
Edmund M. Clarke
School of Computer Science
Carnegie Mellon University

Lecture 2:
Model Checking

My 30 Year Quest to Conquer the
State Explosion Problem

Intel Pentium FDIV Bug

§  Try 4195835 – 4195835 / 3145727 * 3145727.
In 94’ Pentium, it doesn’t return 0, but 256.

§  Intel uses the SRT algorithm for floating point division.
Five entries in the lookup table are missing.

§  Cost: $400 - $500 million
§  Xudong Zhao’s Thesis on Word Level Model Checking

 Temporal Logic Model Checking

§  Model checking is an automatic verification technique for
finite state concurrent systems.

§  Developed independently by Clarke and Emerson and by
Queille and Sifakis in early 1980’s.

§  Specifications are written in propositional temporal logic.
(Pnueli 77)

§  Verification procedure is an intelligent exhaustive search of
the state space of the design.

 Advantages of Model Checking

§  No proofs!!! (Algorithmic rather than Deductive)

§  Fast (compared to other rigorous methods such as theorem
proving)

§  Diagnostic counterexamples

§  No problem with partial specifications

§  Logics can easily express many concurrency properties

Main Disadvantage

State Explosion Problem:

2-bit counter

0,0 0,1 1,1 1,0

n-bit counter has 2n states

1

2

3

a

b

c

|| n states,
m processes

1,a

2,a 1,b

2,b 3,a 1,c

3,b 2,c

3,c

nm states

Main Disadvantage (Cont.)

State Explosion Problem:

Unavoidable in worst case, but steady progress over the past 28
years using clever algorithms, data structures, and engineering

Main Disadvantage (Cont.)

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
Fa “a will be true in the Future”
Ga “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
Fa “a will be true in the Future”
Ga “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
Fa “a will be true in the Future”
Ga “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
Fa “a will be true in the Future”
Ga “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a a a a a

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
Fa “a will be true in the Future”
Ga “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a a a a b

Branching Time (EC 80, BMP 81)

CTL: Computation Tree Logic

EF g “g will possibly become true”

CTL: Computation Tree Logic

AF g “g will necessarily become true”

CTL: Computation Tree Logic

AG g “g is an invariant”

CTL: Computation Tree Logic

EG g “g is a potential invariant”

CTL: Computation Tree Logic

CTL (CES83-86) uses the temporal operators

 AX, AG, AF, AU

 EX, EG, EF, EU

CTL* allows complex nestings such as

 AXX, AGX, EXF, ...

 Model Checking Problem

§  Let M be a state-transition graph.

§  Let ƒ be the specification in temporal logic.

§  Find all states s of M such that M, s |= ƒ.

•  CTL Model Checking: CE 81; CES 83/86; QS 81/82.
•  LTL Model Checking: LP 85.
•  Automata Theoretic LTL Model Checking: VW 86.
•  CTL* Model Checking: EL 85.

State-transition graph
describes system evolving
over time.

 Trivial Example

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Microwave Oven

Temporal Logic and Model Checking

§  The oven doesn’t heat up until the door is closed.

§  Not heat_up holds until door_closed

§  (~ heat_up) U door_closed

Transition System
(Automaton, Kripke structure)

Hardware Description
(VERILOG, VHDL, SMV)

Informal
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Model Checking

Transition System

Informal
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Safety Property:
bad state unreachable:

satisfied

Initial State

Counterexamples

Program or circuit

Transition System

Program or circuit Informal
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Initial State

Safety Property:
bad state unreachable

Counterexample

Counterexamples

Transition System

Program or circuit Informal
Specification

Temporal Logic Formula
(CTL, LTL, etc.)

Initial State

Safety Property:
bad state unreachable

Counterexamples

Counterexample

Hardware Example: IEEE Futurebus+

§  In 1992 we used Model Checking to verify the IEEE Future
+ cache coherence protocol.

§  Found a number of previously undetected errors in the
design.

§  First time that a formal verification tool was used to find
errors in an IEEE standard.

