
Model Checking with the
Partial Order Reduction

Edmund M. Clarke, Jr.
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

1

Asynchronous Computation

Theinterleaving modelfor asynchronous systems allows
concurrent events to be orderedarbitrarily.

To avoid discriminating against any particular ordering, the
events are interleaved in all possible ways.

The ordering betweenindependenttransitions is largely
meaningless!!

2

The State Explosion Problem

Allowing all possible orderingsis a potential cause of the state
explosion problem.

To see this, considern transitionsthat can be executed
concurrently.

In this case, there aren! different orderingsand2n different states
(one for each subset of the transitions).

If the specification does not distinguish between these sequences,
it is beneficial to consider onlyone withn + 1 states.

�2 �3�2�1 ??	 �1 �2 �1�1 �2�3�3�3 RR 		R ?? R	
3

Partial Order Reduction

Thepartial order reductionis aimed at reducing the size of the
state space that needs to be searched.

It exploits thecommutativityof concurrently executed
transitions, which result in the same state.

Thus, this reduction technique is best suited forasynchronous
systems.

(In synchronous systems, concurrent transitions are executed
simultaneously rather than being interleaved.)s2s1 �� �� rsR 		 R

4

Partial Order Reduction (Cont.)

The method consists of constructing areduced state graph.

Thefull state graph, which may be too big to fit in memory,is
never constructed.

Thebehaviors of the reduced graphare asubsetof thebehaviors
of the full state graph.

The justification of the reduction method shows that the
behaviors that are not present do not add any information.

5

Partial Order Reduction (Cont.)

The namepartial order reductioncomes from early versions of
the algorithms that were based on the partial order model of
program execution.

However, the method can be described better asmodel checking
using representatives, since the verification is performed using
representatives from the equivalence classes of behaviors.� D. Peled. All from one, one for all: on model checking using

representatives. InProc. 5th Workshop on Comput.-Aided
Verification, pages 409–423, 1993.

6

Modified Kripke Structures

Thetransitionsof a system play a significant role in the partial
order reduction.

The partial order reduction is based on thedependency relation
that exists between the transitions of a system.

Thus, we modify the definition of a Kripke structure slightly.

A state transition systemis a quadruple(S; T; S0; L) where� the set of statesS, the set of initial statesS0, and the labeling
functionL are defined as for Kripke structures, and� T is a set of transitions such that for each� 2 T , � � S � S.

A Kripke structureM = (S;R; S0; L) may be obtained by
definingR so thatR(s; s0) , 9� 2 T [�(s; s0)]:

7

Basic Definitions

A transition� 2 T is enabledin a states if there is a states0 such
that�(s; s0) holds.

Otherwise,� is disabledin s. The set of transitions enabled ins
is enabled(s).
A transition� is deterministicif for every states there is at most
one states0 such that�(s; s0).
When� is deterministic we often writes0 = �(s) instead of�(s; s0).
Note:We will only consider deterministic transitions!

8

Basic Definitions (Cont.)

A path� from a states0 is afinite or infinite sequence� = s0 �0�! s1 �1�! : : :
such that for everyi, �i(si; si+1) holds.

Here, we do not require paths to be infinite. Moreover, any prefix
of a path is also a path.

If � is finite, then thelengthof � is the number of transitions in�
and will be denoted byj�j

9

Reduced State Graph

Goal is toreduce the number of statesconsidered in model
checking, while preserving the correctness of the property.

Will assume that areduced state graphis first generated
explicitly usingdepth-first search.

The model checking algorithm is then applied to the resulting
state graph, which hasfewer states and edges.

Thisspeeds up the construction of the graphanduses less
memory, thus resulting in a more efficient model checking
algorithm.� Actually, the reduction can be appliedon-the-flywhile doing

the model checking.� The DFS can also be replaced bybreadth first searchand
combined withsymbolic model checking.

10

Depth-First-Search Algorithm

1 hash(s0);
2 seton stack(s0);
3 expand state(s0);
4 procedure expand state(s)
5 work set(s) := ample(s);
6 while work set(s) is not emptydo
7 let � 2 work set(s);
8 work set(s) := work set(s) n f�g;
9 s0 := �(s);
10 if new(s0) then
11 hash(s0);
12 seton stack(s0);
13 expand state(s0);
14 end if;
15 create edge(s; �; s0);
16 end while;
17 setcompleted(s);
18 end procedure

11

Depth-First-Search Algorithm (Cont.)

The reduction is performed by modifying thestandard DFS
algorithmto construct the reduced state graph.

The search starts with an initial states0 (line 1) and proceeds
recursively.

For each states it selects only a subsetample(s) of the enabled
transitionsenabled(s) (in line 5).

