
1

GRASP-an efficient SAT solver

Pankaj Chauhan

9/20/01 15-398: GRASP and Chaff 2

What is SAT?

n Given a propositional formula in CNF,
find an assignment to boolean variables
that makes the formula true!

n E.g. ω1 = (x2 ∨ x3)

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

A = {x1=0, x2=1, x3=0, x4=1}

ω1 = (x2 ∨ x3)

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

A = {x1=0, x2=1, x3=0, x4=1}

SATisfying
assignment!

2

9/20/01 15-398: GRASP and Chaff 3

What is SAT?

n Solution 1: Search through all
assignments!
n n variables → 2n possible assignments,

explosion!

n SAT is a classic NP-Complete problem,
solve SAT and P=NP!

9/20/01 15-398: GRASP and Chaff 4

Why SAT?
n Fundamental problem from theoretical

point of view
n Numerous applications

n CAD, VLSI
n Optimization
n Model Checking and other type of formal

verification
n AI, planning, automated deduction

3

9/20/01 15-398: GRASP and Chaff 5

Outline

n Terminology
n Basic Backtracking Search
n GRASP
n Pointers to future work

Please interrupt me if anything is not clear!

9/20/01 15-398: GRASP and Chaff 6

Terminology
n CNF formula ϕ

n x1,…, xn: n variables
n ω1,…, ωm: m clauses

n Assignment A
n Set of (x,v(x)) pairs
n |A| < n → partial assignment {(x1,0), (x2,1), (x4,1)}
n |A| = n → complete assignment {(x1,0), (x2,1), (x3,0), (x4,1)}
n ϕ|A= 0 → unsatisfying assignment {(x1,1), (x4,1)}
n ϕ|A= 1 → satisfying assignment {(x1,0), (x2,1), (x4,1)}

ω1 = (x2 ∨ x3)

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

A = {x1=0, x2=1, x3=0, x4=1}

ω1 = (x2 ∨ x3)

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

A = {x1=0, x2=1, x3=0, x4=1}

4

9/20/01 15-398: GRASP and Chaff 7

Terminology
n Assignment A (contd.)

n ϕ|A= X → unresolved {(x1,0), (x2,0), (x4,1)}

n An assignment partitions the clause
database into three classes
n Satisfied, unsatisfied, unresolved

n Free literals: unassigned literals of a
clause

n Unit clause: #free literals = 1

9/20/01 15-398: GRASP and Chaff 8

Basic Backtracking Search

n Organize the search in the form of a
decision tree

n Each node is an assignment, called
decision assignment

n Depth of the node in the decision tree →
decision level δ(x)

n x=v@d → x is assigned to v at decision
level d

5

9/20/01 15-398: GRASP and Chaff 9

Basic Backtracking Search
n Iterate through:

1. Make new decision assignments to
explore new regions of search space

2. Infer implied assignments by a deduction
process. May lead to unsatisfied clauses,
conflict! The assignment is called
conflicting assignment.

3. Conflicting assignments leads to
backtrack to discard the search subspace

9/20/01 15-398: GRASP and Chaff 10

Backtracking Search in Action

ω1 = (x2 ∨ x3)

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

ω1 = (x2 ∨ x3)

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

x1

x1 = 0@1

{(x1,0), (x2,0), (x3,1)}

x2
x2 = 0@2

{(x1,1), (x2,0), (x3,1) , (x4,0)}

x1 = 1@1

⇒ x3 = 1@2

⇒ x4 = 0@1 ⇒ x2 = 0@1

⇒ x3 = 1@1

No backtrack in this example!

6

9/20/01 15-398: GRASP and Chaff 11

Backtracking Search in Action

ω1 = (x2 ∨ x3)

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

ω4 = (¬x1 ∨ x2 ∨ ¬x3)

ω1 = (x2 ∨ x3)

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

ω4 = (¬x1 ∨ x2 ∨ ¬x3)

Add a clause

⇒ x4 = 0@1

⇒ x2 = 0@1

⇒ x3 = 1@1

conflict
{(x1,0), (x2,0), (x3,1)}

x2

x2 = 0@2 ⇒ x3 = 1@2

x1 = 0@1

x1

x1 = 1@1

9/20/01 15-398: GRASP and Chaff 12

Davis-Putnam revisited

Deduction

Decision

Backtrack

7

9/20/01 15-398: GRASP and Chaff 13

GRASP

n GRASP is Generalized seaRch Algorithm
for the Satisfiability Problem (Silva,
Sakallah, ’96)

n Features:
n Implication graphs for BCP and conflict

analysis
n Learning of new clauses
n Non-chronological backtracking!

