%% Software Engineering Institute | Carnegie Mellon ©2011 Camagle Wielion University

Control flow

We have already seen some
« Concatenation of statements, parallel execution, atomic sequences

There are a few more
« Case selection, repetition, unconditional jumps

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Case selection

if

.. (a<b)— option1

:: (a>Db) — option2

.. else — option3 [* optional */
fi

Cases need not be exhaustive or mutually exclusive
« Non-deterministic selection

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Repetition

byte count = 1,
proctype counter() {
do
.. count = count + 1
.. count = count — 1
.. (count == 0) — break
od

SPIN - Part 2

=== Software Engineering Institute | CarnegieMellon SagarChaki Nov 14,2012

© 2011 Carnegie Mellon University

Repetition

proctype counter()
{
do
.. (count !=0) —
if
.. count = count + 1
.. count = count — 1
fi
.. (count == 0) — break
od
}

SPIN - Part 2

=== Software Engineering Institute | CarnegieMellon SagarChaki Nov 14,2012

© 2011 Carnegie Mellon University

Unconditional jumps

proctype Euclid (int x, y)

{
do
T (X>y) o X=Xx-y
H(X<y)—=y=y-—x
.. (X ==y) — goto done
od,;
done: skip

}

SPIN - Part 2

=== Software Engineering Institute | CarnegieMellon SagarChaki Nov 14,2012

© 2011 Carnegie Mellon University

Procedures and Recursion

Procedures can be modeled as processes
« Even recursive ones

« Return values can be passed back to the calling process via a global variable
or a message

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Time for example 3

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar Chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Timeouts

Proctype watchdog() {
do
.. timeout — guard!reset
od

}

Get enabled when the entire system is deadlocked

No absolute timing considerations

SPIN — Part 2

=== Software Engineering Institute ’ CarnegieMellon ~ Sagar chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Assertions

assert(any_boolean_condition)
* pure expression

If condition holds = no effect

If condition does not hold =- error report during verification with Spin

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Time for example 4

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar Chaki Nov 14, 2012

© 2011 Carnegie Mellon University

LTL model checking

Two ways to do it

Convert Kripke to Buchi

» Convert claim (LTL) to Buchi
» Check language inclusion
OR
» Convert ~Claim (LTL) to Buchi
» Check empty intersection

SPIN — Part 2

=== Software Engineering Institute | CarnegiecMellon SsgsrChai Nov 14, 2012

2011 Carnegie Mellon University

What Spin does

Checks non-empty intersection
* Requires very little space in best case

Works directly with Promela
* No conversion to Kripke or Buchi

Must provide Spin with negation of property you
want to prove

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon SagarChaki Nov 14,2012

© 2011 Carnegie Mellon University

LTL syntax in SPIN

unop :=] always (G)
<> eventually (F)
_ X next time

o= P proposition ! logical negation
true
false
(9)
¢ binop ¢ binop:= U strong until
unop ¢ && logical AND
| logical OR

-> Implication
<-> equivalence

SPIN - Part 2

=== Software Engineering Institute | CarnegieMellon SagarChaki Nov 14,2012

© 2011 Carnegie Mellon University

Time for example 5

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar Chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Peterson’s Algorithm in SPIN

bool turn, flag[2]; Active process:

automatically creates instances of processes

active [2] proctype user() .
(_pid:
assert(_pid‘= 0 || _pi Identifier of the process
/avga'in:
assert:

Checks that there are only turn == 1 - _pid);

at most two instances with

identifiers 0 and 1

‘////// /* critical section */

flag[_pid] = 0;
goto again;

}

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Peterson’s Algorithm in SPIN

bool turn, flag[2]; .
9l2] ncrit:

byte ncrit; <

Counts the number of

active [2] proctype user() Process in the critical section
{
assert(_pid == 0 || _pid == 1);

again:
flag[_pid] = 1;
turn = _pid;
(flag[1l - _pid] == 0 || turn == 1 - _pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--; assert:

flag[_pid] = 0: Checks that there are always
goto again; at most one process in the

