
15-414/614 : Bug Catching, Spring 2014

Homework 1 Due : 5 Feb 2014 (Wednesday), 3:00 pm (before class)

Please look at the course website for collaboration policy. Prepare a pdf for problems 1 to 2
separately, preferably using LaTeX. Print out your solutions to problems 1 and 2, bring them to
class, and turn in them before the class. For problem 3, you will be submitting code to the TA
through emails.

1 Classical Propositional Logic [20 points]

Let x, y and z be three propositions.

(a) (8 points) Show that the two propositional formulas, (x ∨ y)→ z and (x→ z) ∧ (y → z) are
equivalent using truth-tables.

(b) (8 points) Show that the two propositional formulas, (x → y) ∧ (z → x) and z → y are
equi-satisfiable, using truth-tables. Also, if the formulas are satisfiable, give one satisfying
assignment to x, y and z for each formula.

(c) (4 points) In part (b) above, give a simple, but precise, argument for why the two formulas
are not equivalent. (Hint : Give values for x, y and z for which one formula is true while the
other is false.)

2 Normal Forms [20 points]

Recall that, we have discussed about three different normal forms of propositional formulas -
NNF, DNF, and CNF - in the class, and the transformation algorithms used to convert an arbitrary
logical formula to its CNF.

(a) For each of the following propositional formulas, first write down another formula that is the
negation of the given one. Then transform the new formula to NNF such that the connective
¬ appears only in front of atomic propositions. For example, to transform the negation of the
formula p→ q → r to NNF, you may reason as follows:
¬ (p→ q → r)
≡ ¬(¬p ∨ (q → r))
≡ p ∧ ¬ (q → r)
≡ p ∧ ¬(¬q ∨ r)
≡ p ∧ q ∧ ¬ r

(a) (3 points) p↔ q

(b) (3 points) p ∨ (¬q ∧ r)
(c) (4 points) ¬(p→ q)→ (p→ ¬q)

(b) Every propositional formula can be transformed to an equivalent formula that is in CNF. This
transformation is based on the rules preserving logical equivalence: the double negative law,
De Morgan’s laws, and the distributive law. However, in some cases this conversion to CNF
can lead to an exponential blow-up in the size of the formula. As discussed in the class, for the
purpose of checking satisfiability, we can avoid this blow-up by means of another transformation
algorithm - Tseitin transformation - which preserves satisfiability instead of equivalence.

1



For each of the following formulas, apply both the equivalent transformation (using the above
mentioned rules) and the Tseitin transformation (as discussed in the class, and you can also
turn to http://en.wikipedia.org/wiki/Tseitin-Transformation) algorithms to get the
corresponding CNFs, and see the difference in the sizes of the resulting formulas.

(a) (5 points) (p1 ∧ q1) ∨ (p2 ∧ ¬q2) ∨ (¬p3 ∧ ¬q3)
(b) (5 points) ((p1 ∨ ¬p2) ∧ (¬p3 ∨ p4))↔ (p5 ∧ ¬p6)

3 Sudoku [60 points]

(0 points) Using a SAT Solver.

Most fast SAT solvers use the DIMACS input format for a CNF formula. A CNF formula
φ = C1 ∧ . . . ∧ Cm, where Ci = `i,1 ∧ . . . ∧ `i,ni , is encoded in DIMACS as follows:

c This is a comment line

p cnf <num-vars> <num-clauses>

l_1_1 l_1_2 ... l_1_n1 0

l_2_1 l_2_2 ... l_2_n2 0

...

l_<num-clauses>_1 l_<num-clauses>_2 ... l_<num-clauses>_n<num-clauses> 0

Variables are represented by natural numbers (1 and above) and negations of variables by
the minus sign. Each clause is described in a line terminated by a zero. As an example, the
formula
(x1) ∧ (x2 ∨ ¬x3) ∧ (¬x4 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ x4) would be encoded as:

p cnf 4 5

1 0

2 -3 0

-4 -1 0

-1 -2 3 4 0

-2 4 0

For this assignment we will use the MiniSat SAT solver, which is one of the fastest SAT
solvers currently available.

You can find a pre-compiled 32-bit binary executable of the MiniSat solver for Linux at
http://minisat.se/downloads/MiniSat_v1.14_linux. If you are interested, you can also
download the latest sources of MiniSat from the website and compile it yourself. But for this
homework, this binary suffices.