The DFS explores only successors generated by these transitions
(lines 6-16).� The DFS algorithm constructs the reduced state graph

directly.� Constructing the full state graph and later reducing it would
defy the purpose of the reduction.

12

Depth-First-Search Algorithm (Cont.)

When model checking is applied to the reduced state graph� it terminates with apositive answerwhen the property holds
for the original state graph.� it produces acounterexample, otherwise

Note: The counterexample maydiffer from one obtained using
the full state graph.

13

Ample Sets

In order to implement the algorithm we must find a systematic
way of calculatingample(s) for any given states.
The calculation ofample(s) needs to satisfy three goals:

1. Whenample(s) is used instead ofenabled(s), enough
behaviors must be retained so DFS gives correct results.

2. Usingample(s) instead ofenabled(s) should result in a
significantly smaller state graph.

3. The overhead in calculatingample(s) must be reasonably
small.

14

Dependence and Independence

An independencerelationI � T � T is a symmetric,
antireflexive relation such that fors 2 S and(�; �) 2 I:

EnablednessIf �; � 2 enabled(s) then� 2 enabled(�(s)).
Commutativity �; � 2 enabled(s) then�(�(s)) = �(�(s)).
ThedependencyrelationD is the complement ofI, namelyD = (T � T) n I:
Note� The enabledness condition states that a pair of independent

transitions do notdisableone another.� However, that it is possible for one toenableanother.

15

Potential Problems

Suppose that� and� commute: s2s1 �� �� rsR 		 R
It does not matter whether� is executed before� or vice versa in
order to reach the stater from s.
It is tempting to select only one of the transitions originating
from s.
This is not appropriate for the following reasons:

Problem 1: The checked property might be sensitive to the
choice between the statess1 ands2, not only the statess andr.
Problem 2: The statess1 ands2 may have other successors in
addition tor, which may not be explored if either is eliminated.

16

Visible and Invisible Transitions

LetL : S ! 2AP be the function that labels each state with a set
of atomic propositions.

A transition� 2 T is invisiblewith respect toAP 0 � AP if for
each pairs; s0 2 S such thats0 = �(s),L(s) \ AP 0 = L(s0) \ AP 0:
Thus, a transition is invisible when its execution from any state
does not change the value of the propositional variables inAP 0.
A transition isvisible if it is not invisible.

17

Stuttering Equivalence

Stutteringrefers to a sequence of identically labeled states along
a path in a Kripke structure.

Let � and� be two infinite paths:� = s0 �0�! s1 �1�! : : : and� = r0 �0�! r1 �1�! : : :
Then� and� arestuttering equivalent, denoted� �st �, if there
are two infinite sequences of integers0 = i0 < i1 < i2 < : : : and0 = j0 < j1 < j2 < : : :
such that for everyk � 0,L(sik) = L(sik+1) = : : : = L(sik+1�1) =L(rjk) = L(rjk+1) = : : : = L(rjk+1�1):
Stuttering equivalence can be defined similarly for finite paths.

18

Stuttering Equivalence (Cont.)

A finite sequence of identically labeled states is called ablock.

Intuitively, Two paths are stuttering equivalent if they can be
partitioned into blocks, so states in thekth block of one are
labeled the same as states in thekth block of the other.

Note: Corresponding blocks may have different lengths!p; q p; q :p;:q:p;:q p;:qp;:q:p;:qp;:qp; q p;:qp;:q p;:q
19

Stuttering Equivalence Example

Consider the diagram used to illustrate commutativity again.s2s1 �� �� rsR 		 R
Suppose that at least one transition, say�, is invisible, thenL(s) = L(s1) andL(s2) = L(r).
Consequently, s s1 r �st s s2 r
Note: The pathss s1 r ands s2 r are stuttering equivalent!!

20

LTL and Stuttering Equivalence

An LTL formula A f is invariant under stutteringif and only if
for each pair of paths� and�0 such that� �st �0,� j= f if and only if �0 j= f:
We denote the subset of the logic LTL without the next time
operator byLTL�X.

Theorem. AnyLTL�X property is invariant under stuttering.

21

Stuttering Equivalent Structures

Without loss of generality, assume thatM has initial states0 and
thatM 0 has initial states00.
Then the two structuresM andM 0 arestuttering equivalentif
and only if� For each path� of M that starts ins0 there is a path�0 of M 0

starting ins00 such that� �st �0.� For each path�0 of M 0 that starts ins00 there is a path� of M
starting ins0 such that�0 �st �.

Corollary. LetM andM 0 be two stuttering equivalent
structures. Then, for everyLTL�X propertyA fM; s0 j= f if and only if M 0; s00 j= A f:

22

DFS Algorithm and Ample Sets

Commutativity and invisibility allow us to avoid generating some
of the states when the specification is invariant under stuttering,

Based on this observation, it is possible to devise a systematic
way ofselecting an ample setfor any given state.

