15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FIRST HOMEWORK IS DUE Thursday, January 22

NON-DETERMINISM

THURSDAY JAN 18

NON-DETERMINISM AND THE PUMPING LEMMA

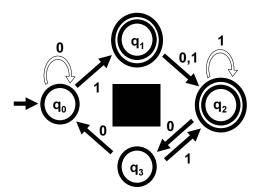
THURSDAY JAN 18

M = (Q,
$$\Sigma$$
, δ , q₀, F) where Q = {q₀, q₁, q₂, q₃}
$$\Sigma = \{0,1\}$$

 $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ transition function

 $q_0 \in Q$ is start state

 $F = \{q_1, q_2\} \subseteq Q$ accept states



δ	0	1
q_0	q_0	q_1
q_1	q ₂	q ₂
q_2	q_3	q ₂
q_3	q_0	q_2

deterministic

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ , δ , q_0 , F)

Q is the set of states (finite)

Σ is the alphabet (finite)

 $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subset Q$ is the set of accept states

M accepts a string w if the process ends in a double circle

deterministic DFA

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ , δ , q₀, F)

Q is the set of states (finite)

Σ is the alphabet (finite)

 $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subset Q$ is the set of accept states

Let $w_1, ..., w_n \in \Sigma$ and $\mathbf{w} = w_1 ... w_n \in \Sigma^*$

Then **M** accepts w if there are $r_0, r_1, ..., r_n \in \mathbf{Q}$, s.t.

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and

3. $r_n \in F$

deterministic DFA A ^ finite automaton ^ is a 5-tuple M = (Q, Σ , δ , q₀, F)

Q is the set of states (finite)

Σ is the alphabet (finite)

 $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subset Q$ is the set of accept states

L(M) = set of all strings machine M accepts

A language L is regular if it is recognized by a deterministic finite automaton, i.e. if there is a DFA M such that L = L (M).

UNION THEOREM

The union of two regular languages is also a regular language

Intersection THEOREM

The intersection of two regular languages is also a regular language

Complement **THEOREM**

The complement of a regular languages is also a regular language

In other words, $\text{if L is regular than so is } \neg L, \\ \text{where } \neg L = \{ \ w \in \Sigma^* \mid w \not\in L \ \}$

Proof?

THE REGULAR OPERATIONS

- \rightarrow Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$
- \rightarrow Intersection: A \cap B = { w | w \in A and w \in B }
- → Negation: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$

Reverse: $A^R = \{ w_1 ... w_k \mid w_k ... w_1 \in A \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

Reverse **THEOREM**

The reverse of a regular languages is also a regular language

REVERSE CLOSURE

Regular languages are closed under reverse

Assume L is a regular language and M recognizes L

We build MR that accepts LR

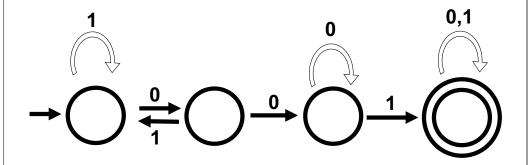
If M accepts w then w describes a directed path in M from start to an accept state

Define MR as M with the arrows reversed

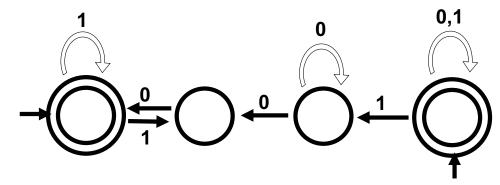
MR IS NOT ALWAYS A DFA!

It may have many start states

Some states may have too many outgoing edges, or none

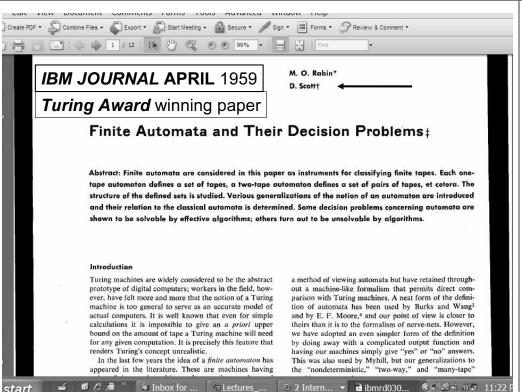


NON-DETERMINISM



What happens with 100?

