
Programming Language Constructs for Which It Is Impossible
To Obtain Good Hoare Axiom Systems

EDMUND MELSON CLARKE JR.

Duke University, Durham, North Carolina

ABSTRACT Hoare axiom systems for establishing partial correctness of programs may fail to be complete because
of (a) incompleteness of the assertion language relative to the underlying interpretation or (b) inabil i ty of the
assertion language to express the mvanants of loops Cook has shown that if there IS a complete proof system for
the assertion language (l e all true formulas of the assertion language) and if the assertion language satisfies a
natural expresstbthty condition then a sound and complete axiom system for a large subset of Algol may be
devised We exhibit programming language constructs for which it ms impossible to obtain sound and complete
sets of Hoare axioms even in this special sense of Cook's These constructs include (0 recursive procedures with
procedure parameters in a programming language which uses static scope of ldenufiers and (u) coroutmes in a
language which allows parameterless recurslve procedures Modifications of these constructs for which sound
and complete systems of axioms may be obtained are also discussed

KEY WORDS AND PHRASES Hoare axioms, soundness, relative completeness, procedure parameters, coroutlnes

CR CATEGORIES 4 29, 5 24, 5 27

1. Introduction

1.1 BACKGROUND. Many different formalisms have been proposed for proving
Algol-like programs correct. Of these probably the most widely referenced is the axiomaUc
approach of Hoare [8, 9]. The formulas m Hoare's system are triples of the form {P} S
(Q} where S is a statement in the programming language and P and Q are predicates in
the language of the first-order predicate calculus (the assertion language) The partial
correctness formula {P} S (Q} is true lff whenever P holds for the initial values of the
program variables and S ts executed, then either S will fail to terminate or Q will be
satisfied by the final values of the program variables. A typical rule of inference is

{P A b} S (P}

{P} while b do S {P A ~b}"

The axioms and reference rules are designed to capture the meanings of the individual
statements of the programming language. Proofs of correctness for programs are con-
structed by using these axioms together with a proof system for the assertion language.

What Is a "good" Hoare axiom system? One property a good system should have is
soundness [10, 6]. A deduction system is sound lff every theorem is actually true. Another
property is completeness [4], which means that every true formula is provable. From the
Godel incompleteness theorem we see that tf the deductton system for the assemon
language is axtomatizable and if a sufficiently rich mterpretatlon (such as number theory)

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is gwen that copying is by permission of the Association for Computing Machinery To
copy otherwise, or to repubhsh, requires a fee and /or specific permission

A large portion of this research was completed while the author was a graduate student at Cornell University
with the support of an IBM Research Fellowship

Author's present address Center for Research in Computing Technology, Alken Computation Laboratory,
Harvard Umverstty, Cambridge, MA 02138

© 1979 ACM 0004-5411/79/0100-0129 $00 75

Journal of the Assoclauon for Computing Maclunery, Vol 26, No I, January 1979, pp 129-147

130 EDMUND M. CLARKE JR.

is used for the assertion language, then for any (sound) Hoare axiom system there will be
assertions {P} S {Q} which are true but not provable within the system. The question Is
whether this incompleteness reflects some inherent complexity of the programming lan-
guage constructs or whether it is due entirely to the incompleteness of the assertion
language. For example, when dealing with the integers, for any consistent axiomatizable
proof system there will be predicates which are true of the integers but not provable within
the system. How can we talk about the completeness of a Hoare axiom system independ-
ently of its assertion language9

One way of answering this question was proposed by Cook [4]. Cook gives a Hoare
axiom system for a subset of Algol including the while statement and nonrecurswe
procedures. He then proves that if there is a complete proof system for the assertion
language (1.e. all true formulas of the assertion language) and if the assertion language
satisfies a natural expresslbdity condition, then every true partial correctness assertion will
be provable. Gorelick [7] extends Cook's work to recursive procedures. Similar complete-
ness results are given by deBakker and Meertens [5] and by Manna and Pnueh [13].

1.2 NEW RESULTS OF THIS PAPER Modern programming languages provide constructs
which are considerably more complicated than the while statement, and one might wonder
how well Hoare's axiomatic approach can be extended to handle more complicated
statements. In this paper we will be interested in the question of whether there are
programming languages for which it is impossible to obtam a good (i.e. sound and
complete) Hoare axiom system. This question is of obvious importance in the design of
programming languages whose programs can be naturally proved correct.

We first consider the problem of obtaining a sound and complete system of axioms for
an Algol-like programming language which allows precedure names as parameters in
procedure calls. We prove that in general it is impossible to obtain such a system of axioms
even if we disallow calls of the form "call P(.... P)". (Calls of this form are necessary
to directly simulate the lambda calculus by parameter passing.) We then consider restric-
tions to the programming language which allow one to obtain a good axiom system.

The incompleteness result is obtained for a block-structured programming language
with the following features:

(i) procedure names as parameters of procedure calls,
(ii) recursion,

(iii) static scope,
(iv) global variables,
(v) internal procedures.

All these features are found m Algol 60 [14] and in PASCAL [17]. We also show that a
sound and complete axiom system can be obtained by modifying any one of the above
features. Thus if we change from static scope to dynamic scope, a complete set of axioms
may be obtained for (i) procedures with procedure parameters, (ii) recursion, (iv) global
variables, and (v) internal procedures, or if we disallow internal procedures, a complete
system may be obtamed for (i) procedures with procedure parameters, (ii) recursion, (iii)
static scope, and (iv) global variables. As far as we know, this is the first axiomatic
treatment of procedure parameters.

An independent source of incompleteness is the coroutine construct. If procedures are
not recurslve, there is a simple method for proving correctness of coroutines based on the
addition of auxihary variables 115]. If, however, procedures are recursive, no such simple
method can give completeness. These observations generalize to languages with parallelism
and recursion.

Additional programming language constructs for which it is impossible to obtain good
axioms are discussed in Section 9

1.3 OUTLINE OF PAPER. The development of these results is divided into two parts; the
first deals with procedures as parameters and the second with the coroutlne construct. In
Section 2 a formal description is given for a programming language with static scope,

Programmmg Language Constructs 131
i

global variables, and procedures with procedure parameters. This is followed by a
discussmn of Cook's expressibihty condition Modifications necessary to handle dynamic
scope are also discussed. In Section 3 we prove that it is impossible to obtain a sound and
complete axiom system for this language In Sections 4, 5, and 6 we discuss restrictions
sufficient to insure that good Hoare axioms can be found. Secuons 7 and 8 are devoted to
completeness and incompleteness results for the coroutine construct and follow the same
outline as was used m the first part of the paper. The paper concludes with a discussion of
the results and remaining open problems.

