15-453

FIRST HOMEWORK IS DUE

FORMAL LANGUAGES, Thursday, January 22
AUTOMATA AND
COMPUTABILITY
NON-DETERMINISM NON-DETERMINISM AND

THE PUMPING LEMMA
THURSDAY JAN 18 THURSDAY JAN 18

=(Q, %, 3, qp, F) where Q = {q,, q4, 5, 03}
> ={0,1}

6:Q x X — Q transition function*

qo € Q is start state

F ={q,, 9,} = Q accept states

0

(o7
o
-

ﬂ/ 01 Yo Yo q.

1
_> q1 q2 q2
o 92 q; P

\ d; do d;

4

deterministic DFA

A * finite automaton # is a 5-tuple M = (Q, Z, §, q,, F)

Q is the set of states (finite)

2 is the alphabet (finite)

d:QxZ— Q is the transition function
qo € Q is the start state

F — Q is the set of accept states

M accepts a string w if the process ends in
a double circle

deterministic DFA

A * finite automaton # is a 5-tuple M = (Q, Z, §, q,, F)

Q is the set of states (finite)

2 is the alphabet (finite)

d:QxZ— Q is the transition function
qo € Q is the start state

F — Q is the set of accept states

Letwy,..,w,eZand w=w,...w, € Z¥
Then M accepts w if there arery, ry, ...,
1. 1=
2. 9(r, Wiyq) =Tryyq, fori=o, ..,
3.r,eF

n-1, and

r, € Q,s.t.

deterministic DFA

A * finite automaton # is a 5-tuple M = (Q, Z, §, q,, F)

Q is the set of states (finite)

2 is the alphabet (finite)

d:QxZ— Q is the transition function
do € Q is the start state

F — Q is the set of accept states

L(M) = set of all strings machine M accepts

A language L is regular if it is recognized by a
deterministic finite automaton,
i.e. if there is a DFA M such that L = L (M).

UNION THEOREM Complement THEOREM

The union of two regular languages

. The complement of a regular
is also a regular language

languages is also a regular language

Intersection THEOREM In other words,

The intersection of two regular if Lis regular than so is L,

languages is also a regular language where —-L={weX*|weglL}

Proof ?

THE REGULAR OPERATIONS

— Union:AUB={w|weAorweB} Reverse THEOREM

— Intersection: AnB={w|weAandweB} The reverse of a regular languages

—> Negation: —~A={weX*|weA} is also a regular language

Reverse: AR={w,...w, |w,...w, € A}
Concatenation: A-B={vw|ve AandweB}

Star: A*={w,...w, | k20and eachw, € A}

REVERSE CLOSURE

Regular languages are closed under reverse

Assume L is a regular language and M
recognizes L

We build MR that accepts LR

If M accepts w then w describes a directed
path in M from start to an accept state

Define MR as M with the arrows reversed

MR IS NOT ALWAYS A DFA!

It may have many start states

Some states may have too
many outgoing edges, or none

1 0,1

M a e
-0%+0+0~0

0

NON-DETERMINISM

1 0,1

05000

What happens with 100?

0

We will say that the machine accepts if there is
some way to make it reach an accept state

EReTe

D T R TP LT LV T pe)

TEORALYT

& =3 = =
Jereateor -] combine Fies - @, Export = (] Start Mesting + [Secure = Sign - [S| Forme - 5P Review & Comment -

18

el ed &

IBM JOURNAL APRIL 1959

Turing Award winning paper

M. O. Rabin*

D. Scottt —

Finite Automata and Their Decision Problems:

Abstract: Finite automata are considered in this paper as instruments for classifying finite topes. Each one-

tape automaton defines a set of tapes, a two-tape automateon defines a set of pairs of tapes, et cetera. The
structure of the defined sets is studied. Various generalizations of the notion of an automaten are intreduced

and their relation to the classical

is determined. Some decision problems concerning automata are

shown to be solvable by effective algorithms; others turn out to be unsolvable by algorithms.

Introduction

Turing machines are widely considered to be the abstract
prototype of digital computers: workers in the field, how-
ever, have felt more and more that the notion of a Turing
machine is too general to serve as an accurate model of
actual computers, Tt is well known that even for simple
calculations it is impossible to give an a priori upper
bound on the amount of tape a Turing machine will need
for any given computation, It is precisely this feature that
renders Turing's concept unrealistic.

