The SMV system*
for SMV version 2.5.4

K. L. McMillan
mcmillan@cs.cmu.edu

Original: February 2, 1992
Last updated: November 6, 2000

The SMV system is a tool for checking finite state systems against specifications in the
temporal logic CTL. The input language of SMV is designed to allow the description of
finite state systems that range from completely synchronous to completely asynchronous,
and from the detailed to the abstract. One can readily specify a system as a synchronous
Mealy machine, or as an asynchronous network of abstract, nondeterministic processes. The
language provides for modular hierarchical descriptions, and for the definition of reusable
components. Since it is intended to describe finite state machines, the only data types in the
language are finite ones Booleans, scalars and fixed arrays. Static, structured data types
can also be constructed. The logic CTL allows a rich class of temporal properties, including
safety, liveness, fairness and deadlock freedom, to be specified in a concise syntax. SMV
uses the OBDD-based symbolic model checking algorithm to efficiently determine whether
specifications expressed in CTL are satisfied.

The primary purpose of the SMV input language is to describe the transition relation of
a finite Kripke structure. Any expression in the propositional calculus can be used to de-
scribe this relation. This provides a great deal of flexibility, and at the same time a certain
danger of inconsistency. For example, the presence of a logical contradiction can result in a
deadlock — a state or states with no successor. This can make some specifications vacuously
true, and makes the description unimplementable. While the model checking process can
be used to check for deadlocks, it is best to avoid the problem when possible by using a re-
stricted description style. The SMV system supports this by providing a parallel-assignment
syntax. The semantics of assignment in SMV is similar to that of single assignment data
flow languages. By checking programs for multiple parallel assignments to the same variable,
circular assignments, and type errors, the interpreter insures that a program using only the
assignment mechanism is implementable. Consequently, this fragment of the language can
be viewed as a hardware description language, or a programming language. The SMV system
is by no means the last word on symbolic model checking techniques, nor is it intended to be
a complete hardware description language. It is simply an experimental tool for exploring

*IATEX sources restored by Tatsuhiro Tsuchiya, Dept. of Informatics and Mathematical Science, Osaka
University, Japan, t-tutiya@ics.es.osaka-u.ac.jp. Edited and updated by Sergey Berezin, Carnegie
Mellon University, berez@cs. cmu. edu

the possible applications of symbolic model checking to hardware verification.

This document describes the syntax and semantics of the SMV input language, and the
function of the SMV model checker. It also describes some optional features of the model
checker which can be used to fine tune the performance, and gives some examples of its
application. All of the examples in this document are made available with the software. For
a description of all the model checker options, see the UNIX programmer’s manual entry for
SMYV, which is also included with the software.

1 The input language

Before delving into the syntax and semantics of the language, let us first consider a few
simple examples that illustrate the basic concepts. Consider the following short program in
the language.

MODULE main

VAR
request : boolean;
state : {ready,busy};

ASSIGN
init(state) := ready;
next(state := case
state = ready & request : busy;
1 : {ready,busy};
esac;
SPEC

AG(request -> AF state = busy)

The input file describes both the model and the specification. The model is a Kripke
structure, whose state is defined by a collection of state variables, which may be of Boolean
or scalar type. The variable request is declared to be a Boolean in the above program,
while the variable state is a scalar, which can take on the symbolic values ready or busy.
The value of a scalar variable is encoded by the interpreter using a collection of Boolean
variables, so that the transition relation maybe represented by an OBDD. This encoding is
invisible to the user, however.

The transition relation of the Kripke structure, and its initial state (or states), are deter-
mined by a collection of parallel assignments, which are introduced by the keyword ASSIGN.
In the above program, the initial value of the variable state is set to ready. The next value
of state is determined by the current state of the system by assigning it the value of the
expression

case
state = ready & request : busy;
1 : {ready,busy};

esac;

The value of a case expression is determined by the first expression on the right hand
side of a : such that the condition on the the left hand side is true. Thus, if state =

ready & request is true, then the result of the expression is busy, otherwise, it is the set
{ready,busy}. When a set is assigned to a variable, the result is a non-deterministic choice
among the values in the set. Thus, if the value of status is not ready, or request is false
(in the current state), the value of state in the next state can be either ready or busy. Non-
deterministic choices are useful for describing systems which are not yet fully implemented
(ze., where some design choices are left to the implementor), or abstract models of complex
protocols, where the value of some state variables cannot be completely determined.

Notice that the variable request is not assigned in this program. This leaves the SMV
system free to choose any value for this variable, giving it the characteristics of an uncon-
strained input to the system.

The specification of the system appears as a formula in CTL under the keyword SPEC.
The SMV model checker verifies that all possible initial states satisfy the specification. In
this case, the specification is that invariantly if request is true, then inevitably the value of
state is busy.

The following program illustrates the definition of reusable modules and expressions. It
is a model of a 3 bit binary counter circuit. Notice that the module name “main” has special
meaning in SMV| in the same way that it does in the C programming language. The order
of module definitions in the input file is inconsequential.

