
fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Partial Order Reduction (Recitation)

David Henriques

Carnegie Mellon University
Many slides by Deepak D’Souza (thanks!)

December 2nd 2011

David Henriques Order Theory 1/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

What and Why

For specifications that don’t worry about the order of
“independent” transitions, it should be enough to explore just one
of the interleaved sequences of independent transitions.

r

s

u u′

α β

β α

David Henriques Order Theory 2/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Definitions

◮ Transitions α and β are said to be independent if
◮ (Enabledness) Neither α nor β can disable the other. That is if

α and β are both enabled in a state s, and s
α
→ s ′, then β is

still enabled at s ′ (and vice versa).
◮ (Commutativity) The sequence of transitions αβ and βα lead

to the same state.

◮ A transition α is said to be invisible wrt a property that uses a
set of propositions P if: whenever s

α

→ s ′ we have

∀p ∈ P : s |= p iff s ′ |= p.

David Henriques Order Theory 3/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

(In)Dependence

In different models of computation, different situations generate
dependent transitions:

◮ Pairs of transitions that share a variable, which is changed by
at least one of them.

◮ Pairs of transitions belonging to the same process.

◮ Send and recieve transitions that use the same message queue.

David Henriques Order Theory 4/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Stutter-free LTL

◮ Two state sequences π and π′ are said to be
stutter-equivalent, written π ∼st π

′, iff the sequence of
distinct states is identical in π and π′.

◮ An LTL formula ϕ is said to be stuffer-free iff for each pair of
stutter-equivalent state sequences π and π′, we have

π |= ϕ iff π′ |= ϕ.

◮ The X -free fragment of LTL given by the syntax

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ. (no Xϕ)

is stutter-free.

◮ Conversely, every LTL property that is stutter-free can be
expressed in the X -free fragment of LTL.

David Henriques Order Theory 5/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Objective

We want to generate a reduced state transition graph such that
each path in the full state transition graph has a stutter-equivalent

path in the reduced graph.

We build this graph by DFSing the full state graph except that we
disallow some transitions. This is called static reduction.

David Henriques Order Theory 6/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Ample sets

Each state s in the model has several transitions. We call that set
enabled(s).
We want to identify a subset of transitions enabled at s, called
ample(s).

s

ample(s)

In the DFS search we will only consider neighbours of s that arise
out of transition in ample(s).

David Henriques Order Theory 7/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Problems with reduction

Suppose ample(s) is chosen to be {β}.

r

s

u u′

α β

β α

Problems:

◮ The state sequence s, u, r is ignored.

◮ What if we had a transition γ enabled only at u? It (and the
paths starting from it) would also not be explored.

David Henriques Order Theory 8/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Conditions on ample sets help

s

u u′

α β

α

γ

γ

β

v

r ′

β

r

Conditions:

◮ (C0) Ensure enabled(s) 6= ∅
implies ample(s) 6= ∅.

◮ (C1) Ensure that no
transition dependent on a β
in ample set at s can fire
without some transition in
ample(s) happening first.

◮ (C2) Ensure ample(s)
contains only transitions
invisible wrt the property
being checked.

David Henriques Order Theory 9/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Conditions still not sufficient

p

¬p

α3 α1

α3 α1

α2

¬p ¬p

β

ββ

β

α2

α3

α2

α1

Add Condition:

◮ (C3) Ensure that no cycle in reduced graph, and a transition β,
which is always enabled in the cycle but never included in the ample
sets along the cycle.

David Henriques Order Theory 10/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Correctness claim

Theorem (Correctness of reduction)

If ample sets are chosen satisfying conditions (C0) to (C3), then
the reduced graph contains a stutter-equivalent path for every path
in the original graph.
Hence model checking wrt stutter-free LTL properties can be done
soundly on the reduced graph.

David Henriques Order Theory 11/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Warning

We are actually checking for stronger conditions than the ones
needed. However, these procedures are easy to check. There is a
tradeoff between how precise we wanto to be and how much

computational power we are willing to pay

David Henriques Order Theory 12/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

The fallback plan

If everything else fails, we can always
take ample(s) = enabled(s)!

David Henriques Order Theory 13/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Notation

Assume the existence of several processes Pi

◮ pci(s) denotes the program counter of process Pi ;

◮ pre(α) is the set of transitions that may enable α;

◮ dep(α) is the set of transitions dependent on α;

◮ Ti is the set of transitions of process Pi

◮ Ti(s) is the set of transitions of Pi enabled in s;

◮ currenti (s) is the set of transitions of Pi enabled in some state
s ′ s.t. pci (s

′) = pci(s).

(Note: transitions in Ti(s) are interdependent since they are from
the same process)

David Henriques Order Theory 14/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Notation

α
β

read = γ
δ

write = ω

s1

s2

s4 s3

ω

α ω
β

ω

γ

δ

δ ω

α

◮ pc1(s3) = 2

◮ pc2(s3) = 0

◮ T1 = {α, β, γ, δ}

◮ T2 = {ω}

◮ pre(δ) = {β, ω}

◮ T1(s2) = {δ}

◮ current1(s2) =
T1(s2) ∪ T1(s4) =
{γ, δ}

David Henriques Order Theory 15/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

The actual heuristic

Take the set Ti(s) as a candidate for ample(s) for some i

◮ Conditions C0 and C2 are easy to check.

◮ Condition C3 is harder, but we’ll take care of that later.

◮ Condition C1 is the complicated one...

Suppose that condition C1 is violated. Then some transitions
independent of Ti(s) are executed, enabling a transition α

dependent in Ti (s) in a state s ′

David Henriques Order Theory 16/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

First case

If α is in Pj 6= Pi ...

Necessarily dep(Ti(s)) includes α

This is easy to check by examining the dependency relation!

David Henriques Order Theory 17/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Second case

If α is in Pi ...

◮ Transitions to s ′ are from other processes because they are
independent from Ti (s);

◮ Then pci(s
′) = pci (s), so α ∈ currenti (s);

◮ Also α /∈ Ti(s) (otherwise does not violate C1);

◮ So α ∈ currenti (s)\Ti (s);

◮ So a necessary condition to violate C1 is that
pre(currenti (s)\Ti (s)) includes transitions from processes
other than Pi ;

This is also easy to check by examining the dependency relation!

David Henriques Order Theory 18/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

What about C3?

We check for a stronger condition

A sufficient condition for C3 is that at least one state along each
cycle is such that ample(s) = enabled(s).

This condition is also easy to check.

David Henriques Order Theory 19/ 20

fsu-logo

Why we want to do partial order reduction
Definitions

Conditions on ample sets
Heuristics for ample sets

Back to the heuristic

If any of these conditions fails, we give up on this Ti(s) and try a
different one.

If they all fail, we go to our fallback plan and take
ample(s) = enabled(s)

David Henriques Order Theory 20/ 20

	Why we want to do partial order reduction
	Definitions
	Conditions on ample sets
	Heuristics for ample sets

