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Cost of Software Errors 

June 2002   
 

 “Software bugs, or errors, are so prevalent and so 
detrimental that they cost the U.S. economy an 
estimated $59.5 billion annually, or about 0.6 percent 
of the gross domestic product 
 … 

 
 At the national level, over half of the costs are borne 
by software users and the remainder by software 
developers/vendors.” 

NIST Planning Report 02-3 
The Economic Impacts of Inadequate 
Infrastructure for Software Testing 
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Cost of Software Errors 

  
 “The study also found that, although all errors cannot 
be removed, more than a third of these costs, or an 
estimated $22.2 billion, could be eliminated by an 
improved testing infrastructure that enables earlier 
and more effective identification and removal of 
software defects.” 
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              Model Checking        

•  Developed independently by Clarke and Emerson 
and by Queille and Sifakis in early 1980’s. 

 
•  Properties are written in propositional temporal 

logic. 
 
•  Systems are modeled by finite state machines. 
 
•  Verification procedure is an exhaustive search of 

the state space of the design.  

•  Model checking complements testing/simulation.  
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Advantages of Model Checking 

•  No proofs!!! 

•  Fast  (compared to other rigorous methods) 

•  Diagnostic counterexamples 

•  No problem with partial specifications / properties 

•  Logics can easily express many concurrency properties 
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State-transition graph 
describes system evolving 
over time.  
 
 

Model of computation 
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Microwave Oven Example 
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Temporal Logic 

l  The oven doesn’t heat up until the door is closed. 

l  Not heat_up holds until door_closed 

l    (~ heat_up) U door_closed 
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Basic Temporal Operators  

•  Fp   - p holds sometime in the future.  
•  Gp  - p holds globally in the future. 
•  Xp   - p holds next time. 
•  pUq  - p holds until q holds. 

The symbol  “p” is an atomic  
proposition,  e.g. “heat_up” or “door_closed”.   
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Model Checking Problem 

Let M  be a model, i.e., a state-transition graph. 
 
Let ƒ be the property in temporal logic. 
 
Find all states s such that M has property ƒ at state s. 
 
Efficient Algorithms: CE81, CES83 
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The EMC System 1982/83 

  
Preprocessor Model Checker 

      (EMC) 

 State Transition Graph 
104  to 105 states 

Properties 

True or Counterexamples 
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Model Checker Architecture 
 

System Description Formal Specification 

Validation 
 or 
Counterexample 

Model Checker 

State Explosion Problem!! 
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The State Explosion Problem 
 

System Description 

State Transition Graph 

Combinatorial explosion of system  
states renders explicit  

model construction infeasible. 
 
 

Exponential Growth of … 
… global state space in number of  concurrent components. 
… memory states in memory size. 

Feasibility of model checking inherently tied to handling state explosion.  
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Combating State Explosion 
 
•  Binary Decision Diagrams can be used to represent 

state transition systems more efficiently.  
à Symbolic Model Checking 1992 

•  Semantic techniques for alleviating state explosion: 
–  Partial Order Reduction. 
–  Abstraction. 
–  Compositional reasoning. 
–  Symmetry. 
–  Cone of influence reduction. 
–  Semantic minimization. 
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Model Checking since 1981 
1981   Clarke / Emerson: CTL Model Checking 

  Sifakis / Quielle 
1982   EMC: Explicit Model Checker     

  Clarke, Emerson, Sistla 
 
 
1990   Symbolic Model Checking 

   Burch, Clarke, Dill, McMillan 
1992    SMV: Symbolic Model Verifier 

   McMillan 
 
 
1998   Bounded Model Checking using SAT 

   Biere, Clarke, Zhu 
2000   Counterexample-guided Abstraction Refinement 

   Clarke, Grumberg, Jha, Lu, Veith 
 

105 

10100 

101000 

1990s: Formal Hardware 
Verification in Industry: 
Intel, IBM, Motorola, etc. 
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Model Checking since 1981 
1981   Clarke / Emerson: CTL Model Checking 

  Sifakis / Quielle 
1982   EMC: Explicit Model Checker     

  Clarke, Emerson, Sistla 
 
 
1990   Symbolic Model Checking 

   Burch, Clarke, Dill, McMillan 
1992    SMV: Symbolic Model Verifier 

   McMillan 
 
 
1998   Bounded Model Checking using SAT 

   Biere, Clarke, Zhu 
2000   Counterexample-guided Abstraction Refinement 

   Clarke, Grumberg, Jha, Lu, Veith 
 

CBMC 

MAGIC 
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Grand Challenge: 
Model Check Software ! 

What makes Software Model Checking 
different ? 
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What Makes Software Model 
Checking Different ?   

•  Large/unbounded base types: int, float, string 
•  User-defined types/classes 
•  Pointers/aliasing + unbounded #’s of heap-

allocated cells 
•  Procedure calls/recursion/calls through pointers/

dynamic method lookup/overloading 
•  Concurrency + unbounded #’s of threads 
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What Makes Software Model 
Checking Different ? 

•  Templates/generics/include files 
•  Interrupts/exceptions/callbacks 
•  Use of secondary storage: files, databases 
•  Absent source code for: libraries, system calls, 

mobile code 
•  Esoteric features: continuations, self-modifying 

code 
•  Size (e.g., MS Word = 1.4 MLOC) 
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Grand Challenge: 
Model Check Software ! 

Early attempts in the 1980s failed to scale. 
 
2000s: renewed interest / demand: 
Java Pathfinder: NASA Ames 
SLAM: Microsoft 
Bandera: Kansas State 
BLAST: Berkeley 
… 
SLAM to be shipped to Windows device driver developers. 
 
In general, these tools are unable to handle complex data 
structures and concurrency. 
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The MAGIC Tool:  
Counterexample-Guided Abstraction Refinement 

Abstract 
Memory 
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Abstraction 

Abstraction maps classes of similar memory  
states to single abstract memory states. 
 
+ Model size drastically reduced. 
 
-  Invalid counterexamples possible. 

Abstract 
Memory 

State 
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The MAGIC Tool:  
Counterexample-Guided Abstraction Refinement 

Abstraction Verification 
Yes 

System OK 

Counterexample 
Valid? 

C Program Abstract Model 

Yes Abstraction 
Refinement 

Abstraction 
Guidance 

Improved 
Abstraction 
Guidance 

No 

No 
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CBMC: Embedded Systems Verification 

•  Method: 
Bounded Model Checking 

•  Implemented GUI to 
facilitate tech transfer 

•  Applications: 
–  Part of train controller from 

GE 
–  Cryptographic algorithms 

(DES, AES, SHS) 
–  C Models of ASICs provided 

by nVidia 
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Case Study: 
Verification of MicroC/OS 
•  Real-Time Operating System 

–  About 6000 lines of C code 
–  Used in commercial embedded systems 

•  UPS, Controllers, Cell-phones, ATMs 

•  Required mutual exclusion 
in the kernel 
–  OS_ENTER_CRITICAL() and 

OS_EXIT_CRITICAL() 
•  MAGIC and CBMC: 

–  Discovered one unknown bug related to the locking 
discipline 

–  Discovered three more bugs  
–  Verified that no similar bugs are present 


