* GRASP-an efficient SAT solver

Pankaj Chauhan

* What is SAT?

= Given a propositional formula in CNF,
find an assignment to boolean variables
that makes the formula true!

m E.g. [w=(6Ux)

w, = (@x, UDx,)
= @00 | |
X4= 1/

A= {x=0, x=1,

9/20/01 15-398: GRASP and Chaff 2

i What is SAT?

= Solution 1: Search through all
assignments!

= N variables ® 2" possible assignments,
explosion!

= SAT is a classic NP-Complete problem,
solve SAT and P=NP!

9/20/01 15-398: GRASP and Chaff 3

i Why SAT?

= Fundamental problem from theoretical
point of view
= Numerous applications
= CAD, VLSI
= Optimization
= Model Checking and other type of formal
verification
= Al, planning, automated deduction

9/20/01 15-398: GRASP and Chaff 4

* Outline

= Terminology

= Basic Backtracking Search
= GRASP

= Pointers to future work

Please interrupt me if anything is not clear!

9/20/01 15-398: GRASP and Chaff

* Terminology

= CNF formula |

i w; = (6 Ux)
= X;,.. X0 N variables g
W, = X
= W,..., W.: mclause 2= (15 2)
W3 = (D%, UX,)

= Assignment A A= {x=0,x%=1,

X,=1}

= Set of (x,v(xX)) pairs

= |Al < n® partial assignment {(x;,0), (X,,1), (X,,1)}

|A] = n® complete assignment {(x;,0), (X,,1), (X5,0), (X,,1)}
i |a= 0® unsatisfying assignment {(x,,1), (X,,1)}

i |a= 1® satisfying assignment {(x;,0), (X,,1), (X,,1)}

9/20/01 15-398: GRASP and Chaff

* Terminology

= Assignment A (contd.)
=] |[,= X® unresolved {(x,,0), (X,,0), (X,,1)}
= An assignment partitions the clause
database into three classes
= Satisfied, unsatisfied, unresolved

= Free literals: unassigned literals of a
clause

s Unit clause: #free literals = 1

9/20/01 15-398: GRASP and Chaff 7

* Basic Backtracking Search

= Organize the search in the form of a
decision tree

= Each node is an assignment, called
decision assignment

= Depth of the node in the decision tree ®
decision level d(x)

= X=v@d® xis assigned to v at decision
level d

9/20/01 15-398: GRASP and Chaff 8

* Basic Backtracking Search

= |terate through:

1. Make new decision assignments to
explore new regions of search space

2. Infer implied assignments by a deduction
process. May lead to unsatisfied clauses,
conflict! The assignment is called
conflicting assignment.

s Conflicting assignments leads to
backtrack to discard the search subspace

9/20/01 15-398: GRASP and Chaff 9

* Backtracking Search in Action

w; = (% Uxg)
w, = (@x, UDx,)

W = (@ UX,)

x,=1@1 P X, = 0@1 P x,=0@1
P x=1@1

{(x1,1), (%,0), (%3,1) , (x,,0)}

{(x,0), (%,0), (1)}

No backtrack in this example!

9/20/01 15-398: GRASP and Chaff 10

* Backtracking Search in Action

X, = 1@1

b x,=0@1
b x,=0@1
b x,= 1@1

9/20/01

Add a clause w, = (%, Ux,)

W, = (D%, UDx,)
w3 = (D% Ux,)
w, = (&%, Ux, UDx,)

X, = 0@1

X, = 0@2 P X;=1@2

{(%,0), (%,0), (x5, 1)}

15-398: GRASP and Chaff

11

* Davis-Putnam revisited

Deduction

Decision —

TCravis-Painam Algocithm
A i clnse s a clawse thot consiss of a single lienal

Nnction Satafoble (clouwe i 55 oebuom boaleon;

" unik propngaon
repeal
for exch urit clouse L € 5 do
delete from S every cluse containiog L

delete =L Eroe evary chuse of 5 1 which % scoues
i e
& 5 s empry then retun TRLE
else if noll chuse iy in 5 then return FALSE end if

until no further change result end repent

" iL-Iln g
chooee a Feeral L cocuming in F
L if Satizfable (5 L L} hen return TRUE
ek & Spisfinkle (5 U {—L§ then return TRUE
b refun FALSE end If
el finctlen

Backtrack ™ |

9/20/01

15-398: GRASP and Chaff

The tastest known olgorithms for deciding proposiional satksfinbility are based on the

12

* GRASP

= GRASP is Generalized seaRch Algorithm
for the Satisfiability Problem (Silva,
Sakallah, '96)

= Features:
= Implication graphs for BCP and conflict
analysis
= Learning of new clauses
= Non-chronological backtracking!

9/20/01 15-398: GRASP and Chaff 13

* GRASP search template

9/20/01 15-398: GRASP and Chaff 14

* GRASP Decision Heuristics

= Procedure deci de()

= Choose the variable that satisfies the
most #clauses == max occurences as
unit clauses at current decision level

= Other possibilities exist

9/20/01 15-398: GRASP and Chaff 15

* GRASP Deduction

= Boolean Constraint Propagation using
implication graphs
E.g. for the clause w= (xU@y), if y=1, then we must
have x=1
= For a variable x occuring in a clause , assignment O
to all other literals is called antecedent assignment
A(X)
= E.g. forw= (xU yU@2),
AX) = {(y.0), @D} AY) = {(x0).(z1)}, A@) = {(x.0), (v.0)}
= Variables directly responsible for forcing the value of x
= Antecedent assignment of a decision variable is empty

9/20/01 15-398: GRASP and Chaff 16

* Implication Graphs

= Nodes are variable assignments x=V(x)
(decision or implied)

= Predecessors of x are antecedent
assignments A(X)
= No predecessors for decision assignments!