In the last few years the idea of a finite automaton has
appeared in the literature, These are machines having

€ <~ A& > [&Inboxfor.. | = lecures ...

a method of viewing automata but have retained through-
out a machine-like formalism that permits direct com-
parison with Turing machines, A neat form of the defini-
tion of automata has been used by Burks and Wang!
and by E. F. Moore,* and our point of view is closer to
theirs than it is to the formalism of nerve-nets. However,
we have adopted an even simpler form of the definition
by doing away with a complicated output function and
having our machines simply give “yes™ or “no” answers.
This was also used by Myhill, but our generalizations 1o
the *nondeterministic,” “two-way,” and “many-tape”

[Z 2 1ntemn... ~ & ibmrdo30...

| e —y

i N R

| TOLaTo

W -

| i T

1 construction of 9 and we shall
stail,

ces of words §,=(ay.0s,4,)
be) then Playao....,a3,)} \P(by,
d only if the Post correspondence
s has a solution. Since the corre-
. not effectively solvable it follows
ther

To(AUlhy, . oo b)))=

“THcorem 19. THere s no eneciive mietnod oy deciamg.
whether the set of tapes definable by a iwo-tape, iwo-
way aufomaron is emply or nol.
An argument similar to the above one will show that
the class of sets of pairs of tapes definable by two-way,
two-tape automata is closed under Boolean operations.
In view of Theorem 17, this implies that there are sels
definable by two-way automata which are not definable
by any one-way automaton; thus no analogue to Theo-
rem 15 holds.

ible.

ferpet caabommela

way, Iwo-fape automata we fing
constructive decision processes i
sible to decide, by a constructivy
icable to all automata, whether J
chine accepts any tapes. To provy
purse, necessary to give the explici
iy machine, We shall not give thy
¢ are long and not very much dif
il definitions needed for two-way|
¢ main point is that, as with thd
omaton, the table of moves of §
itomaton sometimes requires thy
om the scanned square. However|
“should clarify the method.

that there is no constructive deci

References

1. A. W. Burks and Hao Wang, “The logic of automata,”

Journal of the Association for Computing Machinery, 8,

193-218 and 279-297 (1957).

5. C. Kleene, “Representation of evenis in nerve pets and

finite automata,” Auromata Studies, Princeton, pp. 3-41,

(1956)

3. W. S5 McCulloch and E. Pitts, “A logieal calculus of the
ideas imminent in nervous activity,” Bulletin of Mathe-
miatical Biophvsics, 5, 115-133 (1943).

4. E. F. Moore, “Gedanken-experimenis on sequential ma-
chines,” Automata Studies, Princeton, pp. 129-153 (1956).

3. A. Nerode, "Linear automaton transformations,” Pro-
ceedings of the American Mathematical Society, 9, 541-
S44 (1958),

6. E. Post, “A variant of a recursively unsolvable problem,”
Hulletin af the American Mathematical Society, 53, 264.
268 (1946),

7. 1. C. Shepherdson, “The reduction of two-way automata
to one-way automata,” IBM Journal, 3, 198-200 (1959).

i

Revised manuscript received August 8, 1958 125

EXAMPLE

0,1

At each state, possibly zero, one or many
out arrows for each ¢ € X or with label €

A D
_.OT.

EXAMPLE

0
S,

~O

Possibly many start states

EXAMPLE

L(M)={1,00}

A non-deterministic finite automaton (NFA)
is a 5-tuple N =(Q, %, 5, Q,, F)
Q is the set of states
2 is the alphabet
d:Qx X, — 22 is the transition function
Q, c Q is the set of start states

F — Q is the set of accept states

2Q s the set of subsets of Qand X, =X U {&}

Let we ¥* and suppose w can be written as
W,... W, where w; € Z, (€ is viewed as
representing the empty string)

Then N accepts w if there are ry, 1y, ..., 1, € Q
such that

1. ro € Qo
2. i, €90(r;, Wiy) fori=0, ..., n-1, and
3.r,eF

L(N) = the language recognized by N
= set of all strings machine N accepts

0
f N=(Q, %9, QF)

&
Q ={q4, d, d3, A4}

0 ¥ ={0,1}
f Q, ={d,, 9,5}
— ﬂ F={a}cQ

3(qz,1) = {4}

A language L is recognized by an NFA N
if L=L (N).

