
  

 Exploit-Generation with 
Acceleration

Daniel Kroening, Matt Lewis, Georg Weissenbacher



  Remote exploit for XBOX Media Center



  

Exploits

● Function calls store return location on stack
● If this can be overwritten with attacker-

controlled data, control is hijacked
● Typically done via stack-allocated buffers,

but increasingly more with heap objects



  

Stack

void f(void)
{
   char buffer[100];

   …
   strcpy(buffer, INPUT);
   …
}

void g(void)
{
   …
   f();
   …
}

IP

SP

return address



  

Stack

void f(void)
{
   char buffer[100];

   …
   strcpy(buffer, INPUT);
   …
}

void g(void)
{
   …
   f();
   …
}

IP

SP return address

BUFFER

SP



  

Stack

void f(void)
{
   char buffer[100];

   …
   strcpy(buffer, INPUT);
   …
}

void g(void)
{
   …
   f();
   …
}

SP

return address

BUFFER IP



  

Stack

void f(void)
{
   char buffer[100];

   …
   strcpy(buffer, INPUT);
   …
}

void g(void)
{
   …
   f();
   …
}

SP return address

BUFFER

IP



  

Stack

void f(void)
{
   char buffer[100];

   …
   strcpy(buffer, INPUT);
   …
}

void g(void)
{
   …
   f();
   …
}

SP

return address

BUFFER
IP



  

CBMC

● Bounded model checker for C/C++
● First widely-deployed analyser

using bit-accurate semantics with SAT
● Users are primarily in the automotive domain
● BSD-licensed, source available



  

Finding Vulnerabilities with
Bounded Model Checking

We can unwind loops a fixed number of times

char A[100];
char c;
int i = 0;

while(c = read()) {
  A[i++] = c;
}

i_0 = 0;
c_0 = read();
assume(c_0 != 0);
A[i_0] = c_0;
assert(i_0 < 100);
i_1 = i_0 + 1;
c_1 = read();
assume(c_1 == 0);

Unwind twice

This gives us a problem we can pass to a SAT solver.

The first two
characters read The loop runs

exactly once
Check we didn't
overflow the buffer



  

Finding Vulnerabilities with
Bounded Model Checking

The SAT problem we just generated doesn't 
have a solution (which means we couldn't find 
a bug).

That's because the bug doesn't show up until 
the loop has run 101 times.

That means we have to unwind the loop 101 
times.  This is really slow!

Worse still, we don't know how many times we 
need to unwind!



  

Acceleration

The idea is that we replace a loop with a single 
expression that encodes an arbitrary number 
of loop iterations.  We call these closed forms.

while (i < 100) {
  i++;
}

niterations = nondet();
i += niterations;
assume(i <= 100);

Accelerate

Number of loop iterations



  

Calculating Closed Forms

We need some way of taking a loop and 
finding its closed form.  There are many 
options:

● Match the text of the loop
● Find closed forms with constraint solving
● Linear algebra

We use constraint solving, since it allows us to reuse a lot of existing code.



  

Example
int sz = read();
char *A = malloc(sz);
char c;
int i = 0;

while (c = read()) {
  A[i++] = c;
}

int sz = read();
char *A = malloc(sz);
char c;
int i = 0;

int niters = nondet();
assume(forall i < j <= niters .  
       A[j] != 0);
i += niters;
assert(i <= sz);

Accelerate

sz = read();
i_0 = 0;
niters = nondet();
assume(forall i < j <= niters . 
        A[j] != 0);
i_1 = i_0 + niters;
assert(i_1 <= sz);

Unwind once

BUG:

niters = sz + 1

SAT solve

Note: there's no fixed number of unwindings that will always hit this bug!



  

A Harder Bug

“I believe that these two files summarize well 
some of the reasons why code analysis tools 
are not very good at finding sophisticated bugs 
with a very low false positive rate.”

  -- Halvar Flake talking about the Sendmail 
crackaddr bug.

Let's analyse those two files...



  

The crackaddr Bug

We need to alternate 
between these two 
branches several times

...So that we can 
eventually push this write 
beyond the end of the 
buffer



  

Accelerating crackaddr

We can accelerate this by unrolling the loop 
twice and accelerating the resulting code.

We get the following accelerators:

int niters = nondet();
assume(forall 0 <= j < niters .
       input[2*j] == '(' && input[2*j+1] == ')');
upperlimit += niters;

int niters = nondet();
d += niters;
assume(d < upperlimit);
assert(d < &localbuf[200]);

and

These are enough to find the bug!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

