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Intel Pentium FDIV Bug 

§  Try 4195835 – 4195835 / 3145727 * 3145727.  
In 94’ Pentium, it doesn’t return 0, but 256. 

§  Intel uses the SRT algorithm for floating point division. 
Five entries in the lookup table are missing.  

§  Cost: $400 - $500 million   
§  Xudong Zhao’s Thesis on Word Level Model Checking 



    Temporal Logic Model Checking 

§  Model checking is an automatic verification technique  for 
finite state concurrent systems. 

§  Developed independently by Clarke and Emerson and by 
Queille and Sifakis in early 1980’s. 

§  Specifications are written in propositional temporal logic. 
(Pnueli 77) 

§  Verification procedure is an intelligent exhaustive search of 
the state space of the design.   



   Advantages of Model Checking 
 

§  No proofs!!!  (Algorithmic rather than Deductive) 

§  Fast  (compared to other rigorous methods such as theorem 
proving) 

§  Diagnostic counterexamples 

§  No problem with partial specifications 

§  Logics can easily express many concurrency properties 



Main Disadvantage 

State Explosion Problem: 
 

2-bit counter 
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Main Disadvantage (Cont.) 



State Explosion Problem: 
 

Unavoidable in worst case, but steady progress over the past 28 
years using clever algorithms, data structures, and engineering 

  

Main Disadvantage (Cont.) 



Determines Patterns on Infinite Traces  
 
 
Atomic Propositions 
Boolean Operations 
Temporal operators 

 

 a    “a is true now” 
X a   “a is true in the neXt state” 
Fa     “a will be true in the Future” 
Ga     “a will be Globally true in the future” 
a U b     “a will hold true Until b becomes true” 

LTL - Linear Time Logic (Pn 77) 

a 
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Branching Time (EC 80, BMP 81) 



CTL: Computation Tree Logic 

EF g   “g will possibly become true” 



CTL: Computation Tree Logic 

AF g   “g will necessarily become true” 



CTL: Computation Tree Logic 

AG g  “g is an invariant” 



CTL: Computation Tree Logic 

EG g  “g is a potential invariant” 



CTL: Computation Tree Logic 

 
CTL (CES83-86) uses the temporal operators 

    
  AX, AG, AF, AU 

   EX, EG, EF, EU 
 
 
CTL*  allows complex nestings such as 

  AXX, AGX, EXF, ... 
 



  Model Checking Problem 

§  Let M be a state-transition graph. 

§  Let ƒ be the specification in temporal logic. 

§  Find all states s of M such that   M, s |=  ƒ. 

•  CTL Model Checking:  CE 81; CES 83/86; QS 81/82. 
•  LTL Model Checking:  LP 85. 
•  Automata Theoretic LTL Model Checking: VW 86. 
•  CTL* Model Checking: EL 85. 



State-transition graph 
describes system evolving 
over time.  
 
 

            Trivial Example 
 

~ Start 
~ Close 
~ Heat 
~ Error 

Start 
~ Close 
~ Heat 
Error 
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~ Error 
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~ Error 
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~ Error 
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~ Error 

Start 
Close 
~ Heat 
Error 

Microwave Oven 



Temporal Logic and Model Checking 

§  The oven doesn’t heat up until the door is closed. 

§  Not heat_up holds until door_closed 

§  (~ heat_up) U door_closed 



Transition System 
(Automaton, Kripke structure) 

Hardware Description 
(VERILOG, VHDL, SMV) 

Informal  
Specification 

Temporal Logic Formula 
(CTL, LTL, etc.) 

Model Checking 



Transition System 

Informal  
Specification 

Temporal Logic Formula 
(CTL, LTL, etc.) 

Safety Property: 
bad state       unreachable: 

 
satisfied 

Initial State 

Counterexamples 

Program or circuit 



Transition System 

Program or circuit Informal  
Specification 

Temporal Logic Formula 
(CTL, LTL, etc.) 

Initial State 

Safety Property: 
bad state      unreachable 
 

Counterexample 

Counterexamples 
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Counterexample 



Hardware Example: IEEE Futurebus+ 

§  In 1992 we used Model Checking to verify the IEEE Future
+ cache coherence protocol. 

§  Found a number of previously undetected errors in the 
design. 

§  First time that a formal verification tool was used to find 
errors in an IEEE standard. 

§  Development of the protocol began in 1988, but previous 
attempts to validate it were informal. 