00 € L(N)? 5(as1) = @
01 € L(N)? 8(q,,0) = {ds}

Deterministic
Computation

|

O G O s O s O s O

|

accept or reject

Non-Deterministic
Computation

7N
SININ
LI
& reject
AN
|

accept

MULTIPLE START STATES

We allow multiple start states for NFAs,
and Sipser allows only one

Can easily convert NFA with many start
states into one with a single start state:

}
66 /I

UNION THEOREM FOR NFAs

0

0 !

N)
L0=0 &

O

NFAs ARE SIMPLER THAN DFAs
An NFA that recognizes the language {1}:

_.0_1.@

A DFA that recognizes
the language {1}: 0,1

Theorem: Every NFA has an equivalent* DFA

FROM NFA TO DFA
Input: N =(Q, Z, 3, Q,, F)
Output: M= (Q', £, &, q,', F')

Corollary: A language is regular iff /. Q=20 To learn if NFA accepts, we
it is recognized by an NFA /i\ 1\ could do the computation
S5t A in parallel, maintaining the
. . . V'l /7 \ set of states where all
Corollary: L is regular iff LR is regular 3 o o threads are
! reject
/Q\O Idea:
* N is equivalent to M if L(N) = L (M) (1) Q' =29
accept
FROM NFA TO DFA EXAMPLE
Input: N =(Q, Z, 3, Q, F)
Output: M= (Q', 2, &', q,, F') 0,1

Q' =2¢
:QxE—Q
8'(R,0) = U g(d(r,0)) *
reR
do’ = €(Qy)
FF={ReQ'|feRforsomefeF}

For R c Q, the e-closure of R, &(R) = {q that can be reached
from some r € R by traveling along zero or more € arrows},

0,1 m
— — —

£({q0}) = {do, a4}

Given: NFA N =({1,2,3}, {a.b}, §, {1}, {1})

Construct: equivalent DFA M

({1} ={1,3}

N=(Q, Z, 5, Qp F)

Given: NFA N =({1,2,3}, {a,b}, §, {1}, {1})

Construct: equivalent DFA M =(Q', Z, &', q', F')

a

b

N S

ol

a {1}

a b A \ 2)

O {3}
oo

({1} ={1,3}

N= (Q! Z! 8! QO! F)

Given: NFA N = ({1,2,3}, {a,b}, 5, {1}, {1})

Construct: equivalent DFA M =(Q', £, &', q¢', F')

N=(Q, Z, 5 Qp F)

Given: NFA N =({1,2,3}, {a,b}, &, {1}, {1})

Construct: equivalent DFA M =(Q', Z, &', q;', F')

a

b

{1,2}

N S

ol

a {1}

a b . \ 2)

O {3}
Du-0)

a0’ =£({1}) = {1,3} {2,3}

{1,2,3}

N &' a |b
O\ &
b a {1}
2 s\ {2}
{3}
@ a, b @ \ﬂ—’%})
- 1,3}

Qo =€({1}) = {1,3}/

({1,2,3}
N

N=(Q, %, 5 Qp F

)

N= (Q, Z! 8, QO! F)

Given: NFA N =({1,2,3}, {a,b}, §, {1}, {1})

Construct: equivalent DFA M =(Q', Z, &', q', F')

Given: NFA N =({1,2,3}, {a,b}, 5, {1},

{1})

Construct: equivalent DFA M =(Q', Z, &', q', F')

a

b

%)

%)

(11,2

N &'
O\
a " {2}
o/ A\ @&
OO

— {1.3)
a0’ =£({1}) = {1,3} {2.3}

(11,23}
N,

)

a

b

%)

%)

%)

{2}

(11,2

N &'
oW
a " {2}
o/ A\ @&
OLO

— {1.3)
a0’ =£({1}) = {1,3} {2.3}

(11,23

N A

)

N= (Q! Z! 8! QO! F

)

N=(Q, Z, 5 Qp F)

Given: NFA N =({1,2,3}, {a,b}, &, {1}, {1})

Construct: equivalent DFA M =(Q', Z, &', q,', F')

Given: NFA N =({1,2,3}, {a,b}, §, {1},

{1})

Construct: equivalent DFA M =(Q', Z, &', q;', F')

a

b

%)

%)

%)

{2}

{2,3}

{3}

N &'

-\
a " {2}
o/ A\ @&
® ==

— {1.3)
a0’ =£({1}) = {1,3} 2.3}

a

b

%)