We will say that the machine accepts if there is some way to make it reach an accept state



ne construction of M and we shall etail.

ces of words $S_1 = (a_1, a_2, \dots, a_n)$ b_n) then $P(a_1, a_2, \dots, a_n) \cap P(b_1,$ d only if the Post correspondence b_n has a solution. Since the correnot effectively solvable it follows ther

 $T_2(\mathfrak{A}(b_1,\ldots,b_n)) + \phi$

ble

tape automata

way, two-tape automata we find constructive decision processes is sible to decide, by a constructive icable to all automata, whether a chine accepts any tapes. To prove ourse, necessary to give the explicity machine. We shall not give they are long and not very much different definitions needed for two-way ne main point is that, as with the omaton, the table of moves of a ttomaton sometimes requires the om the scanned square. However should clarify the method.

that there is no constructive deci-

Theorem 19. There is no effective method of deciaing whether the set of tapes definable by a two-tape, twoway automaton is empty or not.

An argument similar to the above one will show that the class of sets of pairs of tapes definable by two-way, two-tape automata is closed under Boolean operations. In view of Theorem 17, this implies that there are sets definable by two-way automata which are not definable by any one-way automaton; thus no analogue to Theorem 15 holds.

References

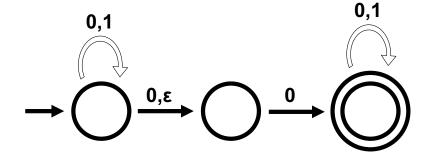
90.376 F F

- A, W. Burks and Hao Wang, "The logic of automata," Journal of the Association for Computing Machinery, 4, 193-218 and 279-297 (1957).
- S. C. Kleene, "Representation of events in nerve nets and finite automata," Automata Studies, Princeton, pp. 3-41, (1956)
- W. S. McCulloch and E. Pitts, "A logical calculus of the ideas imminent in nervous activity," Bulletin of Mathematical Biophysics, 5, 115-133 (1943).
- E. F. Moore, "Gedanken-experiments on sequential machines," Automata Studies, Princeton, pp. 129-153 (1956).
- A. Nerode, "Linear automaton transformations," Proceedings of the American Mathematical Society, 9, 541-544 (1958).
- E. Post, "A variant of a recursively unsolvable problem," Bulletin of the American Mathematical Society, 52, 264-268 (1946).
- J. C. Shepherdson, "The reduction of two-way automata to one-way automata," IBM Journal, 3, 198-200 (1959).

Revised manuscript received August 8, 1958

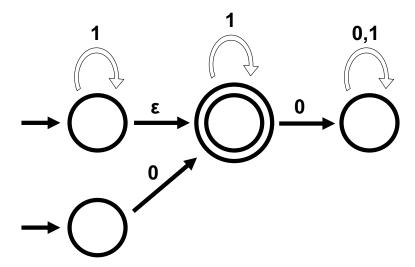
125

EXAMPLE

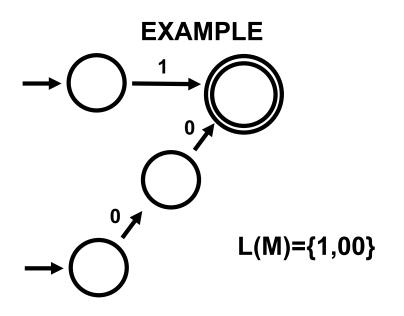


At each state, possibly zero, one or many out arrows for each $\sigma \in \Sigma$ or with label ε

EXAMPLE



Possibly many start states



A non-deterministic finite automaton (NFA) is a 5-tuple N = (Q, Σ , δ , Q₀, F)

Q is the set of states

Σ is the alphabet

 $\delta: Q \times \Sigma_{\epsilon} \to 2^Q \;\; \text{is the transition function}$