2. A Simple Programming Language and lts Semantws

As in [4] we distinguish two logical systems involved m discussions of program correct-
ness-- the assertion language L A m which predicates describing a program's behavior are
specified and the expression language LE in which the terms forming the right-hand stdes
of assignment statements and (quantifier-free) Boolean expressions of condiUonals and
while statements are specified. Both LA and L~ are first-order languages with equahty
and LA ls an extension of LE The variables of LE are called program identifiers
(PROG~ID) and are ordered by the positive integers. The variables of LA are called
variable l den t t f i e r s (VAR_ID) .

An interpretation I for LA consists of a set D (the domain of the interpretation), an
assignment of funcUons on D to the funcUon symbols of LA, and an assignment of
predicates on D to the predtcate symbols of LA. We will use the notation [I[for the
cardmality of the domain of I. Once an interpretation I has been specified, meanings may
be assigned to the variable-free terms and closed formulas of LA (LE).

Let I be an interpretation with domain D. A program state is an ordered list of pairs of
the form

(vl.dl)(v2.d2) "'" (vn.dn),

where each v, is a variable identifier and each d, is an element of D. Thus a program state
is similar to the associatmn hst used in the definition of LisP. I f s is a program state and v
is a variable identifier then s(v) is the value associated with the first occurrence of v m s .
Similarly, ADD(s, v, d) is the program state obtained by adding the pair (v.d) to the head
of list s, and DROP(s, v) is the program state obtained from s by deleting the first pair
which contains v. VAR(s) is the set of all variable identifiers appearing in s.

I f t is a term of LA with variables xl , x2, ..., xn and s is a program state, then we will use
the notation t(s) to mean

t [s (x ,) l x , S(Xn)/X,d,
Le. the term obtained by simultaneous substitution o f s (x l) for xl s(xn) for xn.

Likewise we may derme P(s) where P is a formula of LA. It is frequently convenient to
identify a formula P with the set of all program states which make P true, i.e. with the set
(slI[P(s)] = true} If this identification is made, then false will correspond to the empty
state set and true will correspond to the set of all program states.

We consider a simple programming language which allows assignment, procedure calls,
while, compound, and block statements. Procedure declaratmns have the form "proc
q(x:p); K(x, p) end" where q is the name of the procedure, x is the list of formal variable
parameters, p is the list offormalprocedureparameters, and K(x, p) is a statement involving
the parameters x and p. A procedure call has the form "call q(a :P)" where a is the list of
actual variable parameters and P is the list of actualprocedure parameters. To simplify the
treatment of parameters we restrict the entries in a to be simple program identifiers. We
further require that procedure names be declared before they appear in procedure calls.
An environment e is a finite set of procedure declarations which does not contain two
different declarations with the same name. If ~r is a procedure declaration, then
ADD[e, ~r] is the environment obtained from e by first deleting all procedure declarations
which have the same name as ~r, and then adding ~r.

132 EDMUND M CLARKE JR.

Meanings of statements are specified by a meaning function M = Mi whtch associates
with statement S, state s, and environment e a new state s'. Intuitively s' is the state
resulting i f S is executed with imtml state s and initial environment e. The definition of M
is given operationally m a rather nonstandard manner which makes extenswe use of
renaming. This type of defimUon allows static scope of idenufiers without the introduction
of closures to handle procedures. The definiuon of M[,~(e, s) is by cases on S:

(1) S is "begin new x; B(x) end" ~ DROP(M[begin B(x ') end](e, s'), x ~) where t is the
index of the first program ldenUfier not appearing in S, e, or VAR(s) and s' -- ADD(s, x t,
a0). (a0 Is a speoa l domain element which is used as the inmal value of program identifiers.)

(2) S is "begin proc q(x p); K(x, p, q) end; B(q) end" ~ M[begin B(q ~) end](e', s)
where i is the index of the first procedure identifier not occurring in B(q) or e and e' =
ADD(e, "proc q'(x:p); K(x, p, q') end").

(3) S Is "begin B1; B2 end" ~ M[begin B2 end](e, M[B,](e, s)).
(4) S is "begin end" ~ s
(5) S is "x := t" ~ s' where s' = ADD(DROP(s, x), x, I[t(s)]).

,, [M[B1](e,s) l f s ~ b ,
(6) (conditional) S is "b ~ B~, B2 ~ [M[B2](e, s) otherwise.

S is "b * B" ~ [M [b * B](e, M[B](e, s)) if s E b, (7) (while) t s otherwise

M[K(a , P)](e, s) if "proc q(x.p); K(x, p) end" E e,

(8) S is "call q(a :P)" --> length(a) = length(x), and
length(p) = length(P),

undefined otherwise.

Sometimes it wall be easier to work with computauon sequences than wtth the defimtion
of M directly. A computation sequence C of the form

C ~. (So, eo, so) ... (St, e,, st) ...

gwes the statement, environment, and program state during the ith step in the computation
of M[So](eo, so). Since the rules for generating computation sequences may be obtained in
a straightforward manner from the definition of M, they wdl not be included here.

The meaning function M may be easily modified to give dynamtc scope of identifiers.
With dynamic scope when an tdentifier is referenced, the most recently declared actwe
copy of the identifier Is used. This will occur with our model if we omit the renaming of
variables which zs used in clauses (1) and (2) in the definition of M. Thus, for example,

M[begin new x; B end](e, s) = DROP(M[begin B end](e, s'), x) where s ' = ADD(s, x, ao)

Unless explicitly stated we will always assume stauc scope of idenufiers in this paper.
Partial correctness assertions will have form {P} S (Q} /e where S is a program

statement, P and Q are formulas of LA, and e is an environment.
Definition 2.1. (P} S { Q } / e i s t r u e w i t h r e s p e c t t o I (~ z (P } S { Q) / e) l f f V s , s ' [s E P

A M[S](e, s) = s' ~ s' E Q] and every procedure which is global to S or to some procedure
declaration m e is contained in e. I f I" is a set of partml correctness assertions and every
assertion in I ~ is true with respect to I, then we write ~ r .

To discuss the completeness of an axiom system independently of its assertion language
we introduce Cook's notion of expresslbility.

Definition 2.2. LA IS expresstve with respect to LE and 1 iff for all S, Q, e there is a
formula of LA which expresses the weakest precondition for partlal correctness WP(S, e, Q)
= {s I M[S](e, s) Is undefined or M[S](e, s) ~ Q}. (Note that we could have alternatively
used the strongest postcondmon SP(S, e, P) = (M[S](e, s)ls E P})

If La is expressive with respect to LE and L then mvariants of while loops and recursive
procedures will be expressible by formulas of LA. Not every choice of LA, LE, and I gives

Programming Language Constructs 133

expressiblhty. Cook demonstrates this in the case where the assertion and expression
languages are both the language of Presburger Arithmetic. Wand [16] gwes another
example of the same phenomenon. More realistic choices of t a , LE, and I do give
expressibility. If LA and LE are both the full language of number theory and I is an
interpretation m which the symbols of number theory receive their usual meanings, then
LA ts expressive with respect to LE and I. Also, if the domain of I is finite, expresslbility
is assured.