MODULE main
VAR
bit0 : counter_cell(1);
bitl : counter_cell(bit0.carry_out);
bit2 : counter_cell(bitl.carry_out);
SPEC
AG AF bit2.carry_out

MODULE counter_cell(carry_in)

VAR

value : boolean;
ASSIGN

init(value) := 0;

next(value) := value + carry_in mod 2;
DEFINE

carry_out := value & carry_in;

In this example, we see that a variable can also be an instance of a user defined module.
The module in this case is counter_cell, which is instantiated three times, with the names
bit0, bitl and bit2. The counter cell module has one formal parameter carry_in. In
the instance bit0, this formal parameter is given the actual value 1. In the instance bit1,
carry_in is given the value of the expression bit0.carry_out. This expression is evaluated
in the context of the main module. However, an expression of the form a.b denotes component
b of module a, just as if the module a were a data structure in a standard programming
language. Hence, the carry_in of module bit1 is the carry_out of module bit0. The
keyword DEFINE is used to assign the expression value & carry_in to the symbol carry_out.

Definitions of this type are useful for describing Mealy machines. They are analogous to
macro definitions, but notice that a symbol can be referenced before it is defined.

The effect of the DEFINE statement could have been obtained by declaring a variable
and assigning its value, as follows:

VAR
carry_out : boolean;
ASSIGN
carry_out := value & carry_in;

Notice that in this case, the current value of the variable is assigned, rather than the next
value. Defined symbols are sometimes preferable to variables, how ever, since they don’t
require introducing a new variable into the BDD representation of the system. The weak-
ness of defined symbols is that they cannot be given values non-deterministically. Another
difference between defined symbols and variables is that while variables are statically typed,
definitions are not. This may be an advantage or a disadvantage, depending on our point of
view.

In a parallel-assignment language, the question arises: “What happens if a given variable
is assigned twice in parallel?” More seriously: “What happens in the case of an absurdity,
like a := a + 1; (as opposed to the sensible next(a) := a + 1;).” In the case of SMV,
the interpreter detects both multiple assignments and circular references in expressions, and
treats these as semantic errors, even in the case where the corresponding system of equations
has a unique solution. Another way of putting this is that there must be a total order in which
the assignments can be executed which respects all of their data dependencies. The same
logic applies to defined symbols. As a result, all legal SMV programs can be implemented.

By default, all of the assignment statements in an SMV program are executed in parallel
and simultaneously. It is possible, however, to define a collection of parallel processes, whose
actions are interleaved in the execution sequence of the program. This is useful for describ-
ing communication protocols, or asynchronous circuits, or other systems whose actions are
not synchronized (including synchronous circuits with more than one clock region). This
technique is illustrated by the following program, which represents a ring of three inverting
gates.

MODULE main
VAR
gatel : process inverter(gate3.output) ;
gate2 : process inverter(gatel.output) ;
gate3 : process inverter(gate2.output) ;
SPEC
(AG AF gatel.out) & (AG AF !gatel.out)

MODULE inverter (input)
VAR

output : boolean;
ASSIGN

init (output)

next (output)

0;
linput;

A process is an instance of a module which is introduced by the keyword process. The
program executes a step by non-deterministically choosing a process, then executing all of
the assignment statements in that process in parallel. It is implicit that if a given variable
is not assigned by the process, then its value remains unchanged. Because the choice of
the next process to execute is non-deterministic, this program models the ring of inverters
independently of the speed of the gates. For each gate, the specification of this program states
that the output of the gate oscillates (ie., that its value is infinitely often zero, and infinitely
often 1). In fact, this specification is false, since the system is not forced to eventually choose
a given process to execute, hence the output of a given gate may remain constant, regardless
of its input.

In order to force a given process to execute infinitely often, we can use a fairness
constraint. A fairness constraint restricts the attention of the model checker to only those
execution paths along which a given CTL formula is true infinitely of ten. Each process
has a special variable called running which is true if and only if that process is currently
executing. By adding the declaration

FAIRNESS
running

to the module inverter, we can effectively force every instance of inverter to execute
infinitely often, thus making the specification true.

One advantage of using processes to describe a system is that it allows a particularly
efficient OBDD representation of the transition relation. We observe that the set of states
reachable by one step of the program is the union of the sets of states reachable by each
individual process. Hence, rather than constructing the transition relation of the entire
system, we can use the transition relations of the individual processes separately and combine
the results. This can yield a substantial savings in space in representing the transition
relation. Occasionally , however, the fact that two processes cannot make simultaneous
transitions leads to increased complexity in representing the set of states reachable by n
steps.

The alternative to using processes to model an asynchronous circuit would be to have all
gates execute simultaneously, but allow each gate the non-deterministic choice of evaluating
its output, or keeping the same output value. Such a model of the inverter ring would look
like the following:

MODULE main
VAR
gatel : inverter(gate3.output);
gate2 : inverter(gate2.output);
gate3 : inverter(gatel.output);
SPEC
(AG AF gatel.out) & (AG AF !gatel.out)

MODULE inverter (input)
VAR
output : boolean;

ASSIGN
init (output)
next (output)

0;
l'input union output;

The set union operator coerces its arguments to singleton sets as necessary. Thus, the next
output of each gate can be either its current output, or the negation of its current input
each gate can choose non-deterministically whether to delay or not. As a result, the number
of possible transitions from a given state can be as high as 2", where n is the number of
gates. This sometimes (but not always) makes it more expensive to represent the transition
relation.