 $Q_0 \subseteq Q$ is the set of start states

 $F \subseteq Q$ is the set of accept states

 2^Q is the set of subsets of Q and Σ_ϵ = $\Sigma \cup \{\epsilon\}$

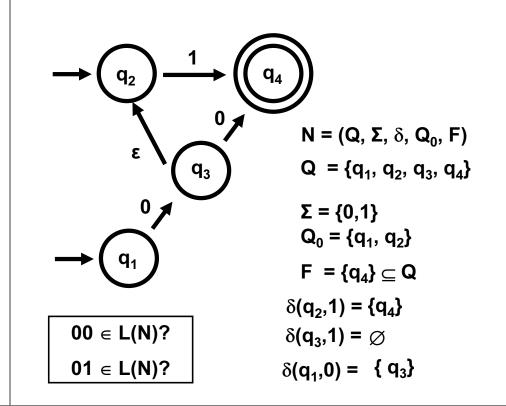
Let $w \in \Sigma^*$ and suppose w can be written as $w_1 ... \ w_n$ where $w_i \in \Sigma_\epsilon$ (ϵ is viewed as representing the empty string)

Then N accepts w if there are $r_0, r_1, ..., r_n \in Q$ such that

- 1. $r_0 \in Q_0$
- 2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., n-1, and
- 3. $r_n \in F$

L(N) = the language recognized by N = set of all strings machine N accepts

A language L is recognized by an NFA N if L = L(N).

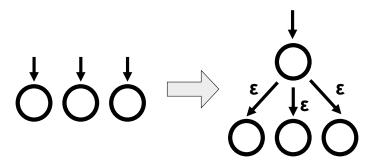


Deterministic Computation Output Computation Computation reject accept or reject

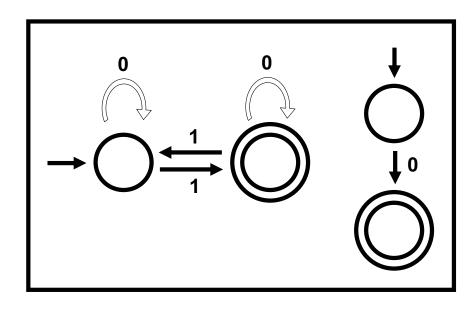
MULTIPLE START STATES

We allow multiple start states for NFAs, and Sipser allows only one

Can easily convert NFA with many start states into one with a single start state:

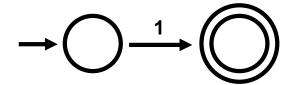


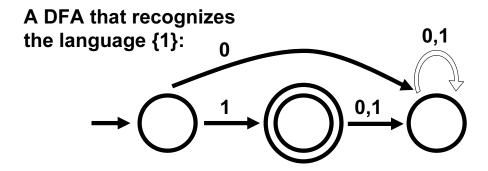
UNION THEOREM FOR NFAs



NFAs ARE SIMPLER THAN DFAs

An NFA that recognizes the language {1}:





Theorem: Every NFA has an equivalent* DFA

Corollary: A language is regular iff it is recognized by an NFA

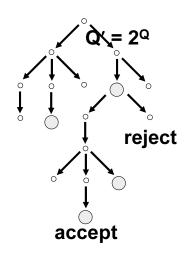
Corollary: L is regular iff L^R is regular

* N is equivalent to M if L(N) = L (M)

FROM NFA TO DFA

Input: $N = (Q, \Sigma, \delta, Q_0, F)$

Output: $M = (Q', \Sigma, \delta', q_0', F')$



To learn if NFA accepts, we could do the computation in parallel, maintaining the set of states where all threads are

Idea:

 $Q' = 2^Q$

FROM NFA TO DFA

Input: N = (Q, Σ , δ , Q₀, F)

Output: $M = (Q', \Sigma, \delta', q_0', F')$

$$Q' = 2^{Q}$$

$$\delta': \mathbf{Q}' \times \mathbf{\Sigma} \to \mathbf{Q}'$$

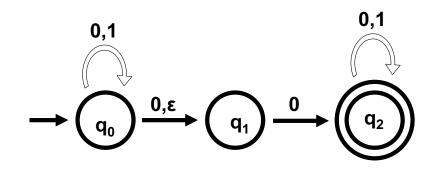
$$\delta'(\mathsf{R},\sigma) = \bigcup_{\mathbf{r}\in\mathsf{R}} \varepsilon(\delta(\mathsf{r},\sigma)) *$$

$$q_0' = \varepsilon(Q_0)$$

$$F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}$$

For $R \subseteq Q$, the ϵ -closure of R, $\epsilon(R) = \{q \text{ that can be reached from some } r \in R \text{ by traveling along zero or more } \epsilon \text{ arrows}\}$,