LEMMA 2.1. I f L3, LE are first-order languages with equality and the domain of I is
finite, then LA is expresstve w#h respect to LE and L

PROOF. Let D be the domain of I and suppose that I D I < oo. Let S be a statement, e an
enwronment, and Q a formula of LA. Suppose that x l , . . , xn are the variables that occur
free in Q, global to S, or global to some procedure in e. Since D is fimte, there exists a
finite set of n*tuples I ~ = ((a~ a t) [1 _< j _< m} such that s E WP(S, e, Q) lff for some
n-tuple (a~ a t) m I" we have s(x,) = al for 1 _< i _< n. I f R = Vl.~_<m xl = a{/X x2 =
a~ A ... A xn = a~, then it is not difficult to show that R expresses WP(S, e, Q).

If H is a Hoare axiom system and T is a proof system for the assertion language LA
(relative to I) , then a proof in the system (H, T) will consist of a sequence of partial
correctness assertions {P} S {Q}/e and formulas o f LA each of which is either an axiom
(of H or T) or follows from previous formulas by a rule of inference (of H or T). I f {P}
S {Q}/e occurs as a line m such a proof, then we write t -n ,r {P} S {Q}/e. In a snnilar
manner, we may define r ' I"-n,r A where I" and A are sets of partial correctness assertions.

Definition 2.3. A Hoare axiom system H for a programming language PL is sound and
complete (m the sense of Cook) tff for all T, LA, LE, and L such that (a) LA is expresswe
with respect to LE and I and (b) T is a complete proof system for LA with respect to I,

~ u , r {P} S {Q}/e ¢-~ ~ t {P} S {Q}/e.

3. Recursive Procedures with Procedure Parameters

In this section we prove:
THEOREM 3.1. It is imposstble to obtain a system of Hoare axtoms H which Is sound and

complete m the sense of Cook for a programmmg language whtch allows:

(t) procedures as parameters of procedure calls,
(it) recursion,

(ui) stattc scope,
(tv) global variables,
(v) internal procedures.

Remark. In Section 4 we show that it is possible to obtain a sound, complete system of
Hoare axioms by modifying any one of the above features. To obtain the incompleteness
result, only procedure identifiers are needed as parameters of procedure calls The
completeness proof allows, in addition, variable parameters whtch are passed by direct
syntactic substitution.

In order to prove the theorem we need the following lemma.
LEMMA 3.1. The Halting Problem is undecidable for programs tn a programmmg lan-

guage wtth features (t)-(v) above for all fintte mterpretattons I wzth III -> 2.
The proof of the lemma uses a modification of a result of Jones and Muchnick [12].

Note that the lemma ~s not true for flowchart schemes or while schemes. In each of these
cases if III < oo the program may be viewed as a finite state machine, and we may test for
termination (at least theoretically) by watching the execution sequence of the program to
see whether any program state is repeated. In the case of recursion one might expect that
the program could be viewed as a type of pushdown automaton (for which the Halting
Problem is decidable). This is not the case if we allow procedures as parameters. The static
scope execution rule, which states that procedure calls are elaborated in the envtronment
of the procedure's declaration rather than m the environment of the procedure call, allows

134 EDMUND M. CLARKE JR,

the simulation program to access values normally buried in the runtime stack without first
"popping the top" of the stack.

Formally we show that it is possible to simulate a queue machine which has three types
of instructions: (A) enqueue x - - a d d the value of x to the rear of the queue; (B) dequeue
x- - remove the front entry from the queue and place in x; and (C) i f x = y then go to L - -
conditional branch. Since the Halting Problem for queue machines is undecidable, the
desired result follows.

The queue is represented by the successive activations of a recursive procedure sire with
the queue entries being maintained as values of the variable top which is local to stm. Thus
an addition to the rear of the queue may be accomplished by having s lm call itself
recursively. Deletions from the front of the queue are more complicated, sire also contains
a local procedure up which is passed as a parameter during the recursive call which takes
place when an entry is added to the rear of the queue. In deleting an entry from the front
of the queue, this parameter is used to return control to previous activations of sire and
respect the values of top local to those activations. The first entry in the queue will be
indicated by marking (e.g. negatmg) the appropriate copy of top. Suppose that the queue
machine program to be stmulated is given by

Q = I : I N S T 1 ; ... K : I N S T k ;

then the simulation program (in the language of Section 2) has the form

ptoc sim(. back),
begin new top, bottom, progress,

(declaratwn of Iocal procedure up)
progress ffi 1,
while progress = ! do

begin
if grog__counter = i then "INST¢' else
Ifprog__counter = 2 then "'INST2" else

if grog__counter = K then "INSTk" else progress "= 0
end

end
end

end son;
prog counter ~ 1,
empty_queue ~ !;
call slm(loop)

The variable empty__queue tells whether the queue contains any elements, prog__coun ter
is the instruction counter for the program being simulated. If the size o f the queue program
is greater than the number of elements in the domain of the interpretation, then
p r o p _ counter may be replaced by a fixed number of new vanables which hold its binary
representation, progress Is used to indicate when control should be returned to the previous
acttvation of the procedure sire. The procedure loop diverges for all values of its parameters;
it will be called when an attempt is made to remove an entry from the empty queue.
Declarations for empty__queue , p r o g c o u n t e r , progress , loop, and the program variables
for the queue machine are omitted from the outline of the simulation program.

The appropnate encoding for queue machine instructions is given by the following
cases:

(A) If I N S T ~ is if x , = xm then go to n replace by

begin
if xp = Xm
then grog__counter ffi n~
else prog__counter = grog__counter + l

end

(B) If I N S T j is j :enqueue A then replace by

P r o g r a m m i n g L a n g u a g e Constructs 135

begin
if empty_queue # 1 then top = A,
else begin top = -A ,

empty__queue = 0
end

prog__counter = prog_counter + 1,
call stm(up),
progress = 0

end

Note that we are assuming that the first instruction m any queue program will be an
enqueue instruction. Note also that i f progress ever becomes 0, the simulation program will
eventually terminate.

(C) If I N S T : is '~/:dequeue x" then replace by

begin
if empty_queue = 1 then call loop (),
call back (x, bottom),
if bottom = 1 then empty queue = 1,
x ~ - x)
prog__counter = prog_counter + l

end

If the queue is not empty, back will correspond to the local procedure up declared in the
previous activation of sim. On return from the call on back the first parameter x will
contain the value of top in the first activation of sim.