As a second example of processes, the following program uses a variable semaphore to
implement mutual exclusion between two asynchronous processes. Each process has four
states: idle, entering, critical and exiting. The entering state indicates that the
process wants to enter its critical region. If the variable semaphore is zero, it goes to the
critical state, and sets semaphore to one. On exiting its critical region, the process sets
semaphore to zero again.

MODULE main
VAR
semaphore : boolean;
procl : process user;
proc2 : process user;
ASSIGN
init (semaphore)
SPEC
AG !(procl.state

0;

critical & proc2.state = critical)

MODULE user

VAR
state : {idle,entering ,critical,exiting};
ASSIGN
init(state) := idle;
next (state) :=
case
state = idle : {idle,entering};
state = entering & !semaphore : critical;
state = critical : {critical,exiting};
state = exiting : idle;
1 : state;
esac;

next (semaphore) :=
case
state = entering : 1;
state = exiting : 0;
1 : semaphore;

esac;
FAIRNESS
running

If any of the specification is false, the SMV model checker attempts to produce a coun-
terexample, proving that the specification is false. This is not always possible, since formulas
preceded by existential path quantifiers cannot be proved false by showing a single execution
path. Similarly, subformulas preceded by universal path quantifier cannot be proved true
by showing a single execution path. In addition, some formulas require infinite execution
paths as counterexamples. In this case, the model checker outputs a looping path up to and
including the first repetition of a state.

In the case of the semaphore program, suppose that the specification were changed to

AG (procl.state = entering -> AF procl.state = critical)

In other words, we specify that if proc1l wants to enter its critical region, it eventually does.
The output of the model checker in this case is shown in Figure 1. The counterexample
shows a path with procl going to the entering state, followed by a loop in which proc2
repeatedly enters its critical region and returns to its idle state, with proc1 only executing
only while proc2 is in its critical region. This path shows that the specification is false, since
procl never enters its critical region. Note that in the printout of an execution sequence,
only the values of variables that change are printed, to make it easier to follow the action in
systems with a large number of variables.

Although the parallel assignment mechanism should be suitable to most purposes, it is
possible in SMV to specify the transition relation directly as a propositional formula in terms
of the current and next values of the state variables. Any current/next state pair is in the
transition relation if and only if the value of the formula is one. Similarly, it is possible to
give the set of possible initial states as a formula in terms of only the current state variables.
These two functions are accomplished by the TRANS and INIT statements respectively. As
an example, here is a description the three inverter ring using only TRANS and INIT:

MODULE main

VAR
gatel : inverter(gate3.output);
gate2 : inverter(gatel.output);
gate3 : inverter(gate2.output);

SPEC
(AG AF gatel.out)& (AG AF !gatel.out)

MODULE inverter (input)

VAR
output : boolean;
INIT
output = 0
TRANS
next (output) = !input | next(output) = output

7

specification is false
AG (procl.state = entering -> AF procl.s... is false:
.semaphore = 0

.procl.state
.proc2.state

idle
idle

next state:

[executing process.proci]

next state:

.procl.state = entering

AF procl.state = critical is false:
[executing process .proc2]

next state:

[executing process .proc2]
.proc2.state = entering

next state:

[executing process .procl]
.semaphore = 1
.proc2.state = critical
next state:

[executing process .proc2]

next state:

[executing process .proc2]

.proc2.state = exiting
next state:

.semaphore = 0
.proc2.state = idle

Figure 1: Model checker output for semaphore example.

According to the TRANS declaration, for each inverter, the next value of the output is equal
either to the negation of the input, or to the current value of the output. Thus, in effect,
each gate can choose non-deterministically whether or not to delay.

Similarly, one can use the INVAR declaration to specify invariants that every state in the
transition system must satisfy, which results in restricting the transition relation to only
those states. The INVAR clause corresponds to the normal assignments. For example,

ASSIGN
X =y +1,;

can be written as

INVAR
x=y +1

The use of TRANS, INVAR and INIT is not recommended, since logical absurdities in these
declarations can lead to unimplementable descriptions. For example, one could declare
the logical constant 0 to represent the transition relation, resulting in a system with no
transitions at all. However, the flexibility of these mechanisms may be useful for those
writing translators from other languages to SM'V.

To summarize, the SMV language is designed to be flexible in terms of the styles of
models it can describe. It is possible to fairly concisely describe synchronous or asynchronous
systems, to describe detailed deterministic models or abstract nondeterministic models, and
to exploit the modular structure of a system to make the description more concise. It is also
possible to write logical absurdities if one desires to, and also sometimes if one does not desire
to, using the TRANS and INIT declarations. By using only the parallel assignment mechanism,
however, this problem can be avoided. The language is designed to exploit the capabilities
of the symbolic model checking technique. As a result the available data types are all static
and finite. No attempt has been made to support a particular model of communication
between concurrent processes. In addition, there is no explicit support for some features of
communicating process models such as sequential composition. Since the full generality of
the symbolic model checking technique is available through the SMV language, it is possible
that translators from various languages, process models, and intermediate formats could
be created. In particular, existing silicon compilers could be used to translate high level
languages with rich feature sets into a low level form (such as a Mealy machine) that could
be readily translated into the SMV language.

2 Syntax and Semantics

This section describes the syntax and semantics of the SMV input language in detail.

