1,1) in the figure. From these,
we can compute Walsh spectrum for node, N, using the
above procedure and get Walsh(N3,2) in the figure. By
conlinuing this process, we can get the BDD which rep-
resents the Walsh spectrum for node N1 as shown in the
Figure. O

An interesting observation can be made regarding
the similarity of Walsh algorithm and the fast Walsh
transform reported in [4]. In the fast Walsh transform,
the most elementary operation from which subsequent
terms are shared in the “butterfly” flow-graph is exactly
Equation 2. By inspection, it is clear that Walsh algo-
rithm has the same computational complexity as the
fast Walsh transform. However, it is clear our method
is superior than previous methods since the use BDDs
allows us to handle much larger Boolean functions.

The method of matrix by vector reported in [2] is less
efficient by a constant factor because of the overhead
needed to represent the Walsh matrix explicitly.

Computing partial Walsh coefficients

Sometimes it is impossible or unnecessary to compute
the entire 2" coefficients of a spectrum. Often, only a

A
0] [2]

8DD for Waish(0,1) = (0, 2) BDD for Walsh(1,1) = (-2, 0)

o @
& & (3
sioinln =l Ll

BDD for Walsh(N2,2) = (-22 22)

() (2
o > @
o] [4] [e] (4]

BDD for Walsh(N3,2) = (0 4 0 0)

BDD for Walsh(N1,3) = (-26 2222 -2 -2)

Figure 3: Trace for the Walsh spectrum computation

specific order of the coefficients is needed. For example,
the zeroth- and first-order coefficients are good filters
for Boolean matching applications[2]. In this section,
we show how a subset of coefficients can be extracted
using efficient BDD techniques.

Previously, we established that each row of the Walsh
matrix of Eq. 1 can be seen as a Boolean function.
When these rows are multiplied with the truth table
vector, the coefficients result.

Assume that a subset m coefficient is to be extracted.
The idea behind computing partial subsets of coeffi-
cients is as follows:

1. Select those rows representing the m coefficients
from the Walsh matrix;

2. Represent the functions associated with those rows
using a single BDD. The resulting BDD will require
auxiliary variables to encode the different rows. Es-
sentially, the BDD represents a matrix where each
row represents a coefficient that is to be computed.

3. Perform a matrix by vector operation{2] to obtain
a resulting BDD which contains m constants.

We illustrate the procedure above with an example.

Example 3 Given f = 2129+ 235. We wish to compute
the first-order coefficients. From Figure 1, the rows cor-
responding lo the firsi-order functions Z1, z2, and T3 are
the first, second, and fourth rows. In matriz notation,
the computation looks like:

()

product BDD

coefficient
(first order only)

BDD

Figure 4: Extracting first-order coefficients.

Circuit Output No. of |[BDD[|BDD| CPU
Name Inputs (logic) (Walsh) (sec)
alud T 14 220 4884 0.97
C1908 last 33 1261 9740 8.48
C5315 869 27 58 301 0.67
C5315 last 67 662 7354 25.75
C432 195 36 523 spaceout —
Table 1: Full Walsh spectra computation results
1
-1
1 -1 1 -1 1 -1 1 -1 A 6
1 1 -1 -1 1 1 -1 -1 1= 2
1 1 1 1 -1 -1 -1 -1 -1 2
-1
—1

In Fig. 4, the lefimost BDD reflects selected rows of
Walsh matriz. In this case, rows corresponding to first-
order coefficients are seleclted. The shaded variables re-
flect the auziliary varibles that are added to encode the
rows. The middle BDD is of f. The rightmost BDD is
the resulting BDD afier taking the mairiz by vector op-
eration. The resulling first-order coefficients are 6,2,2
Jor x1, 9, 23 respectively. O

It should be noted that in the limit, if this method is
used to extract all coefficients, then the procedure will
be the same as the matrix by vector method proposed
in [2]. Therefore, this method is most effective when the
number of coefficients to be extracted is relatively small,
i.e.dm << 2". Otherwise, procedure Walsh should be
used.

EXPERIMENTAL RESULTS

We have implemented the procedure presented in the
last section. First, we computed the full spectra for
several experimental results, shown in Table 1. The
machine used is SUN Sparc station 2.

As can be seen from the results, Walsh spectrum for
complex logic functions, such as ones having more than
60 variables, can be computed within a minute on work-
stations. Please note that the largest example is not
likely computed by any other methods, such as (4, 3],
since it have more than 60 variables and it can not be

278

Circuit Output No. inputs CPU time
Name (seconds)
alud T 14 0.5
C1908 Tlast output 33 5.5
C1355 1326gat 41 15.0
C432 195 36 1.7

Table 2: Partial Walsh spectra computation results

represented in sum-of-products form due to excessive
large number of products.

These results also indicate that the compiled pro-
cedure is much faster than the matrix multiplication
method proposed in [2].

However, for some examples, such as C432, we were
unable to complete the computation. The main rea-
son is that the number of leaf (constant) nodes is so
extraordinarily high that not even BDD data structure
can represent it within reasonable space.

Table 2 shows some results by computing just the
first-order coefficients. In particular, note that while it
is not possible to compute the full spectrum for C432,
it is very easy to compute the first-order coefficients.

CONCLUSIONS

We have shown a very efficient procedure to compute
Walsh spectrum using BDD. It is much faster even
compared to the matrix multiplication method in BDD
which is proposed in [2]. As far as we know, this is
the fastest method to compute Walsh spectrum or its
related spectrum.

We also demonstrated a method for which a subset
of coefficients can be computed. This is useful in cases
where computing the full spectrum coefficients is unfea-
sible or unnecessary.

Since we can compute Walsh spectrum for fairly large
logic functions, it can be a promising future direction to
study on how Walsh spectrum and its related spectra
can be used in logic synthesis, verification, and testing.

References

[1] R.E. Bryant. “Graph-based algorithms for boolean
function manipulation”. IEEE Trans. Computer,
Vol. C-35, No. 8, pp. 667691, Aug. 1986.

[2] EMM. Clarke, K.L. McMillan, X. Zhao, M. Fu-
jita, and J. Yang. ”Spectral Transforms for Large
Boolean Functions with Application to Technology
Mapping”. In Proc. 30th ACM/IEEE Design Au-
tomation Conf., June 1993.

B.J. TFalkowski, I. Schafer, and M.A. Perkowski.
“Calculation of the Rademacher-Walsh spectrum
from a reduced representation of Boolean functions”.
In EURO-DAC 92, pp. 181-186, 1992.

S.L. Hurst, D.M. Miller, and J.C. Muzio. “Spectral
Techniques in Digital Logic”. Academic Press, 1985.

[4

lam’

(5] R.J. Lechner. “A transform approach to logic de-
sign”. IEEE Trans. Compul., Vol. C-19, No. 7, July

1970.

J. Yang and G. De Micheli. “Spectral techniques for
technology mapping”. Technical Report CSL-TR-
91-498, Stanford University, Dec. 1991.

(6

-