Finally, we must describe the procedure up which is used by s tm in determining the
value of the first element in the queue and deleting that element:

proc up (front__of queue, first),
if top < O
then begin

f ront~of queue = top,
first = I

end
else begin

call back (front__of queue.first),
if first = 1 then begin top = -top,

first = 0
end

end
end up,

After a call on up, the parame te r f r o n t _ o f queue will contain the value of top m the first
activation of sim. The parameter f i r s t is used in marking the queue element which will
henceforth be first in the queue.

This completes the description of the simulation program. Contour diagrams [11]
describing the simulation of the queue program "enqueue 5; dequeue x" are given in
Figures 1 and 2. We now return to the proof of the incompleteness theorem. Suppose that
there were a sound, complete Hoare axiom system H for programs of the type described
at the beginning of this section. Thus for all LA, LE, and I, if (a) T is a complete proof
system for LA and I, and (b) LA is expressive relative to LE and I, then

~ t {P} S { Q } / e ~ I-'-n,T {P} S { Q } / e .

This leads to a contradiction. Choose I to be a finite interpretation with II[_> 2. Observe
that T may be chosen in a particularly simple manner; in fact, there is a decision procedure
for the truth of formulas in LA relative to I Note also that LA iS expressive with respect to
LE and I; this was shown by Lemma 2.1 since I is finite. Thus both hypothesis (a) and (b)
are satisfied. From the definition of partial correctness, we see that {true} S (false}/~
holds i f fS diverges for the initial values of its global variables. By Lemma 3 1, we conclude

136

pro~counter

rtn

procedure porometer
back loop

local variable toPl 5

local procedure uPl

(sire I)

EDMUND M. CLARKE JR.

1
procedure parameter

back uP1 I
local variable top 2 0

[local procedure up 2

(sire 2)

FIG 1 Contourd lagramf l lus t ra tmghowmst ruc tmn"enqueueS"~ss lmula ted Dlfferentact lvaUonsofrecurslve
procedure s z m are distinguished by subscripts

Fio 2

loop" m m
rtn

procedure parameter
back ' back uP1

I~al variable top] -5,,' local variable top2 0

local procedure up 1 local procedure uP2
L

(up

(stm l) {s,m 2)

Contour diagram dlustratmg how instruction "dequeue x" is simulated Local procedure/dpl is called
from within second activation of procedure s ~ m

that the set of programs S such that ~ (true} S {false}/q~ holds ts not recurstvely
enumerable. On the other hand since

~z (true} S (false}/~, ~-~ ~H,r (true} S (false}/~,

we can enumerate those programs S such that ~z {true} S (false) /~ holds (simply
enumerate all possible proofs and use the decision procedure for T to check apphcations
of the rule of consequence). This, however, is a contradicuon.

Programmzng Language Constructs 137

4 Completeness Results

A major source of complexity in languages which allow procedure parameters is self-
application, e g calls of the form "call P(.., P, . .)". I f self-apphcatlon is allowed, the
lambda calculus may be directly simulated by parameter passing. The reader will note,
however, that the incompleteness result of Section 3 holds even if self-application is not
allowed. In restricting the programming language so that a sound and complete axiom
system may be obtained, we will disallow self-apphcation. This restriction may be enforced
by requiring that actual procedure parameters be either formal procedure parameters or
names of procedures with no procedure formal parameters

A second source of complexity associated with parameter passing is sharmg. Sharing
occurs when some variable in a program may be referenced by two different names. (A
formal treatment of sharing is given in [6].) The incompleteness result of Section 3 may
also be obtained if shanng is not allowed. We will assume In the remainder of the paper
that sharing is not allowed, we will require that whenever a procedure call of the form
"call q(a:P)" is executed in environment e, all of the variables in a are distinct and no
parameter in a is global to the declaration of q or to any procedure in e which may be
activated indirectly by the call on q.

Once sharing and self-application have been disallowed a "good" axiom system may be
obtained by modifying any one of the five features of Theorem 3.1. These results are
summanzed in Table I. In order to establish the completeness results of Table I, sound
and complete axiom systems must be given for languages 2-6. Owing to space hmltations,
we will only consider language 5 in this paper. Languages 2 and 3 are treated in [1]. Good
axiom systems for languages 4 and 6 are slmdar to the axiom system described in Section
4.2 and will not be discussed here.

4 1 THE RANGE OF A STATEMENT. Consider the following program segment:

pr~ F(y p),
if.v> 1
then begin y = y - 2, cab p(y F) end
else y .= 0
end F,

pro¢ G(w q), z = z + w, call q(w G) end G,
call F(x G),

Observe that the only procedure calls which can occur during the execution of the program
segment are "cab F(x: G)" and "call G(x:F)". In general let So be a statement and eo an

TABLE I THEOREM SUMMARY
(No sharing or self-apphcatlon)

Longuogel Language Language Language4 Language Long~oge

mc no procedure mc mc mc mc
names as
parameters

tnc mc no recurston mc mc tnc

(1) Procedures with
procedure parameters

(2) Recurston

(3) Global vortobles mc mc mc global mc mc
vortobles
dtsollowed

(4) Stohc scope mc mc)nc)nc dynamic mc
scope

(5) Internal procedures mc)nc mc)nc mc internal
procedures
not allowed

Sound and complete no yes yes yes yes yes
Hoore ox)om
system

138 EDMUND M. CLARKE JR.

environment; the range of So with respect to eo is the set of pairs (call q,(a:P), e,) for which
there is a valid computation sequence of the form

(So, eo, so) (call q,(a:P), e,, s,)

I f static scope of identifiers is used, the range of a statement So with respect to environment
eo may be infinite. This is because of the renaming at block entry which occurs in clauses
(1) and (2) in the definition of M. If, however, dynamic scope is used, then the range of a
statement (with respect to a particular environment) must be finite, m fact there is a simple
algorithm for computing the range of a statement. The range of S with respect to
environment e is given by RANGE(S, e, ok) where the definition of RANGE(S, e, ~r) is
given by cases on S.

(1) S is "begin new x; A end" ~ RANGE(begin A end, e, ~r)
(2) S is "begin proc q(y:r); L end; A end" ---> RANGE(begin A end, e', ~r) where e' =

ADD(e, proc q(y:r); L end).
(3) S is "begin A1; A2 end" ~ RANGE(begin A2 end, e, RANGE(A1, e, ~r)).
(4) S Is "begin end" ~ ~r.
(5) S IS " z :-~" e" ~ ~r.

