
: 1

Cellular Automata

and Universality

Klaus Sutner



Cellular Automata: 2

ECA 1



Cellular Automata: 3

ECA 1



Cellular Automata: 4

ECA 28



Cellular Automata: 5

ECA 28



Cellular Automata: 6

ECA 54



Cellular Automata: 7

Multiple Seeds



Cellular Automata: 8

Disaster

n = 23, t = 24, p = 690



Cellular Automata: 9

ECA 73



Cellular Automata: 10

ECA 45



Cellular Automata: 11

ECA 90



Cellular Automata: 12

ECA 30



Cellular Automata: 13

ECA 30



Cellular Automata: 14

782359



Cellular Automata: 15

782340



Cellular Automata: 16

782353



Cellular Automata: 17

722797



Cellular Automata: 18

Langton’s CA



CA and Correctness Proofs: 19

� Cellular Automata

2 CA and Correctness Proofs



CA and Correctness Proofs: 20

A Hard Problem

How does one prove properties of cellular automata?

The short term behavior (first-order logic) is decidable via automata
theory.

Almost any question about the long term behavior is undecidable; there
is no standardized argument.



CA and Correctness Proofs: 21

Moews

13 states



CA and Correctness Proofs: 22

Waksman

9 states



CA and Correctness Proofs: 23

Mazoyer

6 states



CA and Correctness Proofs: 24

Mazoyer’s Proof

The paper in TCS is 54 pages long and uses lots of diagrams.

To be sure, the proof is almost certainly correct, but it contains lots of
little, unrelated combinatorial facts that are difficult for a human to
check – eyes glaze over very quickly.

The proof should be machine checked.



CA and Correctness Proofs: 25

Universality of ECA 110

ECA 110 is given by the following local rule:

000 → 0 100 → 0
001 → 1 101 → 1
010 → 1 110 → 1
011 → 1 111 → 0

As a Boolean function this comes down to

ρ(x, y, z) = (x ∧ y) ∨ (y ⊕ z)



CA and Correctness Proofs: 26

Another Look

Here is the table again, but ordered differently:

000 → 0 010 → 1
001 → 1 011 → 1
100 → 0 110 → 1
101 → 1 111 → 0

The left column has “control bit” y = 0 and amounts to a left shift of z.

The right column has “control bit” y = 1 and amounts to NAND(x, z).

Since NAND is a functionally complete set of Boolean operations . . .



CA and Correctness Proofs: 27

One-Point Seed

We get a half-light-cone: the configuration grows to the left only, at
speed 1. Does not look particularly complicated.



CA and Correctness Proofs: 28

Finite Seed



CA and Correctness Proofs: 29

Random Seed



CA and Correctness Proofs: 30

After 1000 Steps



CA and Correctness Proofs: 31

Background

A background pattern naturally evolves; think of this as vacuum.



CA and Correctness Proofs: 32

Particles

Particles can move in this vacuum.



CA and Correctness Proofs: 33

More Particles



CA and Correctness Proofs: 34

Interactions



CA and Correctness Proofs: 35

Interactions



CA and Correctness Proofs: 36

Interactions



CA and Correctness Proofs: 37

Interactions

and interact . . .



CA and Correctness Proofs: 38

Interactions

and interact . . .



CA and Correctness Proofs: 39

Interactions

and interact . . .



CA and Correctness Proofs: 40

Putting it Together

In the mid-90’s, Matthew Cook, working at WRI, developed a fancy
simulation system that allowed him to design and experiment with large
configurations on ECA 110.

Based on his observations, he was able to show universality assuming
almost periodic configurations by simulating cyclic tag systems, a variant
of Post tag systems.

This is arguable the most interesting result in the study of computational
universality in the last two or three decades. It’s also the only result that
lead to a law suit.



CA and Correctness Proofs: 41

Verification

A number of people have checked the proof in great detail and there are
even attempts at producing a more formalized versions of it.

Again, the proof is probably correct but it is really impossible to check all
the details by hand – we need a computer-checkable version.


	Cellular Automata
	CA and Correctness Proofs