The ample sets will be used by the DFS algorithm to construct a
reduced state graph so thatfor every path not considered there is
a stuttering equivalent path that is considered.

This guarantees that the reduced state graph is stuttering
equivalent to the full state graph.

We say that states is fully expandedwhenample(s) = enabled(s):
In this case,all of the successorsof that state will be explored by
the DFS algorithm.

23

Correctness of Reduction

Will state four conditions for selectingample(s) � enabled(s)
so satisfaction of theLTL�X specifications is preserved.

Thereductionwill depend on the set of propositionsAP 0 that
appear in theLTL�X formula.

Condition C0 is very simple:

C0 ample(s) = ; if and only if enabled(s) = ;.
Intuitively, if the state has at least one successor, then the reduced
state graph also contains a successor for this state.

24

Correctness of Reduction (Cont.)

ConditionC1 is the most complicated constraint.

C1 Along every path in the full state graph that starts ats, the
following condition holds:

A transition that is dependent on a transition inample(s) can
not be executed without one inample(s) occurring first.

Note that ConditionC1 refers to paths in thefull state graph.

Obviously, we need a way of checking thatC1 holds without
actually constructing the full state graph.

Later, we will show how to restrictC1 so thatample(s) can be
calculated based on the current states.

25

Correctness of Reduction (Cont.)

Lemma. The transitions inenabled(s) n ample(s) are all
independentof those inample(s).
Proof:

Let 2 enabled(s) n ample(s).
Suppose that(; �) 2 D, where� 2 ample(s).
Since is enabled ins, there is a path starting with in the full
graph.

But then a transition dependent on some transition inample(s) is
executed before a transition inample(s).
This contradicts conditionC1.

26

Correctness of Reduction (Cont.)

If we always choose the next transition fromample(s), we will
not omit any paths that are essential for correctness.

ConditionC1 implies that such a path will have one of two
forms:� The path has a prefix�0�1 : : : �m�, where� 2 ample(s) and

each�i is independent of all transitions inample(s) including�.� The path is an infinite sequence of transitions�0�1 : : : where
each�i is independent of all transitions inample(s).

27

Correctness of Reduction (Cont.)

If along a sequence of transitions�0�1 : : : �m executed froms,
If none of the transitions inample(s) have occurred, then all the
transitions inample(s) remain enabled.

This is because each�i is independent of the transitions inample(s) and, therefore, cannot disable them.

28

Correctness of Reduction (Cont.)

In the first case, assume that the sequence of transitions�0�1 : : : �m� reaches a stater.
This sequence will not be considered by the DFS algorithm.

By applying theenablednessandcommutativity conditionsm
times, we can construct a sequence��0�1 : : : �m, that also
reachesr.
Thus, if the reduced state graph does not contain the sequence�0�1 : : : �m� that reachesr, we can construct froms another
sequence that reachesr. �1�2�m �0�0 ��� ��1r2 r0s2

r = rm r1�2�m
s = s0s1sm

29

Another Correctness Conditions

Consider the two sequences of states:� � = s0s1 : : : smr generated by�0�1 : : : �m�, and� � = sr0r1 : : : rm generated by��0�1 : : : �m.

In order to discard�, we want� and� to bestuttering equivalent.

This is guaranteed if� is invisible, since thenL(si) = L(ri) for0 � i � m.

Thus, the checked property will not be able to distinguish
between the two sequences above.

C2 If s is notfully expanded, then every� 2 ample(s) is
invisible.� This condition is calledinvisibility .

30

Correctness of Reduction (Cont.)

Now consider the case in which an infinite path�0�1�2 : : : that
starts ats does not include any transition fromample(s).
By ConditionC2 all transitions inample(s) are invisible. Let�
be such a transition.

Then the path generated by the sequence��0�1�2 : : : is
stuttering equivalent to the one generated by�0�1�2 : : : .
Again, even though the path�0�1�2 : : : is not in the reduced state
graph, a stuttering equivalent path is included.

31

Problem with Correctness Condition

C1 andC2 arenot yet sufficientto guarantee that the reduced
state graph is stuttering equivalent to the full state graph.

In fact, there is a possibility thatsome transition will actually be
delayed foreverbecause of a cycle in the constructed state graph.�? ?� �1�2�3� ^?
Assume that� is independent of the transitions�1, �2 and�3 and
that�1, �2 and�3 are interdependent.

The process on the left can execute the� exactly once.

Assume there is one propositionp, which is changed fromTrue
to False by �, so that� is visible.

The process on the right performs the invisible transitions�1, �2
and�3 repeatedly in a loop.

32

Problem with Correctness Condition (Cont.)