%)

%)

{2}

{2,3}

{3}

{1,3}

{2,3}

{2,3}

N &'

oW
a " {2}
o/ A\ @&
® =)

{1,3}

{2}

{3}

{1,3}
qo' =€({1}) = {1,3}/ {2.3} | ">

>{1,2,3}

{2,3}

N=(Q, Z, 35 Qp F)

Given: NFA N = ({1,2,3}, {a,b}, 5, {1}, {1})
Construct: equivalent DFA M =(Q', Z, &', q¢', F')

Gt W) €233 1 {23 ufe

{1,3)) 12 {2)

N 5’ a |b
— @ %) > D
b a .@}..@....{.2}.....
a A @ | e3(3)
0o St
oo}

ay’ =€({1}) = {1,3}/ (2.3} "+ (3}

FROM NFA TO DFA
Input: N =(Q, Z, 3, Q,, F)
Output: M= (Q', £, &, q,', F')
Q=2
:QAxE—->Q

8'(R,0) = U g(§(r,0)) *

reR
do = s(QO)
FF={ReQ'|feRforsomefeF}

(11,23} 23 [{2,3)

N A

For R c Q, the e-closure of R, &(R) = {q that can be reached
from R by traveling along zero or more &€ arrows},

REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Given DFAs M, and M,, construct NFA by
connecting all accept states in M, to start
states in M,

REGULAR LANGUAGES CLOSED
UNDER STAR

Let L be a regular language and M be a
DFA for L

We construct an NFA N that recognizes L*

Formally:

Input: M = (Q, Z, 3, q4, F)
Output: N =(Q/, £, &, {q,}, F')

Q' =Q U {qe}

F=F U {ao)
({5(q,a)} ifge Qanda#e¢
{q4} ifge Fanda=¢
5'(q.a) = < {ai} ifq=qoanda=¢
%] ifgq=qg,anda#¢

I
\@ else

L(N) = L*
Assume w = w,...w, is in L*, where w,,...,w, € L
We show N accepts w by induction on k

Base Cases:

v k=0
v k=1
Inductive Step:

Assume N accepts all strings v =v,...v, € L*, v;e L,
and let u = u,y...u Uy, € L¥, u; € L,

Since N accepts u,...u, and M accepts u,,,,
N must accept u

Assume w is accepted by N, we showw e L*

Ifw=¢g thenw e L*

Ifw#¢g

accept

Assume w is accepted by N, we showw e L*
Ifw=¢g thenw e L*

Ifw#eg

accept

REGULAR LANGUAGES ARE COLSED
UNDER REGULAR OPERATIONS

=—> UniontAuB={w|weAorweB}

—> Intersection:AnB={w|weAandweB}
= Negation: -A={wecX2*|wgA}

= Reverse: AR={w,..w |w,..w,eA}

= Concatenation: A-B={vw|ve Aandwe B}

= Star: A*={w,...w, | k20and eachw,; € A}

SOME LANGUAGES ARE
NOT REGULAR

B ={0""|n=z=0}is NOT regular!

WHICH OF THESE ARE REGULAR

C

{ w | w has equal number of 1s and 0s}
NOT REGULAR

D = {w]| w has equal number of
occurrences of 01 and 10}

REGULAR!!!

THE PUMPING LEMMA

Let L be a regular language with |L| = o0

Then there exists a positive integer P
such that

if welLand|w|2P
then w = xyz, where:
1. ly|>0
2. |xy|=P
3. xyizeLforanyi20

Let M be a DFA that recognizes L
Let P be the number of states in M

Assume w € L is such that |w| 2 P

We show w = xyz 1. ly| >0
2. |xy|=P
3. xyizeLforanyi20
X 7N\

/

O mmpy O ey O ey O ey O ey O el O sy O - O

i q; qQjw)

There must be j > i such that q; = g

USING THE PUMPING LEMMA

Use the pumping lemma to prove that
B ={0"" | n =0} is not regular

Hint: Assume B is regular, and try pumping s = 0P1P

If B is regular, s can be split into s = xyz,
where for any i 2 0, xy'z is also in B

If y is all 0s: xyyz has more 0Os than 1s
If y is all 1s: xyyz has more 1s than Os

If y has both 1s and Os:
xyyz will have some 1s before some Os

For next time

Read Chapter 1.2 of the book.

Also, get started on the homework ASAP!!