2.1 Lexical conventions

An atom in the syntax described below may be any sequence of characters in the set
{A-Z,a-z,0-9,_,-}, beginning with an alphabetic character. All characters in a name are
significant, and case is significant. Whitespace characters are space, tab and newline. Any

string starting with two dashes (”--") and ending with a new line is a comment. A number
is any sequence of digits. Any other tokens recognized by the parser are enclosed in quotes
in the syntax expressions below.

2.2 Expressions

Expressions are constructed from variables, constants, and a collection of operators, including
Boolean connectives, integer arithmetic operators, and case expressions. The syntax of
expressions is as follows.

expr
atom ;; a symbolic constant
| number ;; a numeric constant
| id ;; a variable identifier
| "I" expr ;; logical not
| exprl "&" expr2 ;3 logical and
| exprl "|" expr2 ;5 logical or
| exprl "->" expr2 ;5 logical implication
| exprl "<->" expr2 ;5 logical equivalence
| exprl "=" expr2 ;5 equality
| exprl "!=" expr2 ;; disequality
| exprl "<" expr2 ;; less than
| exprl ">" expr2 ;; greater than
| exprl "<=" expr2 ;; less that or equal
| exprl ">=" expr2 ;; greater than or equal
| exprl "+" expr2 ;; lnteger addition
| exprl "-" expr2 ;; integer subtraction
| exprl "x" expr2 ;5 integer multiplication
| exprl "/" expr2 ;; integer division
| exprl "mod" expr2 ;; lnteger remainder
| "next" "(" id ")" ;; next value
| set_expr ;; a set expression
| case_expr ;; @ case expression

An id, or identifier, is a symbol or expression which identifies an object, such as a variable
or defined symbol. Since an id can be an atom, there is a possible ambiguity if a variable
or defined symbol has the same name as a symbolic constant. Such an ambiguity is flagged
by the interpreter as an error. The expression next (x) refers to the value of identifier x in
next state (see section 2.5). The order of parsing precedence from high to low is

x,/

+,-

mod

=J !=,<,>,<=J>=
!

&

10

>, <>

Operators of equal precedence associate to the left, except for the implication ->, which
associates to the right. Parentheses may be used to group expressions.
A case expression has the syntax

case_expr
"case"
expr_al ":" expr_bl ";"
expr_a2 ":" expr_b2 ";"
expr_an ":" expr_bn ";"
"esac"

A case expression returns the value of the first expression on the right hand side, such that
the corresponding condition on the left hand side is true. Thus, if expr_al is true, then the
result is expr_bl. Otherwise, if expr_a2 is true, then the result is expr_b2, etc. If none of
the expressions on the left hand side is true, the result of the case expression is the numeric
value 1. It is an error for any expression on the left hand side to return a value other than
the truth values 0 or 1.

A set expression has the syntax

set_expr
||{|| Val]_ non non valn ||}||
| exprl "in" expr2 ;; set inclusion predicate
p p p
| exprl "union" expr2 ;; set union

A set can be defined by enumerating its elements inside curly braces. The elements of the set
can be numbers or symbolic constants. The inclusion operator tests a value for membership
in a set. The union operator takes the union of two sets. If either argument is a number or
symbolic value instead of a set, it is coerced to a singleton set.

2.3 State variables

A state of the model is an assignment of values to a set of state variables. These variables
(and also instances of modules) are declared by the notation

decl :: "VAR"
atoml ":" typel ";"
atom2 ":" type2 ";"

The type associated with a variable declaration can be either a Boolean, a scalar, a user
defined module, or an array of any of these (including arrays of arrays). A type specifier has
the syntax

11

type :: boolean

| u{u vall "." val2 "." ... valn u}u

| "array" exprl ".." expr2 "of" type

| atom ["(" exprl "," expr2 "," ... exprn ")"]

| "process" atom ["(" exprl "," expr2 "," ... exprn ")"]
val :: atom | number

A variable of type boolean can take on the numerical values 0 and 1 (representing false
and true, respectively). In the case of a list of values enclosed in quotes (where atoms are
taken to be symbolic constants), the variable is a scalar which take any these values. In
the case of an array declaration, the expression expr1 is the lower bound on the subscript,
and the expression expr2 is the upper bound. Both of these expressions must evaluate to
integer constants. Finally, an atom optionally followed by a list of expressions in parentheses
indicates an instance of module atom (see section 2.10). The keyword process causes the
module to be instantiated as an asynchronous process (see 2.13).

2.4 The ASSIGN declaration

An assignment declaration has the form

decl :: "ASSIGN"
destl ":=" exprl ";"
dest2 ":=" expr2 ";"
dest :: atom

| "init" n(n atom u)u
| "next" n(n atom u)u

On the left hand side of the assignment, atom denotes the current value of a variable,
init (atom) denotes its initial value, and next (atom) denotes its value in the next state.
If the expression on the right hand side evaluates to an integer or symbolic constant, the
assignment simply means that the left hand side is equal to the right hand side. On the other
hand, if the expression evaluates to a set, then the assignment means that the left hand side
is contained in that set. It is an error if the value of the expression is not contained in the
range of the variable on the left hand side.