(6) S Is "b ~ Ah A2" ~ RANGE(A2, e, RANGE(Ai, e, ~r))
(7) S is "b * A" ~ RANGE(A, e, ~r).

I lr If (call q(a:P), e) E ~r,
(8) S is "call q(a:P)" ~ RANGE(K(a, P), e, ~ r ') where ~r' = ~r U {(call q(a:

P), e)} and "proc q(x:p);
K(x, p) end" E e, other-
wise.

This same property of dynamic scope provides a smaple algorithm for determining whether
the execution of a statement S in environment e will result in sharing.

4.2 GOOD AXIOMS FOR DYNAMIC SCOPE. The axioms and rules of reference in the
proof system DS for language 5 (dynamic scope of identifiers) may be grouped into three
classes: axioms for block structure (BI)-(B3), axioms for recurslve procedures with
procedure parameters (RI)-(R6), and standard axioms for assignment, condmonal, while,
and consequence (H I)-(H4).

Axioms for Block Structure:

{U[x ' /x] A x = a0} begin A end { V[x ' /x]} /e
(BI)

{U} begin new x; A end {V}/e

where i is the index of the first program identifier not appearing in A, e, U, or V.

{U} begin A end {V}/e 0 {proc q(x:p); K end}
(B2a)

{U} begin proc q(x'p); K end; A end (V}/e

(U) .,4 { V) / e l
(B2b)

{V} A {V)/e~

provided that el _C e2 and e2 does not contain the declaration of two different procedures
with the same name.

{U} A {V} / e
(B3a)

(U} begin A end { V}/e

{U} A1 { V}/e, { V} begin Az end (W } / e
(B3b)

{U} begin A1; A2 end (W } / e

Axioms for Recursive Procedures with Procedure Parameters. The first axiom, (R1), is
an induction axiom which allows proofs to be constructed using induction on depth of
recursion.

Programming Language Constructs 139

(RI) (Uo) call Fo(xo:Po) {Vo}/eo {U.) call F.(xn:Pn) (V.}/en

}- {Uo} K0(Po) [Vo}/eo {U.) K . (P .) {V.}/e.
{U0} call Fo(xo:Po) {Vo}/eo {U.} call F . (x . :P .) {V.}/e.

where "proc F,(x,:p,); K,(p,) end" E e, for 0 _< t <_ n.
Axioms (R2)-(R6) enable an induction hypothesis to be adapted to a specific procedure

call. Before stating these axioms we define what it means for a variable to be inactive with
respect to a procedure call.

Definition 4.1. Let procedure q have declaration "proc q(x :p), K(x, p) end". A variable
y ts active with respect to "call q(a:P)" m environment e lf y is either global to K(a, P) or
is active with respect to a call on a procedure in e from within K(a, P). I f y is not active
with respect to "call q(a:P)" then y ts said to be inactive (with respect to the particular
call). Similarly a term of the assertion language is mactive If it contains only inactive
variables. A substitution o is Inactive with respect to "call q(a: P)" provided that it is a
substitution of inactive terms for inactive variables.

{U} call q(a:e) {V}/e
(R2)

(Uo} call q(a:P) (Vo}/e

provided o is inactive with respect to "call q(a:P)" and e.

{U(r0)} call q(a:P) {V(ro)}/e
(R3)

(3roU(ro)} call q(a: P) {3ro V(ro)}/e

provided that ro is inactive with respect to "call q(a:P)" and e.

{U} call q(a:P) (V}/e
(R4)

(U A T} call q(a:P) {VA T}/e

provided that no variable which occurs free in T is active in "call q(a:P)".

(U} call q(x:P) {V}/e
(RS)

{U[a/x]} call q(a:P) { V[a/x])/e

provided that no variable free m U or V occurs in a but not in the corresponding position
of x. (x is the hst of formal parameters of q. This axiom will not be sound if sharing is
allowed)

Smce procedures are allowed as parameters of procedure calls, it Is possible for the
execution of a syntacncally correct statement to result in a procedure call with the wrong
number of actual parameters. If dynamic scope of identifiers ts used, this eventuality may
be handled by the following axiom:

(R6) (true) call q(a:P) (false)/(proc q(x.p); K end}

provided that length(a) ~ length(x) or length(P) ~ length(p).
Standard Axzoms for Assignment, Condmonal, Whde, and Consequence. These axioms,

(HI)-(H4), are wtdely discussed m the hterature and wtll not be stated here.
We dlustrate the use of the above axioms by two examples. The first example illustrates

dynamic scope of identifiers. The second example shows how procedure parameters may
be handled.

Example 1. We prove
(true}
begin new x,

proc q, z = x end,

x = l ,

begin new x, x = 2, call q end

end,

{z = 2}/q~

Let e be the environment (proc q; z .ffi x end}.

140 EDMUND M. CLARKE JR.

(1) (x = 2 A y = 1) z := x {z = 2) / ~ (H1)
(2) {x = 2 A y = 1} call q {z = 2) / e (R1)
(3) {y ffi 1) begin x := 2; call q end {z = 2} /e (HI) , (B3)
(4) (x = 1} begin new x; x := 2; call q end (z = 2) / e (BI)
(5) {true}

begin x ffi 1,
begin new x, x = 2, call q end

end
{z ffi 2}/e (HI) , (B3)

(6) {true}
begin new x,

pro¢ q, z = x end,
x ~ l ,
begin new x, x = 2, call q end

end
{z = 2) / ~ (BI), (B2)

Note that if static scope were used instead of dynamic scope, the correct postcondi t ion
would be {z = 1}.

Example 2. We prove

{x= 2xo+ I A z = 0 }
proc F(y:p),

i f y > 1
then begin y .= y - 2, call p (y . F) end
elsey = 0

end F,
proc G(w q), z '= z + w, call q(w G) end G,
call F(x G)
{z = x~}l¢,

Let e be the env i ronment conta in ing the declarations of F and G. Let K1 (p) and K2 (q) be
the bodies of procedures F and G, respectively. Since the range of "call F(x:G)" with
respect to e consists of (call G(x'F), e) and (call F(x: G), e) R is sufficient to determine the
effects of "call G(x: F) " and "call F(x: G)" when executed m env i ronment e.

We assume:
(1) {y = 2yo + 1 A z = Zo} call F(x:G) {z = Zo + y g } / e

and
(2) {w = 2Wo + 1 A z = zo} call G(w:F) {z = Zo + (Wo + l)2}/e.

Using these assumptions it is straightforward to prove:
(3) {y = 2yo + 1 A z = Zo} Ki(G) {z = zo + y~}/e

and
(4) {w = 2wo + 1 A z = go} Ke(F) {z -- zo + (wo + l)2}/e.