} critical section

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Peterson’s Algorithm in SPIN

bool turn, flag[2]: ! Use a pair of flags instead of a count]
bool critical[2]; LTL Properties:

mutex
active [2] proctype user()
. Ino starvation]\ 1. [] (teritical[0] || lcritical[1])
. . —
assert(_pid == 0 || _pid == 1);
again: e .
Flagl_pid] = 1: 2. [1<> (critical[0]) && []<> (critical[1])
turn = _pid;
(flag[1 - _pid] == 0 || turn == 1 - _pid); 3. [] (critical[0] -> (critical[0] U
(!critical[0] && ((!critical[0] &&
critical[_pid] = 1; [a'temation Icritical[1]) U critical[1]))))

/* critical section */

critical[_pid] = 0;
4. [] (critical[1] -> (critical[1] U

(!critical[1] && ((!critical[1] &&
[alternation Icritical[0]) U critical[0]))))

flag[_pid] = 0;

goto again;

SPIN - Part 2

=== Software Engineering Institute | CarnegieMellon SagarChaki Nov 14,2012

© 2011 Carnegie Mellon University

Peterson’s Algorithm in SPIN

bool turn, flag[2];

bool criticall2]; m\ LTL Properties (negated):

active [2] proctype user()

{ [holds]\ 1. <> (critial[0] && critical[1])
. . I~
assert(_pid == 0 || _pid == 1);
agarn: 2. <>[] (Icritical[0]) || <>[] (‘critical[1])
flag[_pid] = 1;
turn = _pid;
(flag[1 - _pid] == 0 || turn = 1 - _pid); 3. <> (critical[0] && !(critical[0] U
(!critical[0] && ((!critical[0] &&
critical[_pid] = 1; [d°es not hold Icritical[1]) U critical[1]))))

/* critical section */

critical[_pid] = 0;
4. <> (critical[1] && !(critical[1] U

(!critical[1] && ((!critical[1] &&
[does not hold Icritical[0]) U critical[0]))))

flag[_pid] = 0;

goto again;

SPIN - Part 2

=== Software Engineering Institute | CarnegieMellon sagar Chaki Nov 14,2012

© 2011 Carnegie Mellon University

Traffic N
Controller

Modeling in SPIN

System
* No turning allowed
« Traffic either flows East-West or North-South
 Traffic Sensors in each direction to detect waiting vehicles
 Traffic.poml

Properties:
« Safety : no collision (traffic1.Itl)
* Progress — each waiting car eventually gets to go (traffic2.1tl)
» Optimality — light only turns green if there is traffic (traffic3.Itl)

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon SagarChaki Nov 14,2012

© 2011 Carnegie Mellon University

Dining Philosophers

SPIN — Part 2

=== Software Engineering Institute | CarnegieMellon Sagar Chaki Nov 14, 2012

© 2011 Carnegie Mellon University

Modeling in SPIN

Each fork is a rendezvous channel
A philosopher picks up a fork by sending a message to the fork.

A philosopher releases a fork by receiving a message from the fork.

Properties

* No deadlock
» Safety — two adjacent philosophers never eat at the same time — dp0.ltl

* No livelock — dp1.ltl
* No starvation — dp2.Itl

Versions
« dp.pml — deadlock, livelock and starvation
« dp_no_deadlock1.pml — livelock and starvation
« dp_no_deadlock2.pml — starvation

SPIN — Part 2

© 2011 Carnegie Mellon University

=== Software Engineering Institute | CarnegieMellon SagarChaki Nov 14,2012

References

http://cm.bell-labs.com/cm/cs/what/spin/

http://cm.bell-
labs.com/cm/cs/what/spin/Man/Manual.html

http://cm.bell-
labs.com/cm/cs/what/spin/Man/Quick.html

SPIN — Part 2

=== Software Engineering Institute = CarnegieMellon Sagar Chald, Nov 14,2012
T — ’ 2011 Carnegie Mellon University

http://cm.bell-labs.com/cm/cs/what/spin/
http://cm.bell-labs.com/cm/cs/what/spin/
http://cm.bell-labs.com/cm/cs/what/spin/
http://cm.bell-labs.com/cm/cs/what/spin/Man/Manual.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Manual.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Manual.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Quick.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Quick.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Quick.html

Questions?

Sagar Chaki

Senior Member of Technical Staff
RTSS Program

Telephone: +1412-268-1436
Email: chaki@sei.cmu.edu

Web
www.sei.cmu.edu/staff/chaki

=== Software Engineering Institute

U.S. Mail

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu

Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEIl Fax: +1 412-268-6257

SPIN - Part 2
Carnegie Mellon Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

mailto:chaki@sei.cmu.edu