= Special conflict vertices have A(k) =
assignments to vars in the unsatisfied clause

= Decision level for an implied assignment is
d(x) = max{d(y)|(y Myl A} |

9/20/01 15-398: GRASP and Chaff 17

* Example Implication Graph

Current truth assignment: {xg=0@1 ,x;;=0@3, X;,=0@3, X;,=1@2, X15=1@2}

Current decision assignment: {x,=1@6}

X10=0@3

wy = (@x Ux,)
Wy = (@ Uxg Uxg)
W3 = (@%, U@x; U xy)

W, = (@, Uxs Uxq) x=1@6

Ws = (@4 Uxg Uxqq) conflict
We = (D% Uxe)

w; = (%, Ux; U @xg,) %=0@1 %, =0@3
Wg = (XU Xg)

Wo = (%, U@xg UD x,5)

9/20/01 15-398: GRASP and Chaff 18

* GRASP Deduction Process

i Global variablas: plicakion geaph /|

o Inpuk argusmpk: Current decision level Jd
Baturn valus OONFLICT ox SICTESS
Dedliice [af)

waile |unit clauses in ¢ eoF clauses unsatiafied) [

4f |emista unsatisfied clause w) {
add nflict wertex & ca f
regord Alk)r

raturn TOMFLICT

9/20/01 15-398: GRASP and Chaff 19

i GRASP Conflict Analysis

= After a conflict arises, analyze the implication
graph at current decision level

= Add new clauses that would prevent the
occurrence of the same conflict in the future
P Learning

= Determine decision level to backtrack to,
might not be the immediate one b Non-
chronological backtrack

9/20/01 15-398: GRASP and Chaff 20

10

i Learning

= Determine the assignment that caused
the conflict, negation of this assignment
is called conflict induced clause w(k)

= The conjunct of this assignment is
necessary condition for k

= So adding w(k) will prevent the
occurrence of k again

9/20/01 15-398: GRASP and Chaff 21

i Learning

= Find w.(k) by a backward traversal of
the IG, find the roots of the IG in the
transitive fanin of k

= For our example IG,
We(k) = (@x, U U XU)

9/20/01 15-398: GRASP and Chaff 22

11

* Learning (some math)

= For any node of an IG x, partition A(X) into
L () = {(y:v(y)) I AG)[d(y)<d(x)}

S(¥) = {(y.v(y) T AX)[d(y)=d(x)}

= Conflicting assignment A (k) = causesof(k),

where
(xv(x) if Ax)=f
causesof(x) =)
. E f
LB [(y,v(y» i s V)] et
9/20/01 15-398: GRASP and Chaff 23

* Learning (some math)

= Deriving conflicting clause w(k) from

the conflicting assignment A.(k) is straight
forward

wek)= S x®
c(k) xvO0) T Ack)

= For our IG,
Ac(k) = {x,=1@6, X,=0@1, x,,= 0@3, X, = 0@3}

9/20/01 15-398: GRASP and Chaff 24

12

i Learning

= Unique implication points (UIPs) of an
IG also provide conflict clauses

= Learning of new clauses increases
clause database size

= Heuristically delete clauses based on a
user parameter

= If size of learned clause > parameter, don't
include it

9/20/01 15-398: GRASP and Chaff 25

i Backtracking

Failure driven assertions (FDA):

= If (k) involves current decision variable,
then after addition, it becomes unit clause,
so different assignment for the current
variable is immediately tried.

= In our IG, after erasing the assignment at
level 6, W(k) becomes a unit clause
DX,

= This immediately implies x,=0

9/20/01 15-398: GRASP and Chaff 26

13

i Continued IG

Decision level

Due to w¢(k)

9/20/01 15-398: GRASP and Chaff 27

i Backtracking

Conflict Directed Backtracking

= Now deriving a new IG after setting x,=0
by FDA, we get another conflict k’

= Non-chronological backtrack to decision
level 3, because backtracking to any level

5, 4 would generate the same conflict k’

9/20/01 15-398: GRASP and Chaff 28

14

* Backtracking

Conflict Directed Backtracking contd.
AK) = {X=0@1, x,u= 0@3, X; = 0@3, X;,=1@2, X;3=1@2}
We(k) = (% U xoU Xy U % X2 U xy3)

= Backtrack level is given by

b = max{d()| (v Ak} |

= b = d-1 chronological backtrack
= b < d-1 non-chronological backtrack

9/20/01 15-398: GRASP and Chaff 29

* Procedure Di agnose()

N Glekal variables: Ieplication geaph [
Clause databass &
Irmput wariable: Current decision Lewvel o
N Tuibput varilabhle: Backtracking deslsion Level H
& Beburn value: COHFLICT or SIKCESS

IMagnosa |4, &B)

wrlR) = Creace Cenflict Tndured _clausa|b; W T=ing 13,4
Updato_Clauce_Database | w ()} 1}
B = Compuce Max Lewel]] M Deding 43.7)

i€ ([=) 1

add ne=w conflict vertex w to

racoed Afx) :
rakien COHNFLICT;

9/20/01 15-398: GRASP and Chaff 30

15

i Is that all?

= Huge overhead for constraint
propagation
= Better decision heuristics
= Better learning, problem specific
= Better engineering!
Chaff

9/20/01 15-398: GRASP and Chaff

31

16