In order for a program to be implementable, there must be some order in which the
assignments can be executed such that no variable is assigned after its value is referenced.
This is not the case if there is a circular dependency among the assignments in any given
process. Hence, such a condition is an error. In addition, it is an error for a variable to be
assigned a value more than once at any given time. To be precise, it is an error if:

1. the next or current value of a variable is assigned more than once in a given process,
or

2. the initial value of a variable is assigned more than once in the program, or

12

3. the current value and the initial value of a variable are both assigned in the program,
or

4. the current value and the next value of a variable are both assigned in the program

2.5 The TRANS declaration

The transition relation R of the model is a set of current state/next state pairs. Whether or
not a given pair is in this set is determined by a Boolean valued expression 7', introduced
by the TRANS keyword. The syntax of a TRANS declaration is

decl :: "TRANS" expr

It is an error for the expression to yield any value other than 0 or 1. If there is more than
one TRANS declaration, the transition relation is the conjunction of all of TRANS declarations.

2.6 The INIT declaration

The set of initial states of the model is determined by a Boolean expression under the INIT
keyword. The syntax of an INIT declaration is

decl :: "INIT" expr

It is an error for the expression to contain the next () operator, or to yield any value other
than 0 or 1. If there is more than one INIT declaration, the initial set is the conjunction of
all of the INIT declarations.

2.7 The INVAR declaration

The set of all states of the model is restricted to those that satisfy a Boolean expression
under the INVAR keyword. Thus, INVAR defines an invariant on the transition system. The
syntax of an INVAR declaration is

decl :: "INVAR" expr

As in the case of INIT, it is an error for the expression to contain the next () operator, or to
yield any value other than 0 or 1. If there is more than one INVAR declaration, the invariant
is the conjunction of all of the INVAR declarations.

2.8 The SPEC declaration

The system specification is given as a formula in the temporal logic CTL, introduced by the
keyword SPEC. The syntax of this declaration is

decl :: "SPEC" ctlform

A CTL formula has the syntax

13

ctlform ::

expr ;; a Boolean expression

| "t" ctlform ;; logical not

| ctlforml "&" ctlform2 ;5 logical and

| ctlforml "|" ctlform2 ;5 logical or

| ctlforml "->" ctlform2 ;5 logical implies

| ctlforml "<->" ctlform?2 ;5 logical equivalence

| "E" pathform ;; existential path quantifier
| "A" pathform ;; universal path quantifier

The syntax of a path formula is

pathform ::
"X" ctlform ;5 next time
"F" ctlform ;; eventually
"G" ctlform ;5 globally
ctlforml "U" ctlform?2 ;5 until

The order of precedence of operators is (from high to low)

E,AX,F,G,U
!
&
I

-> <>

Operators of equal precedence associate to the left, except for the implication ->, which
associates to the right. Parentheses may be used to group expressions. It is an error for an
expression in a CTL formula to contain a next () operator or to return a value other than 0
or 1. If there is more than one SPEC declaration, the specification is the conjunction of all of
the SPEC declarations. However, each of the SPEC formulas is evaluated and the results are
reported separately, one by one, in the order of the SPEC declations in the program text.

2.9 The FAIRNESS declaration

A fairness constraint is a CTL formula which is assumed to be true infinitely often in all
fair execution paths. When evaluating specifications, the model checker considers path
quantifiers to apply only to fair paths. Fairness constraints are declared using the following
syntax:

decl:: "FAIRNESS" ctlform

A path is considered fair if and only if all fairness constraints declared in this manner are
true infinitely often.

14

2.10 The PRINT declaration

Sometimes it is desired to find out which states satisfy a particular specification, rather
than checking whether all of the reachable states satisfy it. The PRINT declaration evaluates
a specification and prints a formula describing the set of reachable states that satisfy this
formula. In particular,

PRINT 1

prints a formula describing the set of all reachable states.

decl:: "PRINT" ctlform
| "PRINT" header ":" ctlform

where the header tells SMV which variables should appear in the formula:

header:: '"hide" idl "," id2 "," ... idn
| "expose" id1l "," id2 "," ... idn

For example,
PRINT expose x, y: x =y | y = z

will print a formula describing all possible values of x and y variables in all the reachable
states satisfying the formula x = y | y = z. If the expose keyword is changed to hide,
then the formula will contain all of the state variables except x and y.

2.11 The DEFINE declaration

In order to make descriptions more concise, a symbol can be associated with a commonly
used expression. The syntax for this declaration is

decl :: "DEFINE"
atoml ":=" exprl ";"
atom2 ":=" expr2 ";"
atomn ":=" expr3 ";"

When every identifier referring to the symbol on the left hand side occurs in an expression,
it is replaced by the expression on the right hand side. The expression on the right hand side
is always evaluated in its original context, however (see the next section for an explanation
of contexts). Forward references to defined symbols are allowed, but circular definitions are
not allowed, and result in an error.

15

2.12 Modules

A module is an encapsulated collection of declarations. Once defined, a module can be reused
as many times as necessary. Modules can also be parameterized, so that each instance of a
module can refer to different data values. A module can contain instances of other modules,
allowing a structural hierarchy to be built. The syntax of a module is as follows.

module
"MODULE" atom ["(" atoml "," atom2 "," ... atomn ")"]
decli
decl?2

decl3
The atom immediately following the keyword "MODULE” is the name associated with the
module. Module names are drawn from a separate name space from other names in the
program, and hence may clash with names of variables and definitions. The optional list of
atoms in parentheses are the formal parameters of the module. Whenever these parameters
occur in expressions within the module, they are replaced by the actual parameters which
are supplied when the module is instantiated (see below).