9/20/01 15-398: GRASP and Chaff 14

GRASP search template

8

9/20/01 15-398: GRASP and Chaff 15

GRASP Decision Heuristics
n Procedure decide()
n Choose the variable that satisfies the

most #clauses == max occurences as
unit clauses at current decision level

n Other possibilities exist

9/20/01 15-398: GRASP and Chaff 16

GRASP Deduction
n Boolean Constraint Propagation using

implication graphs
E.g. for the clause ω = (x ∨ ¬y), if y=1, then we must

have x=1

n For a variable x occuring in a clause , assignment 0
to all other literals is called antecedent assignment
A(x)
n E.g. for ω = (x ∨ y ∨ ¬z),

A(x) = {(y,0), (z,1)}, A(y) = {(x,0),(z,1)}, A(z) = {(x,0), (y,0)}

n Variables directly responsible for forcing the value of x
n Antecedent assignment of a decision variable is empty

9

9/20/01 15-398: GRASP and Chaff 17

Implication Graphs
n Nodes are variable assignments x=v(x)

(decision or implied)
n Predecessors of x are antecedent

assignments A(x)
n No predecessors for decision assignments!

n Special conflict vertices have A(κ) =
assignments to vars in the unsatisfied clause

n Decision level for an implied assignment is
δ(x) = max{δ(y)|(y,v(y))∈A(x)}

9/20/01 15-398: GRASP and Chaff 18

Example Implication Graph

ω1 = (¬x1 ∨ x2)

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

ω1 = (¬x1 ∨ x2)

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

Current truth assignment: {x9=0@1 ,x10=0@3, x11=0@3, x12=1@2, x13=1@2}

Current decision assignment: {x1=1@6}

ω6

ω6
κ

conflict

x9=0@1

x1=1@6

x10=0@3

x11=0@3

x5=1@6ω4

ω4

ω5

ω5 x6=1@6ω2

ω2

x3=1@6

ω1

x2=1@6

ω3

ω3

x4=1@6

10

9/20/01 15-398: GRASP and Chaff 19

GRASP Deduction Process

9/20/01 15-398: GRASP and Chaff 20

GRASP Conflict Analysis
n After a conflict arises, analyze the implication

graph at current decision level
n Add new clauses that would prevent the

occurrence of the same conflict in the future
⇒ Learning

n Determine decision level to backtrack to,
might not be the immediate one ⇒ Non-
chronological backtrack

11

9/20/01 15-398: GRASP and Chaff 21

Learning

n Determine the assignment that caused
the conflict, negation of this assignment
is called conflict induced clause ωC(κ)
n The conjunct of this assignment is

necessary condition for κ
n So adding ωC(κ) will prevent the

occurrence of κ again

9/20/01 15-398: GRASP and Chaff 22

Learning

n Find ωC(κ) by a backward traversal of
the IG, find the roots of the IG in the
transitive fanin of κ

n For our example IG,
ωC(κ) = (¬x1 ∨ x9 ∨ x10 ∨ x11)

12

9/20/01 15-398: GRASP and Chaff 23

n For any node of an IG x, partition A(x) into
Λ(x) = {(y,v(y)) ∈A(x)|δ(y)<δ(x)}

Σ(x) = {(y,v(y)) ∈A(x)|δ(y)=δ(x)}

n Conflicting assignment AC(κ) = causesof(κ),
where

Learning (some math)

(x,v(x)) if A(x) = φ

Λ(x) ∪ [∪∪ causesof(y)]o/w(y,v(y)) ∈ Σ(x)

causesof(x) =

9/20/01 15-398: GRASP and Chaff 24

Learning (some math)

n Deriving conflicting clause ωC(κ) from
the conflicting assignment AC(κ) is straight
forward

n For our IG,

ωC(κ) = Σ xv(x)

(x,v(x)) ∈ AC(κ)

AC(κ) = {x1=1@6, x9 =0@1, x10 = 0@3, x11 = 0@3}

13

9/20/01 15-398: GRASP and Chaff 25

Learning
n Unique implication points (UIPs) of an

IG also provide conflict clauses
n Learning of new clauses increases

clause database size
n Heuristically delete clauses based on a

user parameter
n If size of learned clause > parameter, don’t

include it

9/20/01 15-398: GRASP and Chaff 26

Backtracking
Failure driven assertions (FDA):

n If ωC(κ) involves current decision variable,
then after addition, it becomes unit clause,
so different assignment for the current
variable is immediately tried.

n In our IG, after erasing the assignment at
level 6, ωC(κ) becomes a unit clause
¬x1

n This immediately implies x1=0

14

9/20/01 15-398: GRASP and Chaff 27

Continued IG

ω9

ω9

κ’

x12=1@2

x7=1@6

x8=1@6

x1=0@6

x11=0@3

x10=0@3

x9=0@1

ω7

ω7

ω8

ωC(κ)
ωC(κ)

ωC(κ)
x13=1@2

ω9

Due to ωC(κ)

x1

Decision level

3

5

6

κ κ’

9/20/01 15-398: GRASP and Chaff 28

Backtracking

Conflict Directed Backtracking
n Now deriving a new IG after setting x1=0

by FDA, we get another conflict κ’

n Non-chronological backtrack to decision
level 3, because backtracking to any level
5, 4 would generate the same conflict κ’

15

9/20/01 15-398: GRASP and Chaff 29

Conflict Directed Backtracking contd.

n Backtrack level is given by

n β = d-1 chronological backtrack
n β < d-1 non-chronological backtrack

AC(κ’) = {x9 =0@1, x10 = 0@3, x11 = 0@3, x12=1@2, x13=1@2}

ωC(κ) = (x9 ∨ x10 ∨ x11 ∨ ¬ x12 ∨ ¬ x13)

Backtracking

β = max{δ(x)|(x,v(x))∈AC(κ’)}β = max{δ(x)|(x,v(x))∈AC(κ’)}

9/20/01 15-398: GRASP and Chaff 30

Procedure Diagnose()

16

9/20/01 15-398: GRASP and Chaff 31

Is that all?

n Huge overhead for constraint
propagation

n Better decision heuristics
n Better learning, problem specific
n Better engineering!

Chaff