§  Development of the protocol began in 1988, but previous
attempts to validate it were informal.

§  Symbolic Model Checking
 Burch, Clarke, McMillan, Dill, and Hwang 90;
 Ken McMillan’s thesis 92

§  The Partial Order Reduction
 Valmari 90
 Godefroid 90
 Peled 94
(Gerard Holzmann’s SPIN)

Four Big Breakthroughs on State
Space Explosion Problem!

§  Bounded Model Checking

§  Biere, Cimatti, Clarke, Zhu 99
§  Using Fast SAT solvers
§  Can handle thousands
 of state elements

Can the given property fail in k-steps?

I(V0) Λ T(V0,V1) Λ … Λ T(Vk-1,Vk) Λ (¬ P(V0) V … V ¬ P(Vk))

k-steps
Property fails
in some step Initial state

BMC in practice: Circuit with 9510 latches, 9499 inputs
BMC formula has 4 x 106 variables, 1.2 x 107 clauses
Shortest bug of length 37 found in 69 seconds

Four Big Breakthroughs on State
Space Explosion Problem (Cont.)

Four Big Breakthroughs on State
Space Explosion Problem (Cont.)

§  Localization Reduction

§  Bob Kurshan 1994

§  Counterexample Guided Abstraction Refinement (CEGAR)
§  Clarke, Grumberg, Jha, Lu, Veith 2000

§  Used in most software model checkers

Existential Abstraction

M

Mα	

Given an abstraction function α : S → Sα, the concrete states are grouped and
mapped into abstract states:

α α α Preservation Theorem ?

Preservation Theorem

§  Theorem (Clarke, Grumberg, Long) If property holds on
abstract model, it holds on concrete model

§  Technical conditions
Ø Property is universal i.e., no existential quantifiers
Ø Atomic formulas respect abstraction mapping

§  Converse implication is not true !

Spurious Behavior

AGAF red
“Every path necessarily leads
back to red.”

Spurious Counterexample:
<go><go><go><go> ...

“red”

“go”

Artifact of the abstraction !

Automatic Abstraction

M
Original Model

Refinement

Refinement

Mα	

 Initial Abstraction Spurious

Spurious
counterexample

Validation or
Counterexample Correct !

CEGAR
CounterExample-Guided Abstraction Refinement

Circuit or
Program

Initial
Abstraction

Simulator

No error
or bug found

Property
holds

Simulation
sucessful

Bug found

Abstraction refinement Refinement

Model
Checker

Verification

Spurious counterexample

Counterexample

Abstract
Model

 Future Challenge
Is it possible to model check software?

According to Wired News on Nov 10, 2005:
 “When Bill Gates announced that the technology was

under development at the 2002 Windows Engineering
Conference, he called it the holy grail of computer
science”

What Makes Software Model
Checking Different ?

§  Large/unbounded base types: int, float, string
§  User-defined types/classes
§  Pointers/aliasing + unbounded #’s of heap-allocated cells
§  Procedure calls/recursion/calls through pointers/dynamic method

lookup/overloading
§  Concurrency + unbounded #’s of threads

What Makes Software Model
Checking Different ?

§  Templates/generics/include files
§  Interrupts/exceptions/callbacks
§  Use of secondary storage: files, databases
§  Absent source code for: libraries, system calls, mobile code
§  Esoteric features: continuations, self-modifying code
§  Size (e.g., MS Word = 1.4 MLOC)

What Does It Mean to Model Check Software?

1.  Combine static analysis and model checking
 Use static analysis to extract a model K from a boolean

abstraction of the program.

 Then check that f is true in K (K |= f), where f is the

specification of the program.

•  SLAM (Microsoft)
•  Bandera (Kansas State)
•  MAGIC, SATABS (CMU)
•  BLAST (Berkeley)
•  F-Soft (NEC)

2.  Simulate program along all paths in
computation tree

§  Java PathFinder (NASA Ames)
§  Source code + backtracking (e.g., Verisoft)
§  Source code + symbolic execution + backtracking

(e.g., MS/Intrinsa Prefix)

 3.  Use finite-state machine to look for patterns

in control-flow graph [Engler]

What Does It Mean to Model Check Software?