An instance of a module is created using the VAR declaration (see section 2.3) This
declaration supplies a name for the instance, and also a list of actual parameters, which are
assigned to the formal parameters in the module definition. An actual parameter can be any
legal expression. It is an error is the number of actual parameters is different from the number

of formal parameters. The semantics of module instantiation is similar to call-by-reference.
For example, in the following program fragment:

VAR

a : boolean;
b : foo(a);

MODULE foo(x)
ASSIGN
x :=1;

the variable b is assigned the value 1. This distinguishes the call-by-reference mechanism
from a call-by-value scheme. Now consider the following program:

DEFINE

a := 0;
VAR
b : bar(a);

MODULE bar (x)
DEFINE

16

a :=1;
y 1= X;

In this program, the value of y is 0. On the other hand, using a call-by-name mechanism,
the value of y would be 1, since a would be substituted as an expression for x.

Forward references to module names are allowed, but circular references are not, and
result in an error.

2.13 Identifiers

An id, or identifier, is an expression which references an object. Objects are instances of
modules, variables, and defined symbols. The syntax of an identifier is as follows.

id ::
atom
| id "." atom
| ld ||[|| expr ||:|||

An atom identifies the object of that name as defined in a VAR or DEFINE declaration. If a
identifies an instance of a module, then the expression a.b identifies the component object
named b of instance a. This is precisely analogous to accessing a component of a structured
data type. Note that an actual parameter of module instance a can identify another module
instance b, allowing a to access components of b, as in the following example:

VAR

a : foo(b);
b : bar(a);

MODULE foo(x)
DEFINE
c :=x.p | x.q;

MODULE bar (x)
VAR
p : boolean;
q : boolean;

Here, the value of c is the logical or of p and q.

If a identifies an array, the expression a[b| identifies element b of array a. It is an error
for the expression b to evaluate to a number outside the subscript bounds of array a, or to
a symbolic value.

17

2.14 The main module

The syntax of an SMV program is

program ::
modulel
module?2

modulen
There must be one module with the name main and no formal parameters. The module
main is the one evaluated by the interpreter.

2.15 Processes

Processes are used to model interleaving concurrency. A process is a module which is in-
stantiated using the keyword process (see section 2.3). The program executes a step by
non-deterministically choosing a process, then executing all of the assignment statements in
that process in parallel. It is implicit that if a given variable is not assigned by the process,
then its value remains unchanged. Each instance of a process has a special Boolean variable
associated with it called running. The value of this variable is 1 if and only if the process
instance is currently selected for execution.

3 Examples

In this section, we look at the performance of the SMV symbolic model checker for two
hardware examples a synchronous fair bus arbiter, and an asynchronous distributed mutual
exclusion ring circuit (the one studied by David Dill in his thesis [Dil89] and designed by
Alain Martin [Mar85]).

3.1 Synchronous arbiter

The synchronous arbiter circuit is an example of a synchronous finite state machine. It is
composed of a “daisy chain” of arbiter cells depicted in Figure 2. Under normal operation,
the arbiter grants the bus on each clock cycle to the requester with the highest priority.
Each arbiter cell receives a “bus grant” input from the next higher priority cell. If this
signal is true, and the cell’s “request” input is true, then the cell activates its “acknowledge”
output, and negates “bus grant” to the next lower priority cell. On the other hand, if the
“request” input is false, then the “bus grant” input is passed along to the next cell via the
“bus grant” output. Despite this priority scheme, the bus arbiter is designed to insure that
every requester eventually is granted the bus. During light bus traffic, the priority scheme
is used, but as the bus approaches saturation, the arbiter reverts to a round-robin scheme.
This is accomplished by means of a “token”, which is passed in a cyclic manner from the
first cell down to the last, and then back to the first. The “token” moves once each clock
cycle. When the “token” passes a cell whose “request” is active, it sets a flag “waiting”.
The “waiting” flag remains set as long as the request persists. When the token returns to

18

token out overridein grant out

/I\ A

reqg in ack out

T 1)

token in override out grantin

Figure 2: Cell of synchronous arbiter circuit.

that cell, if the “waiting” flag is still set, the cell receives immediate highest priority. This is
accomplished by asserting an output called “override”. This signal propagates to the highest
priority cell and negates its “bus grant” input.

The specifications for the arbiter circuit are as follows:

1. No two acknowledge outputs are asserted simultaneously.
2. Every persistent request is eventually acknowledged.

3. Acknowledge is not asserted without request.
Expressed in CTL, they are:

1. Vi # j: AG =(ack; A ack;)

2. Vi : AG AF (req; = ack;)

3. Vi: AG (ack; = req;)

The quantifiers are bounded to range over the finite set of cells, so these quantified formulas
can be expanded into finite CTL formulas. Figure 3 gives the SMV description of a five cell
arbiter and its specification.

To run the symbolic model checker on this example, we use the command

smv —-f syncarb.smv

The option -f indicates that a forward search of the state space of the model should be
made before checking the specifications. This technique will be dealt with shortly.

