Partial Order Reduction (Recitation) David Henriques Carnegie Mellon University Many slides by Deepak D'Souza (thanks!) December 2nd 2011 # What and Why For specifications that don't worry about the order of "independent" transitions, it should be enough to explore just *one* of the interleaved sequences of independent transitions. ## **Definitions** - ▶ Transitions α and β are said to be *independent* if - (Enabledness) Neither α nor β can disable the other. That is if α and β are both enabled in a state s, and $s \stackrel{\alpha}{\to} s'$, then β is still enabled at s' (and vice versa). - (Commutativity) The sequence of transitions $\alpha\beta$ and $\beta\alpha$ lead to the same state. - ▶ A transition α is said to be *invisible* wrt a property that uses a set of propositions P if: whenever $s \stackrel{\alpha}{\rightarrow} s'$ we have $$\forall p \in P : s \models p \text{ iff } s' \models p.$$ # (In)Dependence In different models of computation, different situations generate dependent transitions: - ▶ Pairs of transitions that share a variable, which is changed by at least one of them. - ▶ Pairs of transitions belonging to the same process. - ▶ Send and recieve transitions that use the same message queue. ## Stutter-free LTL - ► Two state sequences π and π' are said to be stutter-equivalent, written $\pi \sim_{st} \pi'$, iff the sequence of distinct states is identical in π and π' . - ▶ An LTL formula φ is said to be stuffer-free iff for each pair of stutter-equivalent state sequences π and π' , we have $$\pi \models \varphi \text{ iff } \pi' \models \varphi.$$ ▶ The *X*-free fragment of LTL given by the syntax $$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi U \varphi. \qquad (\text{no } X \varphi)$$ is stutter-free. ► Conversely, every LTL property that is stutter-free can be expressed in the *X*-free fragment of LTL. # Objective We want to generate a reduced state transition graph such that each path in the full state transition graph has a stutter-equivalent path in the reduced graph. We build this graph by DFSing the full state graph except that we *disallow some transitions*. This is called static reduction. ## Ample sets Each state s in the model has several transitions. We call that set enabled(s). We want to identify a subset of transitions enabled at s, called ample(s). In the DFS search we will only consider neighbours of s that arise out of transition in ample(s). #### Problems with reduction Suppose ample(s) is chosen to be $\{\beta\}$. #### Problems: - ▶ The state sequence s, u, r is ignored. - Mhat if we had a transition γ enabled only at u? It (and the paths starting from it) would also not be explored. # Conditions on ample sets help #### Conditions: - ▶ (C_0) Ensure enabled(s) $\neq \emptyset$ implies ample(s) $\neq \emptyset$. - (C₁) Ensure that no transition dependent on a β in ample set at s can fire without some transition in ample(s) happening first. - ► (C₂) Ensure ample(s) contains only transitions invisible wrt the property being checked. #### Conditions still not sufficient #### Add Condition: ▶ (C_3) Ensure that no cycle in reduced graph, and a transition β , which is always enabled in the cycle but never included in the ample sets along the cycle. ### Correctness claim ### Theorem (Correctness of reduction) If ample sets are chosen satisfying conditions (C_0) to (C_3) , then the reduced graph contains a stutter-equivalent path for every path in the original graph. Hence model checking wrt stutter-free LTL properties can be done soundly on the reduced graph. # Warning We are actually checking for stronger conditions than the ones needed. However, these procedures are easy to check. There is a tradeoff between how precise we wanto to be and how much computational power we are willing to pay # The fallback plan If everything else fails, we can always take ample(s) = enabled(s)! #### Notation Assume the existence of several processes P_i - \triangleright $pc_i(s)$ denotes the program counter of process P_i ; - $pre(\alpha)$ is the set of transitions that may enable α ; - $dep(\alpha)$ is the set of transitions dependent on α ; - T_i is the set of transitions of process P_i - $ightharpoonup T_i(s)$ is the set of transitions of P_i enabled in s; - ▶ $current_i(s)$ is the set of transitions of P_i enabled in some state s' s.t. $pc_i(s') = pc_i(s)$. (Note: transitions in $T_i(s)$ are interdependent since they are from the same process) #### **Notation** $$pc_1(s_3) = 2$$ $$pc_2(s_3) = 0$$ $$T_1 = \{\alpha, \beta, \gamma, \delta\}$$ ▶ $$T_2 = \{\omega\}$$ $$ightharpoonup pre(\delta) = \{\beta, \omega\}$$ ▶ $$T_1(s_2) = \{\delta\}$$ • $$current_1(s_2) = T_1(s_2) \cup T_1(s_4) = \{\gamma, \delta\}$$ ### The actual heuristic Take the set $T_i(s)$ as a candidate for ample(s) for some i - ► Conditions C₀ and C₂ are easy to check. - Condition C₃ is harder, but we'll take care of that later. - Condition C₁ is the complicated one... Suppose that condition C_1 is violated. Then some transitions independent of $T_i(s)$ are executed, enabling a transition α dependent in $T_i(s)$ in a state s' #### First case If $$\alpha$$ is in $P_j \neq P_i$... Necessarily $$dep(T_i(s))$$ includes α This is easy to check by examining the dependency relation! ### Second case If α is in P_i ... - ▶ Transitions to s' are from other processes because they are independent from $T_i(s)$; - ▶ Then $pc_i(s') = pc_i(s)$, so $\alpha \in current_i(s)$; - ▶ Also $\alpha \notin T_i(s)$ (otherwise does not violate C_1); - ▶ So $\alpha \in current_i(s) \setminus T_i(s)$; - So a necessary condition to violate C_1 is that $pre(current_i(s) \setminus T_i(s))$ includes transitions from processes other than P_i ; This is also easy to check by examining the dependency relation! # What about C_3 ? We check for a stronger condition A sufficient condition for C_3 is that at least one state along each cycle is such that ample(s) = enabled(s). This condition is also easy to check. ### Back to the heuristic If any of these conditions fails, we give up on this $T_i(s)$ and try a different one. If they all fail, we go to our fallback plan and take ample(s) = enabled(s)