By axiom (R1), we obta in
(5) I - {y = 2yo + 1 A z = Zo} call F(y:G) {z = Zo + y~}/e

and
(6) I - {w = 2Wo + 1 A z = zo} call G(w:F) {z = Zo + (wo + l)2}/e.

By axiom (R5) and line (5),
(7) I - {x = 2yo + 1 A z = zo) call F(x:G) {z = zo + y~}/e.

By axiom (R2) with the inactive substRution of 0 for zo and xo for yo, we get
(8) I-- {x = 2x0 + 1 A z = 0} call F(x:G) {z = XoZ}/e.

Line (8) together with two apphcat ions of (B2) gives the desired result.

5. Soundness

In this section we outl ine a proof that the axiom system DS for programs wRh dynamic
scope of identifiers is sound. We argue that if T is a sound proof system for the true
formulas of the assertion language LA then

Programmmg Language Constructs 141

t--DS.r {P} S (Q) /e implies ~r {e} S (Q} /e.

The argument uses induction on the structure of proofs; we show that each instance of an
axiom is true and that if all of the hypotheses of a rule of inference are true, the conclusion
will be true also.

The only difficult case is the rule of inference (RI) for procedure calls. We assume that
the hypothesis

(Uo) call Fo(xo:Po) (Vo)/eo (Un} call Fn(x~:P~) (Vn)/e~
F- {Uo) Ko(Po) (Vo}/eo (U~} K~(Pn) {V.)/e~

of (RI) IS true and prove that

~z (U,) call F(x,: P,) (V,)/e,

must hold for 0 _< i _< n Without loss of generality we also assume that the proof used to
obtain

(Uo} Ko(Po) (Vo)/eo {Un) K~(P~) (V~)/e~

from

(Uo} call Fo(xo:Po) {Vo)/eo (Un} call Fn(xn:Pn) (Vn)/en

does not involve any additional applications of the axiom for procedure calls.
To simplify the proof we introduce a modified meaning function Mj. Mj[S](e, s) is

defined in exactly the same manner as M[S](e, s) if S is not a procedure call. For procedure
calls we have My[call F(a:P)](e, s) = Mj-i[K(a, P)](e, s) l f j > 0, "proc F(x.p); K(x, p)
end" ~ e, length(a) = length(x), and length(P) = length(p). Mj[call F(a:P)](e, s) is undefined
otherwise. Thus Mj agrees with M on statements for which the maximum depth of
procedure call does not exceed j - 1.

We also extend the definition of partial correctness given in Section 2. We write ~J {P}
S {Q}/e iff V s, s'[s E P A Mj[S](e, s) = s' ~ s' ~ Q] In the following lemma we state
without proof some of the properties of Mj.

LEMMA 5.1 (Properties of Mj). (a) ~o {U} call F(a:P) (V) / e f o r a l l U, F, V, e.
(b) Suppose that F ~ A where F and A are sets of partial correctness formulas of the form

(P) S (Q) / e and the formulas o f A are obtamed from those m r without use o f amom
(RI). Then ~ F imphes ~J 4.

(c) I f ~ J (U) K (ao P) { V) / e holds and the procedure with declaration "proe F(x, p);
K(x, p) end" is m e, then ~J+~ {U) call F(a 'P) (V} /e must hold also.

(d) I f M[S](e, s) = s' then there ts a k > 0 such that j _> k implies Mj[S](e, s) = s'.
The proofs of (a), (c), and (d) follow directly from the definitions of Mj. The proof of

(b) is straightforward, since use of axiom (RI) for procedure calls has been disallowed.
We return to the soundness proof for (R 1). By part (a) of the lemma,

~o (U~) call F~(x,:P,) (V ,) / e , O_<i_<n.

By the hypothesis of (R1) and part (b) of the lemma, we see that

~J {U,) call F,(x,:P,) (V,)/e, , 0 _< l _< n,

implies

~ {U,) K,(P,) {l.~)/e,, O_<t_~n

By part (c) of the lemma,

~J (U,) callF,(x~:P,) (V,}/e,, O ~ i < _ n ,

142 EDMUND M. CLARKE JR.

implies

~j+l {U,} call F,(x,:P,) {V,}/e,, 0 _< i<_ n.

Hence, by induction we have for a l l j _> 0:

~J {U,) callF,(x,:P,) {V,}/e,, O_<i_<n.

Let s E U, and suppose that s' = M[call F,(x,:P,)](e, s); then there Is a k > 0 such that
j _> k tmplies Mj [call F,(x,:P,)](e, s) ffi s'. Since ~J { U,} call F,(x,:P,) { V,}/e, we conclude
that s' ~ V,.

Thus ~ l {U,} call F,(x,:PJ {V,}/e, holds for 0 _<, _< n and the proof of soundness is
complete for (R1). We leave the proof of soundness for the other axioms and rules of
inference to the interested reader.

6. Completeness

In this section we outline a proof that the axiom system DS is complete m the sense of
Cook. Let T be a complete proof system for the true formulas of the assertion language LA.
Assume also that the assertion language La is expresswe with respect to the expression
language LE and interpretation I. We prove that

~ l {U} S {V) /e implies t--DS, T (U} S {V}/e.

The proof uses induction on the structure of the statement S and is a generalization of the
completeness proof for recursive procedures without procedure parameters given m [7].
Owing to the length of the proof we will only consider the case where S is a procedure call;
other cases will be left to the reader.

Assume that {Uo} call Fo(ao'Po) {Vo}/eo is true. We show that {Uo} call Fo(ao:Po)
{ Vo}/co is provable. Let "call Fl(al. P0", -- , "call Fn(an :Pn)" be the procedure calls in the
range of "call F0(a0:P0)" and let e, be the environment corresponding to "call F,(a, :P,)".
We assume that F, has declaratton "proe F,(x,:p,); K,(x,, p,) end", that r, Is the list of
variables that are active in "call F,(x,: P,)", and that r,' is the hst of variables that are actwe
in "call F,(a,:P,)". We also choose c, to be a list of new variables which are inactive m
"call F,(x,: P,)" and "call F,(a,: P,)".

To shorten notation, let

R, ~- {r, -- c,); I'E' -ffi SP(call F,(a,:P,), e,, R,'),
R,' ~ {r; ffi c,}, L --- Uo[co/r~]
W, -~ SP(call F,(x,:P,), e,, R,), d

Recall that SP(S, e, U) is the strongest postcondition corresponding to statement S and
precondition U in environment e. Since LA is expressive, it follows that ~ and W,' may be
represented by formulas of LA for 0 _< t _< n.

