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Q = {q0, q1, q2, q3}
Σ = {0,1}
δ : Q × Σ → Q transition function*
q0 ∈ Q is start state
F  = {q1, q2} ⊆ Q accept states

M = (Q, Σ, δ, q0, F) where
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Q is the set of states (finite)
Σ is the alphabet (finite)
δ : Q × Σ → Q is the transition function
q0 ∈ Q is the start state
F ⊆ Q is the set of accept states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)
deterministic DFA

M accepts a string w if the process ends in 
a double circle

Q is the set of states (finite)
Σ is the alphabet (finite)
δ : Q × Σ → Q is the transition function
q0 ∈ Q is the start state
F ⊆ Q is the set of accept states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)
deterministic DFA

Let w1, ... , wn ∈ Σ and  w = w1... wn ∈ Σ*
Then M accepts w if there are r0, r1, ..., rn ∈ Q, s.t.
1. r0=q0
2. δ(ri, wi+1 ) = ri+1,  for i = 0, ..., n-1, and 3. rn∈ F

Q is the set of states (finite)
Σ is the alphabet (finite)
δ : Q × Σ → Q is the transition function
q0 ∈ Q is the start state
F ⊆ Q is the set of accept states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)
deterministic DFA

A language L is regular if it is recognized by a 
deterministic finite automaton, 

i.e. if there is a DFA M such that L = L (M).

L(M) = set of all strings machine M accepts



UNION THEOREM
The union of two regular languages 

is also a regular language

Intersection THEOREM

The intersection of two regular 
languages is also a regular language

Complement THEOREM

The complement of a regular 
languages is also a regular language

In other words, 
if L is regular than so is ¬L,
where ¬L= { w ∈ Σ* | w ∉ L }

Proof ?

THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B } 
Intersection: A ∩ B = { w | w ∈ A and w ∈ B } 
Negation: ¬A = { w ∈ Σ* | w ∉ A } 
Reverse: AR = { w1 …wk | wk …w1 ∈ A }
Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }
Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

Reverse THEOREM
The reverse of a regular languages 

is also a regular language



REVERSE CLOSURE
Regular languages are closed under reverse

Assume L is a regular language and M 
recognizes L
We build MR that accepts LR

If M accepts w then w describes a directed 
path in M from start to an accept state
Define MR as M with the arrows reversed

MR IS NOT ALWAYS A DFA!
It may have many start states
Some states may have too 
many outgoing edges, or none
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NON-DETERMINISM
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What happens with 100?
We will say that the machine accepts if there is 
some way to make it reach an accept state
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At each state, possibly zero, one or many 
out arrows for each σ ∈ Σ or with label ε
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Possibly many start states
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L(M)={1,00}

EXAMPLE

Q is the set of states
Σ is the alphabet
δ : Q × Σε → 2Q is the transition function
Q0 ⊆ Q is the set of start states
F ⊆ Q is the set of accept states

A non-deterministic finite automaton (NFA) 
is a 5-tuple N = (Q, Σ, δ, Q0, F) 

2Q is the set of subsets of Q and Σε = Σ ∪ {ε}

Let w∈ Σ* and  suppose w can be written as
w1... wn where wi ∈ Σε (ε is viewed as 

representing the empty string)
Then N accepts w if there are r0, r1, ..., rn ∈ Q

such that

1. r0 ∈ Q02. ri+1 ∈ δ(ri, wi+1 ) for i = 0, ..., n-1, and 3. rn∈ F

A language L is recognized by an NFA N
if L = L (N).

L(N) = the language recognized by N
= set of all strings machine N accepts
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δ(q3,1) = 

q1

q2
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N = (Q, Σ, δ, Q0, F)
Q = {q1, q2, q3, q4}
Σ = {0,1}
Q0 = {q1, q2}
F  = {q4} ⊆ Q

δ(q2,1) = {q4}
∅

ε

δ(q1,0) = { q3}
00 ∈ L(N)?
01 ∈ L(N)?



Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

MULTIPLE START STATES
We allow multiple start states for NFAs, 

and Sipser allows only one
Can easily convert NFA with many start 
states into one with a single start state:

εεε

UNION THEOREM FOR NFAs
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NFAs ARE SIMPLER THAN DFAs
An NFA that recognizes the language {1}:

1

1 0,1

0,10
A DFA that recognizes 
the language {1}:



Theorem: Every NFA has an equivalent* DFA

Corollary: A language is regular iff
it is recognized by an NFA

Corollary: L is regular iff LR is regular

* N is equivalent to M if L(N) = L (M)

FROM NFA TO DFA
Input: N = (Q, Σ, δ, Q0, F) 
Output: M = (Q′, Σ, δ′, q0′, F′) 

accept

reject

To learn if NFA accepts, we 
could do the computation 
in parallel, maintaining the 
set of states where all 

threads are

Q′ = 2Q
Idea:

Q′ = 2Q

Q′ = 2Q
δ′ : Q′ × Σ → Q′

δ′(R,σ) =  ∪ ε( δ(r,σ) )
r∈R

q0′ = ε(Q0)
F′ = { R ∈ Q′ | f ∈ R for some f ∈ F }

FROM NFA TO DFA
Input: N = (Q, Σ, δ, Q0, F) 
Output: M = (Q′, Σ, δ′, q0′, F′) 

*

For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached 
from some r ∈ R by traveling along zero or more ε arrows}, 

*
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EXAMPLE

q0 q1 q2

ε({q0}) = {q0 , q1}
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Given: NFA  N = ( {1,2,3}, {a.b}, δ , {1}, {1} )
Construct: equivalent DFA M

ε({1}) = {1,3}

N
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} )
Construct: equivalent DFA  M

ε({1}) = {1,3}

N

N =  ( Q,   Σ,   δ,  Q0,  F )

= (Q′, Σ, δ′, q0′, F′)
δ′ a b
∅
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} )
Construct: equivalent DFA  M

ε({1}) = {1,3}

N

N =  ( Q,   Σ,   δ,  Q0,  F )

= (Q′, Σ, δ′, q0′, F′)
δ′ a b
∅
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} )
Construct: equivalent DFA  M

ε({1}) = {1,3}

N

N =  ( Q,   Σ,   δ,  Q0,  F )

= (Q′, Σ, δ′, q0′, F′)
δ′ a b
∅
{1}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

q0′ =
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} )
Construct: equivalent DFA  M

ε({1}) = {1,3}

N

N =  ( Q,   Σ,   δ,  Q0,  F )

= (Q′, Σ, δ′, q0′, F′)
δ′ a b
∅ ∅ ∅
{1}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}q0′ =
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} )
Construct: equivalent DFA  M

ε({1}) = {1,3}

N

N =  ( Q,   Σ,   δ,  Q0,  F )

= (Q′, Σ, δ′, q0′, F′)
δ′ a b
∅ ∅ ∅
{1} ∅ {2}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}q0′ =
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} )
Construct: equivalent DFA  M

ε({1}) = {1,3}

N

N =  ( Q,   Σ,   δ,  Q0,  F )

= (Q′, Σ, δ′, q0′, F′)
δ′ a b
∅ ∅ ∅
{1} ∅ {2}
{2} {2,3} {3}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}q0′ =
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} )
Construct: equivalent DFA  M

ε({1}) = {1,3}

N

N =  ( Q,   Σ,   δ,  Q0,  F )

= (Q′, Σ, δ′, q0′, F′)
δ′ a b
∅ ∅ ∅
{1} ∅ {2}
{2} {2,3} {3}
{3} {1,3} ∅
{1,2} {2,3} {2,3}

{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}q0′ =
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Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} )
Construct: equivalent DFA  M

ε({1}) = {1,3}

N

N =  ( Q,   Σ,   δ,  Q0,  F )

= (Q′, Σ, δ′, q0′, F′)
δ′ a b
∅ ∅ ∅
{1} ∅ {2}
{2} {2,3} {3}
{3} {1,3} ∅
{1,2} {2,3} {2,3}

