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What and Why

For specifications that don’t worry about the order of
“independent” transitions, it should be enough to explore just one
of the interleaved sequences of independent transitions.
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Definitions

◮ Transitions α and β are said to be independent if
◮ (Enabledness) Neither α nor β can disable the other. That is if

α and β are both enabled in a state s, and s
α
→ s ′, then β is

still enabled at s ′ (and vice versa).
◮ (Commutativity) The sequence of transitions αβ and βα lead

to the same state.

◮ A transition α is said to be invisible wrt a property that uses a
set of propositions P if: whenever s

α

→ s ′ we have

∀p ∈ P : s |= p iff s ′ |= p.
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(In)Dependence

In different models of computation, different situations generate
dependent transitions:

◮ Pairs of transitions that share a variable, which is changed by
at least one of them.

◮ Pairs of transitions belonging to the same process.

◮ Send and recieve transitions that use the same message queue.
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Stutter-free LTL

◮ Two state sequences π and π′ are said to be
stutter-equivalent, written π ∼st π

′, iff the sequence of
distinct states is identical in π and π′.

◮ An LTL formula ϕ is said to be stuffer-free iff for each pair of
stutter-equivalent state sequences π and π′, we have

π |= ϕ iff π′ |= ϕ.

◮ The X -free fragment of LTL given by the syntax

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ. (no Xϕ)

is stutter-free.

◮ Conversely, every LTL property that is stutter-free can be
expressed in the X -free fragment of LTL.
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Objective

We want to generate a reduced state transition graph such that
each path in the full state transition graph has a stutter-equivalent

path in the reduced graph.

We build this graph by DFSing the full state graph except that we
disallow some transitions. This is called static reduction.
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Ample sets

Each state s in the model has several transitions. We call that set
enabled(s).
We want to identify a subset of transitions enabled at s, called
ample(s).

s

ample(s)

In the DFS search we will only consider neighbours of s that arise
out of transition in ample(s).
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Problems with reduction

Suppose ample(s) is chosen to be {β}.
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Problems:

◮ The state sequence s, u, r is ignored.

◮ What if we had a transition γ enabled only at u? It (and the
paths starting from it) would also not be explored.
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Conditions on ample sets help
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Conditions:

◮ (C0) Ensure enabled(s) 6= ∅
implies ample(s) 6= ∅.

◮ (C1) Ensure that no
transition dependent on a β
in ample set at s can fire
without some transition in
ample(s) happening first.

◮ (C2) Ensure ample(s)
contains only transitions
invisible wrt the property
being checked.
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Conditions still not sufficient
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Add Condition:

◮ (C3) Ensure that no cycle in reduced graph, and a transition β,
which is always enabled in the cycle but never included in the ample
sets along the cycle.
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Correctness claim

Theorem (Correctness of reduction)

If ample sets are chosen satisfying conditions (C0) to (C3), then
the reduced graph contains a stutter-equivalent path for every path
in the original graph.
Hence model checking wrt stutter-free LTL properties can be done
soundly on the reduced graph.
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Warning

We are actually checking for stronger conditions than the ones
needed. However, these procedures are easy to check. There is a
tradeoff between how precise we wanto to be and how much

computational power we are willing to pay
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The fallback plan

If everything else fails, we can always
take ample(s) = enabled(s)!
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Notation

Assume the existence of several processes Pi

◮ pci(s) denotes the program counter of process Pi ;

◮ pre(α) is the set of transitions that may enable α;

◮ dep(α) is the set of transitions dependent on α;

◮ Ti is the set of transitions of process Pi

◮ Ti(s) is the set of transitions of Pi enabled in s;

◮ currenti (s) is the set of transitions of Pi enabled in some state
s ′ s.t. pci (s

′) = pci(s).

(Note: transitions in Ti(s) are interdependent since they are from
the same process)
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Notation

α
β

read = γ
δ

write = ω
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◮ pc1(s3) = 2

◮ pc2(s3) = 0

◮ T1 = {α, β, γ, δ}

◮ T2 = {ω}

◮ pre(δ) = {β, ω}

◮ T1(s2) = {δ}

◮ current1(s2) =
T1(s2) ∪ T1(s4) =
{γ, δ}
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The actual heuristic

Take the set Ti(s) as a candidate for ample(s) for some i

◮ Conditions C0 and C2 are easy to check.

◮ Condition C3 is harder, but we’ll take care of that later.

◮ Condition C1 is the complicated one...

Suppose that condition C1 is violated. Then some transitions
independent of Ti(s) are executed, enabling a transition α

dependent in Ti (s) in a state s ′
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First case

If α is in Pj 6= Pi ...

Necessarily dep(Ti(s)) includes α

This is easy to check by examining the dependency relation!
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Second case

If α is in Pi ...

◮ Transitions to s ′ are from other processes because they are
independent from Ti (s);

◮ Then pci(s
′) = pci (s), so α ∈ currenti (s);

◮ Also α /∈ Ti(s) (otherwise does not violate C1);

◮ So α ∈ currenti (s)\Ti (s);

◮ So a necessary condition to violate C1 is that
pre(currenti (s)\Ti (s)) includes transitions from processes
other than Pi ;

This is also easy to check by examining the dependency relation!
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What about C3?

We check for a stronger condition

A sufficient condition for C3 is that at least one state along each
cycle is such that ample(s) = enabled(s).

This condition is also easy to check.
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Back to the heuristic

If any of these conditions fails, we give up on this Ti(s) and try a
different one.

If they all fail, we go to our fallback plan and take
ample(s) = enabled(s)
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