We will show that

{R,} call F,(x,:P,) { W,}/e, (6.1)

ts provable for all i, 0 _< i _< n. From this result it follows that { Uo} call Fo(ao Po) { Vo}/eo
is also provable. To see that this last part of the argument is correct, observe that

(a) I-- {R~} call Fo(ao:Po) {W~}/eo by (6.1) and axiom (R5) since R~ = Ro[ao/xo] and
w 8 - - Wo[ao/xo].

(b) I- {R5 A L} call Fo(ao:Po) {W~ A L}/eo by axiom (R4).
(c) I- {3co[R5 A L]} call Fo(ao:Po) {3co[W5 A L]}/eo by axiom (R3).
(d) I- Uo ~ 3co[R5 A L] since T is a complete proof system for LA and since m Uo -=

3co[r8 ffi Co A Uo[eo/rS]].

Programmmg Language Constructs 143

(e) ~ 3co[W6 A L] ~ SP(call Fo(ao:Po), eo, Uo). Since L and the variables Co are
inactive with respect to "call Fo(ao:Po)", we have

3Co[W6 A L] ~ 3co[SP(cali Fo(ao'Po), co, RS) A L]
-= 3co[SP(call Fo(ao:Po), eo, R~ A L)]
~- SP(call Fo(ao:Po), eo, 3co[R~ A L])
=- SP(call Fo(ao:Po), eo, Uo).

(f) I- 3co[W~ A L] ~ SP(call Fo(ao:Po), eo, Uo) This follows from (e) since T is a
complete proof system for LA.

(g) I-- {Uo} call Fo(ao:Po) {SP(call Fo(ao:Po), eo, Uo)}/eo by (c), (e), (f), and the rule of
consequence.

(h) ~- SP(call Fo(ao.Po), eo, Uo) --~ Vo since ~ (Uo} call Fo(ao:Po) {Vo}/eo and since
SP(cali Fo(ao:Po), eo, Uo) is the strongest postcondttmon corresponding to Uo and "call
Fo(ao:Po)".

(i) ~ (Uo} call Fo(ao:Po) { Vo}/eo by (g), (h), and the rule of consequence.

It is still necessary to prove (6.1). We wdl show that

(Ro} call Fo(xo:Po) {Wo}/eo {Rn} call Fn(xn:Pn) {Wn}/en
I--- {Ro} Ko(Po) {Wo}/eo {R,} call K.(P~) {W,} / e , . (6.2)

The proof of (6.1) will then follow by axiom (RI) for procedure calls. Proof o f (6.2) is by
induction on the structure of K, using an induction hypothesis that is somewhat more
general than what we need to prove

LEMMA 6.1. Let K be a statement and let R and W be predicates such that ~ (R} K
(W } / e and such that the range of K with respect to e is included m (call Fo(ao:Po), Co)
(call Fn(ao:P,), e,); then

{Ro} call Fo(xo:Po) { Wo}/eo {Rn) call Fn(xn:Pn) {Wn}/e~ ~- {R} K { W) / e .

PROOF. Proof is by induction on the structure of K We will only consider the case
where K is a procedure declaration, i.e. K m "begin proc q(x:p); L end; S end". I f ~ {R}
K { W } / e then we must also have ~ (R} K' { W } / e ' where K' ~- "begin S end" and e' =
ADD(e, "proc q(x:p), L end"). Note that the range of K' with respect to e' is included
within the range of K with respect to e. By the induction hypothesis we have that

{Ro) call Fo(xo:Po) { Wo) /eo {R,) call F,(x, :Pn) { W,} / e , t - (R} K' { W) /e'.

By axiom (B2), we see that

(Ro} call Fo(xo:Po) (Wo}/eo {R,} call F~(xn:Pn) { W , } / e , ~ (R} K { W } / e .

Other cases m the proof of Lemma 6 1 are left to the interested reader. Note that once
Lemma 6.1 has been estabhshed, (6.2) follows from the observation that ~ {R,} K,(P,)
{ W,}/e,, O _ ~ l ~ n .

7. Coroutines

A coroutine has the form

"coroutine: Q1, Q2 end".

Q~ is the main routine; execution begins in Qi and also terminates in Q1 (this requirement
simplifies the axiom for coroutines). Otherwise Q1 and Qz behave m identical manners. I f
an exit statement is encountered in Q1, the next statement to be executed will be the
statement following the last resume statement executed in Qz. Similarly, execution of a

144 EDMUND M CLARKE JR.

r e s u m e statement m 02 causes execution to be restarted following the last exit statement
in Q1. If the exit (resume) statement occurs within a call on a recursive procedure, then
execution must be restarted in the correct activanon of the procedure. A formal operaUonal
specification of the semantics for coroutines Is given in [1].

I f recursive procedures are disallowed, a sound and complete axiom system may be
obtained for the programming language of Section 2 with the addit ion of the coroutine
construct. Such a system, based on the addmon of auxihary variables, is described m [2].
The axiom for the coroutine statement is simdar to the one used by Chnt [3]. However, the
strategy used to obtain completeness is different from that advocated by Clint, auxiliary
variables represent program counters (and therefore have bounded magmtude) rather than
arbitrary stacks

THEOREM 7.1 There is a Hoare axtom system H f o r the programming language described
above, includmg the coroutme construct but requirmg that procedures be nonrecurstve, whtch
ts both sound and complete m the sense o f Cook

8. Coroutines and Recurston

We show that it is impossible to obtain a sound-complete system of Hoare axioms for a
programming language allowing both coroutmes and recursion provided that we do not
assume a stronger type of expressibdlty than that defined m Section 2. (We will argue m
Secaon 9 that the notion of expressibility introduced m SecUon 2 Is the natural one. We
will also examine the consequences of adopting a stronger notion of expresslbility) Let
Lc.r be the programming language with features described in Sections 2 and 7 including
both parameterless recursive procedures and the coroutlne statement.

LEMMA 8.1. The halting problem f o r programs in the language Zc,r is undeetdable for all
f imte mterpretattons I wtth III -> 2.