Given a DIMACS input file, say input.dimacs, you can run MiniSat as follows

./minisat input.dimacs output.txt

where, minisat is the binary for MiniSat (MiniSat v1.14 linux for the pre-compiled binary)
and output.txt is an output file where MiniSat will write SAT if the input is satisfiable and
UNSAT otherwise. In case of SAT, it also outputs a satisfiable assignment. We strongly suggest
you to create some small test inputs and play around with the SAT solver to get familiar with
it. Some test inputs are also made available here :

2

http://en.wikipedia.org/wiki/Tseitin-Transformation
http://minisat.se/downloads/MiniSat_v1.14_linux


http://www.cs.cmu.edu/~emc/15414-s14/assignment/sample-cnfs.zip

(60 points) Solving Sudoku with MiniSat

Sudoku is played on an n×n board, where n is a perfect square. Some cells are prefilled with
numbers from 1 to n; the rest are blank. The board is subdivided into

√
n×
√
n blocks. The

goal is to fill each cell with a number in such a way that each number from 1 to n occurs
exactly once in each row, each column, and each block. While the usual case is to have a
unique solution, we generalize the problem so that multiple solutions are also possible. For
example, if no cell is prefilled, you can fill the cells however you wish as long as the above
mentioned constraints are met.

For this problem, you will write a program which does the following:

1. read a Sudoku puzzle from an input file (input format described below),

2. encode the Sudoku puzzle as a CNF formula in DIMACS format,

3. use MiniSat to find a satisfying assignment to the CNF formula,

4. read the satisfying assignment produced by MiniSat to generate the solution to the
original Sukodu problem given as input and output to a file (output format also described
below).

We will now describe the format for the input. The first line has just one number n, the size of
the puzzle grid, which is guaranteed to be a perfect square. Every other line is a single-space
separated list of numbers between 0 and n (inclusive) corresponding to a row of the Sudoku
puzzle. A 0 denotes a blank cell. There are n such lines for all the rows. The output format
is similar except that the first line specifying n is absent and there are no 0s (as every cell
has to be filled).

Here is an example.

Sample Input Sample Output
9 9 6 3 1 7 4 2 5 8
0 6 0 1 0 4 0 5 0 1 7 8 3 2 5 6 4 9
0 0 8 3 0 5 6 0 0 2 5 4 6 8 9 7 3 1
2 0 0 0 0 0 0 0 1 8 2 1 4 3 7 5 9 6
8 0 0 4 0 7 0 0 6 4 9 6 8 5 2 3 1 7
0 0 6 0 0 0 3 0 0 7 3 5 9 6 1 8 2 4
7 0 0 9 0 1 0 0 4 5 8 9 7 1 3 4 6 2
5 0 0 0 0 0 0 0 2 3 1 7 2 4 6 9 8 5
0 0 7 2 0 6 9 0 0 6 4 2 5 9 8 1 7 3
0 4 0 5 0 8 0 7 0

You can use any CNF encoding you want in order to use the SAT solver. Here is a suggested
encoding. Let the boolean variable xr,c,d be true iff the number d is in the cell at row r,
column c. Encode the following constraints, along with the prefilled cells:
- Exactly one number appears in each cell. (Hint : Exactly one is the same as at least one
and at most one.)
- Each number appears exactly once in each row.
- Each number appears exactly once in each column.
- Each number appears exactly once in each block.

Your solver will take five command-line arguments, as follows:

./solver InputPuzzle OutputSoln MiniSatExec TempToSat TempFromSat

3

http://www.cs.cmu.edu/~emc/15414-s14/assignment/sample-cnfs.zip


where InputPuzzle is the file containing the input puzzle, OutputSoln is the file to which
you will output the solution, MiniSatExec is the filename of the MiniSAT executable (e.g.,
“MiniSat_v1.14_linux”), TempToSat is the name of the temporary DIMACS file that your
solver will produce, and TempFromSat is the solution that MiniSAT will generate.

You can write your program in any programming language you desire. You must include a
README file with instructions to compile and your program file(s) should be compilable on
unix.andrew.cmu.edu without any need to install new software.

Some sample 9×9 inputs are at

www.cs.cmu.edu/~emc/15414-s14/assignment/sudoku-samples.zip

and a program skeleton in Python is at

www.cs.cmu.edu/~emc/15414-s14/assignment/sudoku-skel.py

Use this skeleton should you have any confusion in the above description. It is not intended
to serve any other purpose. And you are not required to use Python - we just used it to
quickly generate a skeleton.

4

www.cs.cmu.edu/~emc/15414-s14/assignment/sudoku-samples.zip
www.cs.cmu.edu/~emc/15414-s14/assignment/sudoku-skel.py