4.  Design with Finite-State Software Models
 Finite state software models can act as “missing link”
 between transition graphs and complex software.

§  Statecharts
§  Esterel

What Does It Mean to Model Check Software?

5.  Use Bounded Model Checking and SAT [Kroening]

§  Problem: How to compute set of reachable states?
Fixpoint computation is too expensive.

§  Restrict search to states that are reachable from initial
state within fixed number n of transitions

§  Implemented by unwinding program and using SAT
solver

What Does It Mean to Model Check Software?

Software Example: Device Driver Code

 Also according to Wired News:

 “Microsoft has developed a tool called Static Device

Verifier or SDV, that uses ‘Model Checking’ to analyze the
source code for Windows drivers and see if the code that
the programmer wrote matches a mathematical model of
what a Windows device driver should do. If the driver
doesn’t match the model, the SDV warns that the driver
might contain a bug.”

(Ball and Rajamani, Microsoft)

Future Challenge
Can We Debug This Circuit?

Kurt W. Kohn, Molecular Biology of the Cell 1999

P53, DNA Repair, and Apoptosis

 “The p53 pathway has been shown to mediate cellular stress responses;
p53 can initiate DNA repair, cell-cycle arrest, senescence and,
importantly, apoptosis. These responses have been implicated in an
individual's ability to suppress tumor formation and to respond to many
types of cancer therapy.”

 (A. Vazquez, E. Bond, A. Levine, G. Bond. The genetics of the p53 pathway, apoptosis and cancer
therapy. Nat Rev Drug Discovery 2008 Dec;7(12):979-87.)

 The protein p53 has been described as the guardian of the genome

referring to its role in preventing genome mutation.

 In 1993, p53 was voted molecule of the year by Science Magazine.

New NSF Expedition Grant
Next-Generation Model Checking and Abstract Interpretation
with a Focus on Systems Biology and Embedded Systems

45 45

CMACS Strategic Plan

 Verification
•  Nonlinear Systems
•  Statistical Techniques
•  Compositional
•  Beyond Reachability

Model
Checking

Abstract
Interpretation

CMACS

 Model Discovery
•  Nonlinear Systems
•  Stochastic Systems
•  Hybrid Systems
•  Reaction-Diffusion

Challenge
Problems

Systems
Biology

Embedded
Systems

Atrial
Fibrillation
Onset

Fly-by-Wire
Control
Software

Automotive
Distributed
Control

 Abstraction
•  Model Reduction
•  Infinite-State Systems
•  Time-Scale Analysis
•  Spatio-Temporal

Pancreatic
Cancer
Pathways

46

 Jim Faeder, UPMC

begin molecule types

A(b,Y~U~P)
B(a)

end molecule types

begin reaction rules

A(b)+ B(a)<-> A(b!1).B(a!1)

A(Y~U) -> A(Y~P)

end reaction rules

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems
with BioNetGen. In Methods in Molecular Biology: Systems Biology, (2009).

A

b

Y
U
P

B
a

A

b
B

a +

A

b
B

a

A
Y

U

A
Y P

The BioNetGen Language

Existing Approach: Manual Analysis

Many simulation traces need to be carefully
analyzed !

Model Checking Approach

BioLab 2.0

Automated
Analysis !

Bounded Linear Temporal Logic

§  Bounded Linear Temporal Logic (BLTL): Extension of LTL
with time bounds on temporal operators.

§  Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

–  along states s0, s1, . . .

–  the system stays in state si for time ti
§  σi: Execution trace starting at state i.

§  V(σ, i, x): Value of the variable x at the state si .

§  A natural model for BioNetGen traces.

Bounded Linear Temporal Logic

§  Bounded Linear Temporal Logic (BLTL): Extension of LTL
with time bounds on temporal operators.

§  Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

–  along states s0, s1, . . .