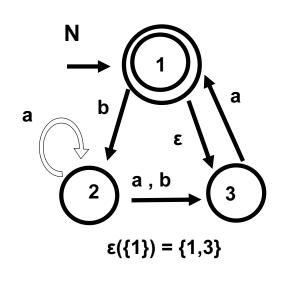
EXAMPLE



$$\varepsilon(\{q_0\}) = \{q_0, q_1\}$$

Given: NFA N = ($\{1,2,3\}$, $\{a.b\}$, δ , $\{1\}$, $\{1\}$)

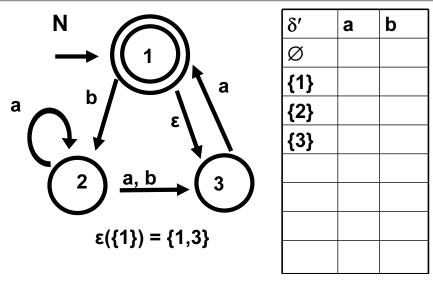
Construct: equivalent DFA M



$$N = (Q, \Sigma, \delta, Q_0, F)$$

Given: NFA N = ($\{1,2,3\}$, $\{a,b\}$, δ , $\{1\}$, $\{1\}$)

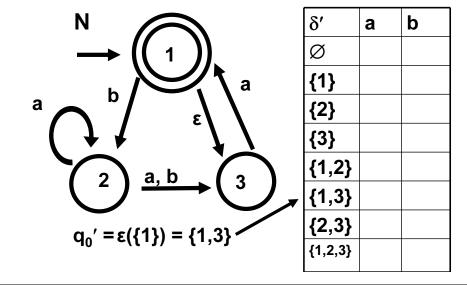
<u>Construct</u>: equivalent DFA M = (Q', Σ , δ' , q_0' , F')



$$N = (Q, \Sigma, \delta, Q_0, F)$$

Given: NFA N = ($\{1,2,3\}$, $\{a,b\}$, δ , $\{1\}$, $\{1\}$)

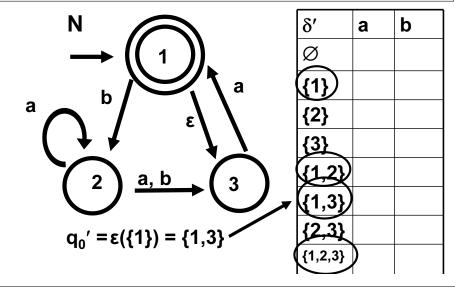
Construct: equivalent DFA M = (Q', Σ , δ' , q_0' , F')

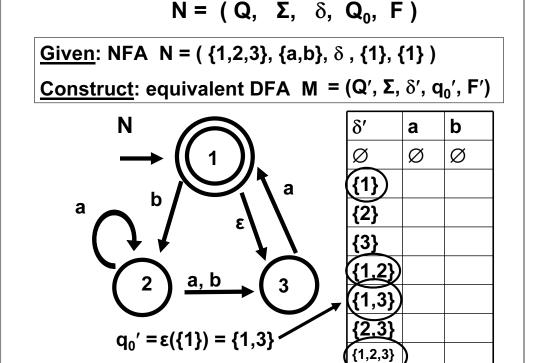


$$N = (Q, \Sigma, \delta, Q_0, F)$$

Given: NFA N = ($\{1,2,3\}$, $\{a,b\}$, δ , $\{1\}$, $\{1\}$)

Construct: equivalent DFA M = $(Q', \Sigma, \delta', q_0', F')$

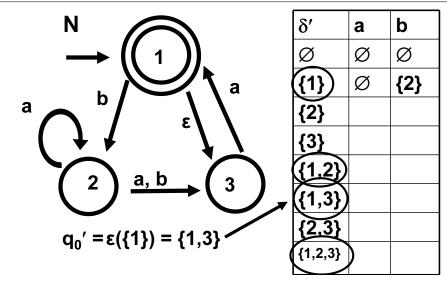




$$N = (Q, \Sigma, \delta, Q_0, F)$$

Given: NFA N = ($\{1,2,3\}$, $\{a,b\}$, δ , $\{1\}$, $\{1\}$)