Figure 4 plots the performance of the symbolic model checking procedure for this example
in terms of several measures. First, the size of the transition relation in OBDD nodes.
Second, the total run time (on a Sun3, running an implementation in the C language), and

19

third, the maximum number of OBDD nodes used at any given time. The latter number
should be regarded as being accurate only to within a factor of two, since the garbage
collector in the implementation scavenges for unreferenced nodes only when the number of
nodes doubles. We observe that as the number of cells in the circuit increases, the size of
the transition relation increases linearly. The execution time is well fit by a quadratic curve.

To obtain polynomial performance for this example, it was necessary to add a wrinkle
to the symbolic model checking algorithm (the -f option. It is often the case that circuits
are “well behaved” in the part of their state space which is reachable from the initial state,
but not otherwise. In the case of the synchronous arbiter, only states with one token in
the ring are reachable. However, the symbolic model checking technique considers all states,
including states with multiple tokens. This becomes a problem when we consider the highest
priority cell, which is granted the bus by default when no other requesters override. If we
compute the set of states in which this cell necessarily grants the bus in k£ steps, we obtain
the set in which, for every waiting cell 4, there is no token at cell i — k mod n (hence a token
does not reach cell 7 in k steps). Unfortunately, this is not a set which can be compactly
represented as an OBDD. This is analogous to the problem of representing a shifter circuit
using OBDDs there is no variable ordering which produces a compact OBDD for all shift
distances k. As a result, the time required to compute AFacky is exponential, roughly
doubling with each added cell.

On the other hand, if we first compute the set of reachable states, and then restrict the
evaluation of the temporal operators to that set, the result is unchanged, but the verification
time becomes polynomial. When we restrict to states with only one token, we only have to
represent the set of states where cell i + k£ mod n is not waiting, where 7 is the position of
the single token.

3.2 Asynchronous state machines

An asynchronous finite state machine can be viewed as a collection of parallel processes
whose actions are interleaved arbitrarily. This allows us to make an important optimization
in the symbolic model checking technique: we observe that the set of states reachable by one
step of the system is the union of the sets of states reachable by one step of each individual
process. Using this fact, we can avoid computing the transition relation of the system and
instead use only the transition relations of the individual processes.

Our example of an asynchronous state machine is the distributed mutual exclusion (DME)
circuit of Alain Martin [Mar85|. It is a speed-independent circuit and makes use of special
two-way mutual exclusion circuits as components. Figure 5 is a diagram of a single cell of
the distributed mutual-exclusion ring (DME). The circuit works by passing a token around
the ring, via the request and acknowledge signals RR and RA. A user of the DME gains
exclusive access to the resource via the request and acknowledge signals UR and UA.

The specifications of the DME circuit are as follows:

1. No two users are acknowledged simultaneously.
2. An acknowledgment is not output without a request.

3. An acknowledgment is not removed while a request persists.

20

MODULE arbiter-element (above,below,init-token)
VAR

Persistent : boolean;

Token : boolean;

Request : boolean;

ASSIGN

init(Token) := init-token;

next (Token) := token-in;

init (Persistent) := 0;

next (Persistent) := Request & (Persistent | Token);
DEFINE

above.token-in := Token;

override-out := above.override-out | (Persistent & Token);

grant-out := !Request & below.grant-out;

ack-out := Request & (Persistent & Token | below.grant-out);
SPEC
AG ((ack-out -> Request) & AF (!Request | ack-out))

MODULE main
VAR
e5 : arbiter-element(self,e4,0);
e4 : arbiter-element(e5,e3,0);
e3 : arbiter-element(e4,e2,0);
e2 : arbiter-element(e3,el,0);
el : arbiter-element(e2,self,1);
DEFINE
grant-in := 1;
el.token-in := token-in;
override-out := 0;
grant-out := grant-in & !el.override-out;
SPEC
AG (
I (el.ack-out & e2.ack-out)

& !'(el.ack-out & e3.ack-out)
& !'(e2.ack-out & e3.ack-out)

& !(el.ack-out & e4.ack-out)

& !'(e2.ack-out & e4.ack-out)

& !'(e3.ack-out & e4.ack-out)

& !'(el.ack-out & eb5.ack-out)

& !'(e2.ack-out & eb.ack-out)

& !'(e3.ack-out & eb5.ack-out)

& !'(ed4.ack-out & eb.ack-out)
)

Figure 3: SMV program for synchronous arbiter example.

21

e o
o N
T 1

Seconds

N H » (00]
T

O 1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells

1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells
o)

N
a1
o
o
1

o———o Total OBDD nodes used
=——a Transition relation

OBDD nodes

[ERN
o
o
o
1

O 1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells

Figure 4: Performance — synchronous arbiter example.

22

a- aflaillst

R
ur > \ =

) >
I’D_ME —. — c

<t ra

©—

la <

Figure 5: One cell of the DME circuit.