The full state graph of the system is shown below:�2 �1�3 �1 ^� ?� s1� �� s2�2 s3�2�3 �1? � � ? ?^̂� � ?
Starting with the initial states1, we can selectample(s1) = f�1g
and generates2 = �1(s1).
Next, we can selectample(s2) = f�2g and generates3 = �2(s2).
When we reachs3, we can selectample(s3) = f�3g and close
the cycle(s1; s2; s3).
(Easy to see thatC0, C1 andC2 are satisfied at each step.)

But, the reduced state graph does not contain any sequences
wherep is changed fromTrue to False!!

33

Cycle Closing Condition

Note that at each state on the cycle(s1; s2; s3; s1) � is deferred to
a possible future state.

When the cycle is closed, the construction terminates, and
transition� is ignored!!

To prevent this situation from occurring we need one more
condition:

C3 A cycle is not allowed if it contains a state in which some
transition� is enabled, but is never included inample(s) for
any states on the cycle.

ConditionC3 is called theCycle closing condition.

34

Problem 1 Again

Consider the diagram used to illustrate commutativity of actions.s2s1 �� �� rsR 		 R
Assume that the DFS reduction algorithm chooses� asample(s)
and does not include states1 in the reduced graph.

By ConditionC2, � must be invisible; thuss; s2; r ands; s1; r are
stuttering equivalent.

Since we are only interested in stuttering invariant properties, we
can’t distinguish between the two sequences.

35

Problem 2 Again

Assume that there is a transition enabled froms1.s1 s2s	 r �� �� RR 		 R
Note that cannot be dependent on�. Otherwise, the sequence�; violatesC1.

Thus, is independent of�. Since it is enabled ins1, it must also
be enabled in stater.
Assume that, when executed fromr, results in stater0 and
when executed froms1 results in states01.
Since� is invisible, the two state sequencess; s1; s01 ands; s2; r; r0 arestuttering equivalent.

Therefore, properties that are invariant under stutteringwill not
distinguish between the two.

36

Heuristics for Ample Sets

We assume that the concurrent program is composed of
processes and that each process has aprogram counter.� pci(s) will denote the program counter of a processPi in a

states.� pre(�) is a set of transitions that includes the transitions
whose execution may enable�.� dep(�) is the set of transitions that are dependent on�.� Ti is the set of transitions of processPi.� Ti(s) = Ti \ enabled(s) denotes the set of transitions ofPi
that are enabled in the states.� currenti(s) is the set of transitions ofPi that are enabled in
some states0 such thatpci(s0) = pci(s).

37

Heuristics for Ample Sets (Cont.)

We now describe thedependency relationfor the different
models of computation.� Pairs of transitions that share a variable, which is changedby

at least one of them, are dependent.� Pairs of transitions belonging to the same process are
dependent.� Two send transitions that use the same message queue are
dependent. Similarly, two receive transitions are dependent.

Notethat a transition that involveshandshakingor rendezvous
communicationas in CSP or ADA can be treated as a joint
transition of both processes. Therefore, it depends on all of the
transitions of both processes.

38

Heuristics for Ample Sets (Cont.)

An obvious candidate forample(s) is the setTi(s) of transitions
enabled ins for some processPi.� Since the transitions inTi(s) are interdependent, an ample set

for s must include either all of the transitions or none of them.� To construct an ample set for the current states, we start with
some processPi such thatTi(s) 6= ;.� We want to check whetherample(s) = Ti(s) satisfies
ConditionC1.� There are two cases in which this selection might violateC1.� In both of these cases, some transitions independent of those
in Ti(s) are executed, eventually enabling a transition� that is
dependent onTi(s).� The independent transitions in the sequence cannot be inTi,
since all the transitions ofPi are interdependent.

39

Heuristics for Ample Sets (First Case)

In the first case,� belongs to some other processPj.
A necessary condition for this to happen is thatdep(Ti(s))
includes a transition of processPj.
By examining the dependency relation, this condition can be
checked effectively.

40

Heuristics for Ample Sets (Second Case)

In the second case,� belongs toPi. Suppose that the transition� 2 Ti which violatesC1 is executed from a states0.� The transitions executed on the path froms to s0 are
independent ofTi(s) and hence, are from other processes.� Therefore,pci(s0) = pci(s). So� must be incurrenti(s).� In addition,� 62 Ti(s), otherwise it does not violateC1.� Thus,� 2 currenti(s) n Ti(s).� Since� is not inTi(s), it is disabled ins.� Therefore, a transition inpre(�) must be included in the
sequence froms to s0.

Thus, a necessary condition is thatpre(currenti(s) n Ti(s))
includes transitions of processes other thanPi.
This condition can also be checked effectively.

41

If all else fails : : :
In both cases we discardTi(s) and try the transitionsTj(s) of
another processj as a candidate forample(s).
Note: We take aconservative approachdiscarding some ample
sets even though at run-timeC1 might not actually be violated.

42