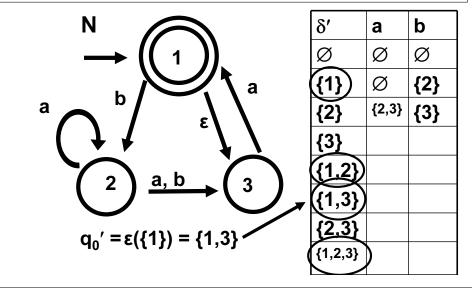
Construct: equivalent DFA M = (Q', Σ , δ' , q_0' , F')



$$N = (Q, \Sigma, \delta, Q_0, F)$$

Given: NFA N = ($\{1,2,3\}$, $\{a,b\}$, δ , $\{1\}$, $\{1\}$)

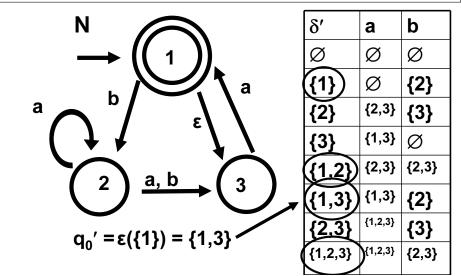
Construct: equivalent DFA M = (Q', Σ , δ' , q_0' , F')



$$N = (Q, \Sigma, \delta, Q_0, F)$$

Given: NFA N = ($\{1,2,3\}$, $\{a,b\}$, δ , $\{1\}$, $\{1\}$)

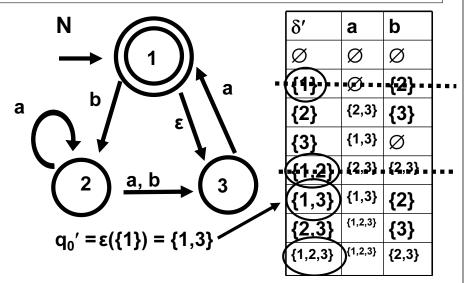
Construct: equivalent DFA M = (Q', Σ , δ' , q_0' , F')



$$N = (Q, \Sigma, \delta, Q_0, F)$$

Given: NFA N = ($\{1,2,3\}$, $\{a,b\}$, δ , $\{1\}$, $\{1\}$)

Construct: equivalent DFA M = (Q', Σ , δ' , q_0' , F')



FROM NFA TO DFA

Input: N = (Q, Σ , δ , Q₀, F)

Output: $M = (Q', \Sigma, \delta', q_0', F')$

$$Q' = 2^Q$$

$$\delta': \mathbf{Q}' \times \mathbf{\Sigma} \to \mathbf{Q}'$$

$$\delta'(\mathsf{R},\sigma) = \bigcup_{\mathsf{r}\in\mathsf{R}} \varepsilon(\delta(\mathsf{r},\sigma)) *$$

$$q_0' = \varepsilon(Q_0)$$

$$F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}$$

For $R \subseteq Q$, the ϵ -closure of R, $\epsilon(R) = \{q \text{ that can be reached from } R \text{ by traveling along zero or more } \epsilon \text{ arrows} \}$,

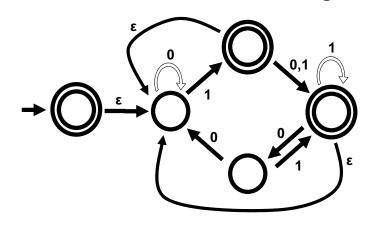
REGULAR LANGUAGES CLOSED UNDER CONCATENATION

Given DFAs M_1 and M_2 , construct NFA by connecting all accept states in M_1 to start states in M_2

REGULAR LANGUAGES CLOSED UNDER STAR

Let L be a regular language and M be a DFA for L

We construct an NFA N that recognizes L*



Formally:

Input: $M = (Q, \Sigma, \delta, q_1, F)$

Output: N = (Q', Σ , δ ', {q₀}, F')

$$\mathbf{Q'} = \mathbf{Q} \cup \{\mathbf{q}_0\}$$

$$\mathsf{F}' = \mathsf{F} \cup \{\mathsf{q}_0\}$$

$$\delta'(q,a) = \begin{cases} \{\delta(q,a)\} & \text{if } q \in Q \text{ and } a \neq \epsilon \\ \{q_1\} & \text{if } q \in F \text{ and } a = \epsilon \\ \{q_1\} & \text{if } q = q_0 \text{ and } a = \epsilon \end{cases}$$

$$\emptyset & \text{if } q = q_0 \text{ and } a \neq \epsilon$$

$$\emptyset & \text{else}$$

$$L(N) = L^*$$

Assume $w = w_1...w_k$ is in L*, where $w_1,...,w_k \in L$ We show N accepts w by induction on k

Base Cases:

$$\checkmark$$
 k = 0

$$\checkmark$$
 k = 1

Inductive Step:

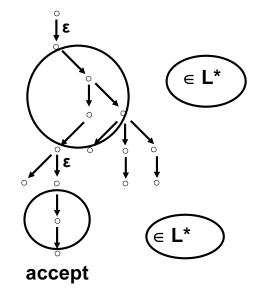
Assume N accepts all strings $v = v_1...v_k \in L^*$, $v_i \in L$, and let $u = u_1...u_ku_{k+1} \in L^*$, $u_i \in L$,

Since N accepts $u_1...u_k$ and M accepts u_{k+1} , N must accept u

Assume w is accepted by N, we show $w \in L^*$

If $w = \varepsilon$, then $w \in L^*$

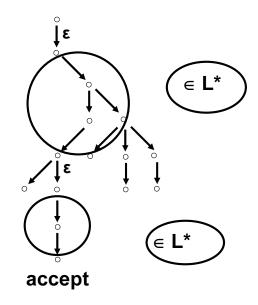
If w ≠ ε



Assume w is accepted by N, we show $w \in L^*$

If $w = \varepsilon$, then $w \in L^*$

If $w \neq \epsilon$



REGULAR LANGUAGES ARE COLSED UNDER REGULAR OPERATIONS

- \rightarrow Union: A \cup B = { w | w \in A or w \in B }
- \rightarrow Intersection: A \cap B = { w | w \in A and w \in B }
- → Negation: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$
- \rightarrow Reverse: $A^R = \{ w_1 ... w_k \mid w_k ... w_1 \in A \}$
- \rightarrow Concatenation: A · B = { vw | v ∈ A and w ∈ B }
- → Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

SOME LANGUAGES **ARE NOT** REGULAR

 $B = \{0^n1^n \mid n \ge 0\}$ is NOT regular!

WHICH OF THESE ARE REGULAR

C = { w | w has equal number of 1s and 0s} NOT REGULAR

D = { w | w has equal number of occurrences of 01 and 10}

REGULAR!!!

THE PUMPING LEMMA

Let L be a regular language with $|L| = \infty$

Then there exists a positive integer P such that

if w ∈ L and |w| ≥ P then w = xyz, where:

- 1. |y| > 0
- 2. |xy| ≤ P
- 3. $xy^iz \in L$ for any $i \ge 0$

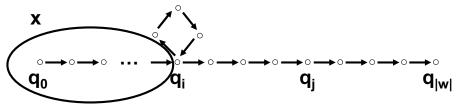
Let M be a DFA that recognizes L

Let P be the number of states in M

Assume $w \in L$ is such that $|w| \ge P$

We show w = xyz

- 1. |y| > 0
- 2. |xy| ≤ P
- 3. $xy^iz \in L$ for any $i \ge 0$



There must be j > i such that $q_i = q_j$

USING THE PUMPING LEMMA

Use the pumping lemma to prove that $B = \{0^n1^n \mid n \ge 0\}$ is not regular

Hint: Assume B is regular, and try pumping $s = 0^P1^P$

If B is regular, s can be split into s = xyz, where for any $i \ge 0$, xy^iz is also in B

If y is all 0s: xyyz has more 0s than 1s

If y is all 1s: xyyz has more 1s than 0s

If y has both 1s and 0s:

xyyz will have some 1s before some 0s

For next time

Read Chapter 1.2 of the book.

Also, get started on the homework ASAP!!