{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}q0′ =

Q′ = 2Q
δ′ : Q′ × Σ → Q′

δ′(R,σ) =  ∪ ε( δ(r,σ) )
r∈R

q0′ = ε(Q0)
F′ = { R ∈ Q′ | f ∈ R for some f ∈ F }

FROM NFA TO DFA
Input: N = (Q, Σ, δ, Q0, F) 
Output: M = (Q′, Σ, δ′, q0′, F′) 

*

For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached 
from R by traveling along zero or more ε arrows}, 

*
REGULAR LANGUAGES CLOSED 

UNDER CONCATENATION

Given DFAs M1 and M2, construct NFA by 
connecting all accept states in M1 to start 
states in M2

REGULAR LANGUAGES CLOSED 
UNDER STAR

Let L be a regular language and M be a 
DFA for L
We construct an NFA N that recognizes L*
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Formally:
Input: M = (Q, Σ, δ, q1, F) 
Output: N = (Q′, Σ, δ′, {q0}, F′) 

Q′ = Q ∪ {q0}
F′ = F ∪ {q0}

δ′(q,a) = 

{δ(q,a)}
{q1}
{q1}
∅

if q ∈ Q and a ≠ ε
if q ∈ F and a = ε
if q = q0 and a = ε
if q = q0 and a ≠ ε

∅ else

L(N) = L*
Assume w = w1…wk is in L*, where w1,…,wk ∈ L
We show N accepts w by induction on k
Base Cases:

k = 0
k = 1

Inductive Step:
Assume N accepts all strings v = v1…vk ∈ L*, vi∈ L,
and let u = u1…ukuk+1 ∈ L*, uj ∈ L,
Since N accepts u1…uk and M accepts uk+1, N must accept u

�
�

Assume w is accepted by N, we show w ∈ L*
If w = ε, then w ∈ L*
If w ≠ ε

accept

ε

ε

∈ L*

∈ L*

Assume w is accepted by N, we show w ∈ L*
If w = ε, then w ∈ L*
If w ≠ ε

accept

ε

ε

∈ L*

∈ L*



REGULAR LANGUAGES ARE COLSED 
UNDER REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B } 
Intersection: A ∩ B = { w | w ∈ A and w ∈ B } 
Negation: ¬A = { w ∈ Σ* | w ∉ A } 
Reverse: AR = { w1 …wk | wk …w1 ∈ A }
Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }
Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

SOME LANGUAGES ARE
NOT REGULAR

B = {0n1n | n ≥ 0} is NOT regular!

WHICH OF THESE ARE REGULAR

C  = { w | w has equal number of 1s and 0s}

D  = { w | w has equal number of 
occurrences of 01 and 10}

NOT REGULAR

REGULAR!!!

THE PUMPING LEMMA
Let L be a regular language with |L| = ∞
Then there exists a positive integer P
such that 

1.  |y| > 0
2.  |xy| ≤ P
3.  xyiz ∈ L for any i ≥ 0

if w ∈ L and |w| ≥ P
then w = xyz, where:



Let P be the number of states in M
Assume w ∈ L is such that |w| ≥ P 

q0 qi qj q|w|
…

There must be j > i such that qi = qj

Let M be a DFA that recognizes L

1.  |y| > 0
2.  |xy| ≤ P
3.  xyiz ∈ L for any i ≥ 0

We show w = xyz

x

USING THE PUMPING LEMMA
Use the pumping lemma to prove that 

B = {0n1n | n ≥ 0} is not regular
Hint: Assume B is regular, and try pumping s = 0P1P

If B is regular, s can be split into s = xyz, 
where for any i ≥ 0, xyiz is also in B

If y is all 0s: xyyz has more 0s than 1s
If y is all 1s: xyyz has more 1s than 0s
If y has both 1s and 0s:

xyyz will have some 1s before some 0s

For next time
Read Chapter 1.2 of the book.
Also, get started on the homework ASAP!!