–  the system stays in state si for time ti
§  A natural model for BioNetGen traces.

§  Example: (Yeast Heterotrimec G Protein Cycle) does the
G protein stay above 6000 for 2 time units and fall below
6000 before 20 time units?

§  G2 (GProtein > 6000) Λ F20 (GProtein < 6000)

Semantics of BLTL

The semantics of the timed Until operator:

§  “within time t, Φ2 will be true and Φ1 will hold until then ”

§  σk: Execution trace starting at state k.

§  σk Φ1 Ut Φ2 iff there exists natural n such that
1)  σk+n Φ2

2)  Σi<n tk+i ≤ t
3)  for each 0 ≤ j < n, σk+j Φ1

§  In particular: Ft Φ = true Ut Φ, Gt Φ = ¬Ft ¬Φ

Semantics of BLTL

The semantics of BLTL for a trace σk:

§  σk x ~ c iff V(σ, k, x) ~ c, where ~ is in {≤,≥,=}

§  σk Φ1 v Φ2 iff σk Φ1 or σk Φ2

§  σk ¬Φ iff σk Φ does not hold

§  σk Φ1 Ut Φ2 iff there exists natural i such that
1)  σk+i Φ2

2)  Σj<i tk+j ≤ t
3)  for each 0 ≤ j < i, σk+j Φ1

Probabilistic Model Checking

§  Given a stochastic model such as
–  a Discrete or Continuous Markov Chain, or
–  a stochastic differential equation

§  a BLTL property and a probability threshold .

§  Does satisfy with probability at least ?

§  Numerical techniques compute precise probability of
satisfying :
–  Does NOT scale to large systems.

Wait a minute!

 Isn’t Statistical Model Checking an oxymoron?

 I thought so for the first 28 years of my quest.

 Much easier to simulate a complex biological system than

to build the transition relation for it.

 Moreover, we can bound the probability of error.

Statistical Model Checking

§  Decides between two mutually exclusive
hypotheses:
–  Null Hypothesis

–  Alternate Hypothesis

§  Statistical tests can determine the true hypothesis:
–  based on sampling the traces of system
–  answer may be wrong, but error probability is bounded.

§  Statistical Hypothesis Testing Model Checking!

BioLab 2.0

Model Checking Biochemical Stochastic models: M╞═ P≥θ(Φ) ?

Model M

BioNetGen Statistical Model Checker

BLTL
formula Φ

BLTL to Monitor
compiler

Formula
monitor

M╞═ P≥θ (Φ)
Statistical
 Test

M╞═ P≥θ (Φ)

Motivation - Scalability

§  State Space Exploration often infeasible for complex systems.
–  May be relatively easy to simulate a system

§  Our Goal: Provide probabilistic guarantees using fewer
simulations
–  How to generate each simulation run?
–  How many simulation runs to generate?

§  Applications: BioNetGen, Stateflow / Simulink

 BioLab: A Statistical Model Checker for BioNetGen Models.
E. Clarke, C. Langmead, J. Faeder, L. Harris, A. Legay and

 S. Jha. (International Conference on Computational Methods in
System Biology, 2008)

Motivation – Parallel Model Checking

•  Some success with explicit state Model Checking

•  More difficult to distribute Symbolic MC using BDDs.

•  Learned Clauses in SAT solving are not easy to distribute.

•  Multiple simulations can be easily parallelized.

•  Next Generation Model Checking should exploit
•  multiple cores

•  commodity clusters

Existing Work

§  [Younes and Simmons 02-06] use Wald’s SPRT
§  SPRT: Sequential Probability Ratio Test

§  [Hérault et al. 04] use Chernoff bound:
§  Estimate the probability that M╞═ Φ

§  [Sen et al. 04-05] use p-value:
§  Approximates the probability that the null hypothesis

M╞═ P≥θ(Φ) is true

§  [Clarke et al. 09] Bayesian approach
§  Both hypothesis testing and estimation

§  Faster (fewer samples required)

The End

Questions?