PROOF. We will show how to simulate a two-stack machine by means of a program m
the language L Since the halting problem is undeodable for two-stack machines, the
desired result will follow. The simulation program will be a coroutme with one of its
component routines controlling each of the two stacks. Each stack is represented by the
successive activations of a recurswe procedure local to one of the routines. Thus, stack
entries are maintained by a variable top local to the recursive procedure, deletion from a
stack is equivalent to a procedure return, and additions to a stack are accomphshed by
recurslve calls of the procedure. The simulation routine is given in outhne form below:

prog__counter = 1,
coroutine

begin
proc stack__ 1,

new top, progress,
progress = l,
while progress = 1 do

ifprog__counter = I then "INSTi" else
ifprog__counter = 2 then "'INST2"' else

if prog__counter = K then "INSTK'" else null
end

end stack_ l,
call stac~____l

end,
begin

proc stack__2,
new top, progress,
progress :z 1,
while progress = 1 do

ifprog~counter = 1 then "INST," else

Programming Language Constructs 145

ifprog counter ~ 2 then "'INST'" else

if prog__counter = K then "'INST," else null
end

end stack__2,
call stack__2

end
end

where " I N S T i " , " I N S T k " a n d " I N S T , " , " I N S T F ' are encod tngs o f the p r o g r a m
for the two-s tack m a c h i n e be ing s imulated. Thus , for example , m the p rocedure s tack__l
we h a v e the fo l lowing cases:

(1) I f l N S T j is push x on s tack__ l , " I N S T f ' wall be

begin
top = x,
prog_counter = prog__counter + 1,
call stac~___l

end,

(2) I f 1 N S T j is pop x f rom s tack__ l , " I N S T f ' wall be

begin
prog__counter = prog__counter + 1,
x = top,
progress .= 0

end,

(3) I f I N S T j is push x on s t a c k _ 2 or pop x f rom stack__2, " I N S T f ' wdl s tmply be

begin
exit

end,

A simi lar encod ing I N S T ? I~NST~ for the copy o f the p r o g r a m wi th in p rocedure
s tack__2 m a y be gwen. See F igure 3

THEOREM 8.1. I t tS impossible to obtain a system o f Hoare axzoms H f o r the p rogramming
language Lc.r whwh Is sound and complete m the sense o f Cook.

Achvohons of .
recurs0ve proceoure
$tack_l

Achvahons of
recurs~ve procedure
Stock_2

FIG 3

1 st routine of 2 nd routme of
coroutme coroutme

Smaulauon of two-stack machine wzth program push 3 on stack 1, push 4 on stack__2, push 5 on
stack l by coroutme with local recurslve procedures

146 EDMUND M. CLARKE JR.

The proof is similar to the proof of Theorem 3.1 and will be omitted.

9. Discussion of Results and Open Problems

A number of open problems are suggested by the above results. An obvious question is
whether there are other ways of restricting the programming language of Section 2 so that
a sound and complete set of axioms can be obtained. For example, from Section 4 we
know that such an axiom system could be obtained simply by disallowing global variables.
Suppose that global vanables were restricted to be read only instead of entirely disallowed.
Would it then be possible to obtain a sound and complete axiom system? Automata
theoretic considerations merely show that the type of incompleteness argument used in
this paper is not applicable.

In the case of coroutines and recursion the most important question seems to be whether
a stronger form of expressibility might give completeness. The result of Section 8 seems to
require that any such notion of expressibility be powerful enough to allow assertions about
the status of the runtime stack(s). Clint [3] suggests the use of stack-valued auxiliary
variables to prove properties of coroutines which involve recursion. It seems possible that
a notion of expressibility which allowed such variables would give completeness. However,
the use of such auxiliary variables appears counter to the spirit of high level programming
languages. If a proof of a recursive program can involve the use of stack-valued variables,
why not simply replace the recurswe procedures themselves by stack operaUons? The
purpose of recursion in programming languages is to free the programmer from the detatls
of implementing recursive constructs.

Finally we note that the technique of Sections 3 and 8 may be applied to a number of
other programming language features including (a) call by name wRh functions and global
variables, (b) unrestricted pomter variables with retention, (c) unrestrtcted pointer variables
with recursion, and (d) label variables with retention., All these features present dffficulttes
wtth respect to program proofs, and (one might argue) should be avotded m the design of
programming languages statable for program verification.

REFERENCES

L CLARKE, E M JR. Programming language constructs for which tt is tmposslble to obtain good Hoare-hke
axioms Tech Rep No 76-287, Comptr Sct Dept, Cornell U , Ithaca, N Y, Aug 1976

2 CLARKE, E M JR Pathological mteractton of programming language features Tech Rep CS-1976-15,
Comptr So Dept, Duke U , Durham, N C , Sept 1976.

3 CLINT, M Program proving. Coroutmes Acta InformaUca 2 (1973), 50-63
4. CooK, S A Axlomaac and mterpreUve semanttcs for Algol fragment Tech Rep. 79, Comptr So Dept, U

of Toronto, Toronto, Canada, 1975 To be pubhshed m SCICOMP.
5. DEBAKKER, J W., AND MEERTENS, L G L T On the completeness of the inductive asserUon method Mathe-

matical Centre, Amsterdam, Dec 1973
6 DONAHUE, J. Mathematical semanttcs as a complementary definmon for axiomaucally defined programming

language constructs In Three Approaches to Rehable Software Language Design, Dya&c Speclficatwn,
Complementary Semanttcs, by J Donahue et al , also Tech Rep CSRG-45, Comptr Syst Res Group, U of
Toronto, Toronto, Canada, Dec 1974

7 GORELICK, G.A Complete ax~omaUc system for proving assertions about recurswe and non-recurswe
programs Tech Rep No 75, Comptr Sc~ Dept, U of Toronto, Toronto, Canada, Jan 1975

8 HOARE, C A R An ax~omauc approach to computer programming Comm ACM 12, l0 (Oct 1969), 322-329
9 HOARE, C.A R Procedures and parameters" An axlomauc approach In Symposmm on Semanttcs of Algo-

rtthmtc Languages, E Engeler, Ed, Spnnger-Verlag, Berlin, 1971, pp 102-116
10 HOAgE, C A R , AND LAUER, P E Conststent and complementary formal theortes of the semanttcs of

programmmg languages Acta lnformanca 3 (1974), 135-154
11 JOHNSTON, J.B The contour model of block structured processes Proc ACM SIGPLAN Symp on Data

Structures m Programming Languages, Feb 1971, pp 55-82
12 JONES, N D, AND MUCHNICK, S S Even simple programs are hard to analyze J ACM 24, 2 (Aprd 1977),

338-350.
13. MANNA, Z , AND PNUELI, A Formallzauon of properUes of functional programs J A CM 17, 3 (July 1970),

555-569.
14 NAUR, P , Ed Rewsed report on the algorithmic language ALGOL 60 Comm ACM 6, 1 (Jan 1963), 1-17

Programmmg Language Constructs 147

15 OWICKI, S A consistent and complete deducttve system for the venficaUon of parallel programs. Proc.
Eighth Annual ACM Symp on Theory of Compmg, May 1976, pp 73-86.

16 WAND, M A new incompleteness result for Hoare's system Proc Eighth Annual ACM Syrup. on Theory of
Comptng , May 1976, pp 87-91

17 WlRTH, N The programming language PASCAL Acta Informatlca 1, 1 (1971), 35-63

RECEIVED APRIL 1977, REVISED JANUARY 1978

Journal of the Association for Computing Machinery, Vo| 26. No I, January 197c~

