
1

Lecture 1:
Model Checking

Edmund Clarke
School of Computer Science
Carnegie Mellon University

2

Cost of Software Errors

June 2002

 “Software bugs, or errors, are so prevalent and so
detrimental that they cost the U.S. economy an
estimated $59.5 billion annually, or about 0.6 percent
of the gross domestic product
 …

 At the national level, over half of the costs are borne
by software users and the remainder by software
developers/vendors.”

NIST Planning Report 02-3
The Economic Impacts of Inadequate
Infrastructure for Software Testing

3

Cost of Software Errors

 “The study also found that, although all errors cannot
be removed, more than a third of these costs, or an
estimated $22.2 billion, could be eliminated by an
improved testing infrastructure that enables earlier
and more effective identification and removal of
software defects.”

4

 Model Checking

•  Developed independently by Clarke and Emerson
and by Queille and Sifakis in early 1980’s.

•  Properties are written in propositional temporal

logic.

•  Systems are modeled by finite state machines.

•  Verification procedure is an exhaustive search of

the state space of the design.

•  Model checking complements testing/simulation.

5

Advantages of Model Checking

•  No proofs!!!

•  Fast (compared to other rigorous methods)

•  Diagnostic counterexamples

•  No problem with partial specifications / properties

•  Logics can easily express many concurrency properties

6

State-transition graph
describes system evolving
over time.

Model of computation

st
~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Microwave Oven Example

7

Temporal Logic

l  The oven doesn’t heat up until the door is closed.

l  Not heat_up holds until door_closed

l  (~ heat_up) U door_closed

8

Basic Temporal Operators

•  Fp - p holds sometime in the future.
•  Gp - p holds globally in the future.
•  Xp - p holds next time.
•  pUq - p holds until q holds.

The symbol “p” is an atomic
proposition, e.g. “heat_up” or “door_closed”.

9

Model Checking Problem

Let M be a model, i.e., a state-transition graph.

Let ƒ be the property in temporal logic.

Find all states s such that M has property ƒ at state s.

Efficient Algorithms: CE81, CES83

10

The EMC System 1982/83

Preprocessor Model Checker

 (EMC)

 State Transition Graph
104 to 105 states

Properties

True or Counterexamples

11

Model Checker Architecture

System Description Formal Specification

Validation
 or
Counterexample

Model Checker

State Explosion Problem!!

12

The State Explosion Problem

System Description

State Transition Graph

Combinatorial explosion of system
states renders explicit

model construction infeasible.

Exponential Growth of …
… global state space in number of concurrent components.
… memory states in memory size.

Feasibility of model checking inherently tied to handling state explosion.

13

Combating State Explosion

•  Binary Decision Diagrams can be used to represent

state transition systems more efficiently.
à Symbolic Model Checking 1992

•  Semantic techniques for alleviating state explosion:
–  Partial Order Reduction.
–  Abstraction.
–  Compositional reasoning.
–  Symmetry.
–  Cone of influence reduction.
–  Semantic minimization.

14

Model Checking since 1981
1981 Clarke / Emerson: CTL Model Checking

 Sifakis / Quielle
1982 EMC: Explicit Model Checker

 Clarke, Emerson, Sistla

1990 Symbolic Model Checking

 Burch, Clarke, Dill, McMillan
1992  SMV: Symbolic Model Verifier

 McMillan

1998 Bounded Model Checking using SAT

 Biere, Clarke, Zhu
2000 Counterexample-guided Abstraction Refinement

 Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

1990s: Formal Hardware
Verification in Industry:
Intel, IBM, Motorola, etc.

15

Model Checking since 1981
1981 Clarke / Emerson: CTL Model Checking

 Sifakis / Quielle
1982 EMC: Explicit Model Checker

 Clarke, Emerson, Sistla

1990 Symbolic Model Checking

 Burch, Clarke, Dill, McMillan
1992  SMV: Symbolic Model Verifier

 McMillan

1998 Bounded Model Checking using SAT

 Biere, Clarke, Zhu
2000 Counterexample-guided Abstraction Refinement

 Clarke, Grumberg, Jha, Lu, Veith

CBMC

MAGIC

16

Grand Challenge:
Model Check Software !

What makes Software Model Checking
different ?

17

What Makes Software Model
Checking Different ?

•  Large/unbounded base types: int, float, string
•  User-defined types/classes
•  Pointers/aliasing + unbounded #’s of heap-

allocated cells
•  Procedure calls/recursion/calls through pointers/

dynamic method lookup/overloading
•  Concurrency + unbounded #’s of threads

18

What Makes Software Model
Checking Different ?

•  Templates/generics/include files
•  Interrupts/exceptions/callbacks
•  Use of secondary storage: files, databases
•  Absent source code for: libraries, system calls,

mobile code
•  Esoteric features: continuations, self-modifying

code
•  Size (e.g., MS Word = 1.4 MLOC)

19

Grand Challenge:
Model Check Software !

Early attempts in the 1980s failed to scale.

2000s: renewed interest / demand:
Java Pathfinder: NASA Ames
SLAM: Microsoft
Bandera: Kansas State
BLAST: Berkeley
…
SLAM to be shipped to Windows device driver developers.

In general, these tools are unable to handle complex data
structures and concurrency.

20

The MAGIC Tool:
Counterexample-Guided Abstraction Refinement

Abstract
Memory

State

Memory
State
Memory

State
Memory

State
Memory

State
Memory

State
Memory

State
Memory

State
Memory

State

Abstraction

Abstraction maps classes of similar memory
states to single abstract memory states.

+ Model size drastically reduced.

-  Invalid counterexamples possible.

Abstract
Memory

State

21

The MAGIC Tool:
Counterexample-Guided Abstraction Refinement

Abstraction Verification
Yes

System OK

Counterexample
Valid?

C Program Abstract Model

Yes Abstraction
Refinement

Abstraction
Guidance

Improved
Abstraction
Guidance

No

No

22

CBMC: Embedded Systems Verification

•  Method:
Bounded Model Checking

•  Implemented GUI to
facilitate tech transfer

•  Applications:
–  Part of train controller from

GE
–  Cryptographic algorithms

(DES, AES, SHS)
–  C Models of ASICs provided

by nVidia

23

Case Study:
Verification of MicroC/OS
•  Real-Time Operating System

–  About 6000 lines of C code
–  Used in commercial embedded systems

•  UPS, Controllers, Cell-phones, ATMs

•  Required mutual exclusion
in the kernel
–  OS_ENTER_CRITICAL() and

OS_EXIT_CRITICAL()
•  MAGIC and CBMC:

–  Discovered one unknown bug related to the locking
discipline

–  Discovered three more bugs
–  Verified that no similar bugs are present