4. All requests are eventually acknowledged.

We will consider only the first specification, regarding mutual exclusion. The others are
easily formulated in CTL, although the last requires the use of fairness constraints (see
section 2.8) to guarantee that all gate delays are finite. The formalization of the mutual
exclusion specification is

V0 <i,j <n,i#j:AG ~(ack; N ack;)

We examine the performance of the symbolic model checking algorithm in verifying this
specification using three differing approaches. In method 1, we use a single process to
model the entire system. Arbitrary delay of the gates is introduced by allowing each gate
to choose non-deterministically whether to reevaluate its state or remain unchanged. The
SMV description of this model is given in Figure 6. In method 2, we model each DME cell
by a separate process (since there are 18 gates per cell, making a separate process for each
gate is prohibitive). In method 3, we use the same model as in method 1, but reevaluate
the the transition relation at each step of the forward search, restricting the evaluation to
those transitions beginning in a state on the search frontier. This results in a sequence of
approximations to the transition relation which are substantially more compact than the
complete transition relation, at the expense of many reevaluations of the transition relation.
This method of calculation is invoked by using the -i option to the model checker. The
OBDD function Restrict of Coudert, Madre and Berthet is used to restrict the transition
relation. In all three methods, we use the -f option to restrict the computation to the
reachable states, since the state space of this circuit is quite sparse.

The performance curves for the three methods are shown in Figure 7. The disjunctive
transition relation method requires O(n?) time, while the two conjunctive methods — with

23

MODULE and-gate(inl,in2)
VAR out : boolean;
ASSIGN init(out) := 0; mnext(out) := (inl & in2) union out;
MODULE and-gate-init(inl,in2,init-out)
VAR out : boolean;
ASSIGN init(out) := init-out; mnext(out) := (inl & in2) union out;
MODULE or-gate(inl,in2)
VAR out : boolean;
ASSIGN init(out) := 0; mnext(out) := (inl | in2) union out;
MODULE c-element(inl,in2)
VAR out : boolean;
ASSIGN init(out) := 0;
next(out) := case inl = in2 inl union out; 1 out; esac;
MODULE mutex-half (inp,other-out)
VAR out : boolean;
ASSIGN init(out) := 0; mnext(out) := inp union out;
TRANS ! (next (out) & next(other-out))
MODULE user
VAR req : boolean;
ASSIGN init(req) := 0; next(req) := (lack) union req;
MODULE cell(left,right,token)
VAR q : and-gate(f.out,n.out); f c-element (d.out,i.out);
d : and-gate(b.out, !u.ack); b : mutex-half(left.req,a.out);
i : and-gate(h.out,!j.out); h : c-element(g.out,j.out);
n : and-gate-init(!e.out,!m.out,!token); u : user;
a : mutex-half(u.req,b.out); c and-gate(a.out,!left.ack);
g : or-gate(c.out,d.out); e c-element (c.out,i.out);
k : and-gate(g.out, !'h.out); 1 and-gate (k.out,m.out) ;
p : and-gate(k.out,n.out); m : and-gate-init(!f.out, !n.out,token);
r : and-gate(e.out,m.out); j : or-gate(l.out,ack);
DEFINE req := p.out; 1left.ack := q.out; u.ack := r.out;
MODULE main
VAR e-3 cell(e-1,e-2,1); e-2 cell(e-3,e-1,0); e-1 cell(e-2,e-3,0);
SPEC AG (

l(e-1.u.ack & e-2.u.ack)

& !'(e-1.u.ack & e-3.u.ack)
& !'(e-2.u.ack & e-3.u.ack)
)

Figure 6: SMV program for DME circuit example.

24

unrestricted and restricted transition relation require O(n?) time. As a result, the restricted
transition relation method overtakes the disjunctive method at about 8 cells. At this point,
the disadvantage of having to evaluate the transition relation at each step is outweighed
by the better asymptotic performance. The difference in asymptotic performance can be
explained by observing the growth in the OBDDs representing state sets in the forward
search. The size of the largest such OBDDs as a function of the number of cells is plotted in
Figure 7(c). As mentioned previously, the correlation between the number of steps taken by
each process can make the representation of the reached state less efficient. Thus, the OBDD
size for the reached state set runs linearly for methods 1 and 3, but quadratically for method
2. The overall time complexity of O(n?) for methods 1 and 3 derives from three factors: a
linear increase in the transition relation OBDD, a linear increase in the state set OBDD,
and a linear increase in the number of iterations. For method 2, the quadratic increase in
the state set OBDD results in an overall O(n?*) time complexity. Note that the number of
reachable states increases roughly a factor of ten with each added cell (see Figure 8).

References

[Dil89] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[Mar85] A. J. Martin. The design of a self-timed circuit for distributed mutual exclusion.
In H. Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on Very Large
Scale Integration, 1985.

25

n 250001
§o)
c
3
o 20000
(9p)
150001 ——-~a Method 3
e——e Method 2
10000
5000

O 1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells

» 300000
@
S

S 250000

a
200000

o
150000

100000

50000

O 1 2 3 4 6 7 8 9 10 11 12
Number of Cells
(b)

0 22000
S 20000
< 18000
816000
8 14000
12000
10000
8000 |
6000 [
4000 |
2000
0

=——=a Transition relation, Method 3
=——a Transition relation, Method 2

8 9 10 11 12
Number of Cells

N
Nk
w
N
o L
o |
~ F

Figure 7: Performance for DME circuit example.

26

35000
30000
e——e Redched state set, Method 2
25000 [
20000
15000
10000

5000

11

0 1x10°r
T 1x1071
?1x10"F
3 1x10°}
g 1x10°f
1x10°f
1x10'f
1x10°T
1x10°[
1x10°F

110 —
0O 1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells

(b)

Reach

Figure 8: State set size for DME circuit example.

27