 
§    Symbolic Model Checking 
        Burch, Clarke, McMillan, Dill, and Hwang 90; 
        Ken McMillan’s thesis 92 
 
    
                     
 
 
§    The Partial Order Reduction 
        Valmari 90 
        Godefroid 90  
        Peled 94 
(Gerard Holzmann’s SPIN) 

Four Big Breakthroughs on State 
Space Explosion Problem!  



 
§  Bounded Model Checking 

§  Biere, Cimatti, Clarke, Zhu 99 
§  Using Fast SAT solvers 
§  Can handle thousands  
     of state elements 

 
 
 

 
 

Can the given property fail in k-steps? 
 
I(V0)   Λ  T(V0,V1) Λ … Λ T(Vk-1,Vk) Λ   (¬ P(V0) V … V ¬ P(Vk)) 

k-steps 
Property fails  
in some step Initial state 

BMC in practice: Circuit with 9510 latches, 9499 inputs 
BMC formula has 4 x 106 variables, 1.2 x 107 clauses 
Shortest bug of length 37 found in 69 seconds 

Four Big Breakthroughs on State 
Space Explosion Problem (Cont.) 



Four Big Breakthroughs on State 
Space Explosion Problem (Cont.) 

 
§  Localization Reduction 

§  Bob Kurshan 1994 

§  Counterexample Guided Abstraction Refinement (CEGAR) 
§  Clarke, Grumberg, Jha, Lu, Veith 2000 

§  Used in most software model checkers  



Existential Abstraction 

M 

Mα	



Given an abstraction function α : S → Sα, the concrete states are grouped and 
mapped into abstract states: 

α α α Preservation Theorem ? 



Preservation Theorem 

§  Theorem (Clarke, Grumberg, Long) If property holds on 
abstract model, it holds on concrete model 

§  Technical conditions 
Ø Property is universal i.e., no existential quantifiers 
Ø Atomic formulas respect abstraction mapping  

§  Converse implication is not true ! 



Spurious Behavior 

AGAF red 
“Every path necessarily leads 
back to red.” 

Spurious Counterexample: 
<go><go><go><go> ...   

“red” 

“go” 

Artifact of the abstraction ! 



Automatic Abstraction 

M 
Original Model 

Refinement 

Refinement 

Mα	

 Initial Abstraction Spurious 

Spurious 
counterexample 

Validation or 
Counterexample Correct ! 



CEGAR  
CounterExample-Guided Abstraction Refinement 

Circuit or 
Program 

Initial 
Abstraction 

Simulator 

No error 
or bug found 

Property 
holds 

Simulation 
sucessful 

Bug found 

Abstraction refinement Refinement 

Model 
Checker 

Verification 

Spurious counterexample 

Counterexample 

Abstract  
Model 



   Future Challenge  
Is it possible to model check software? 

 
According to Wired News on Nov 10, 2005: 
   “When Bill Gates announced that the technology was 

under development at the 2002 Windows Engineering 
Conference, he called it the holy grail of computer 
science” 



What Makes Software Model 
Checking Different ?   

§  Large/unbounded base types: int, float, string 
§  User-defined types/classes 
§  Pointers/aliasing + unbounded #’s of heap-allocated cells 
§  Procedure calls/recursion/calls through pointers/dynamic method 

lookup/overloading 
§  Concurrency + unbounded #’s of threads 



What Makes Software Model 
Checking Different ? 

§  Templates/generics/include files 
§  Interrupts/exceptions/callbacks 
§  Use of secondary storage: files, databases 
§  Absent source code for: libraries, system calls, mobile code 
§  Esoteric features: continuations, self-modifying code 
§  Size (e.g., MS Word = 1.4 MLOC) 
 



What Does It Mean to Model Check Software? 

1.  Combine static analysis and model checking 
     Use static analysis to extract a model K from a boolean 

abstraction of the program.  
 
     Then check that f is true in K (K |= f), where f is the 

specification of the program. 
 

•  SLAM (Microsoft) 
•  Bandera (Kansas State)  
•  MAGIC, SATABS (CMU)  
•  BLAST (Berkeley) 
•  F-Soft (NEC) 

        
 

  
 
         



2.  Simulate program along all paths in 
computation tree 

§  Java PathFinder (NASA Ames) 
§  Source code + backtracking (e.g., Verisoft)  
§  Source code + symbolic execution + backtracking    

(e.g., MS/Intrinsa Prefix) 
 
 
 
         3.  Use finite-state machine to look for patterns 

in control-flow graph [Engler] 
         

What Does It Mean to Model Check Software? 



4.  Design with Finite-State Software Models  
      Finite state software models can act as “missing link”  
      between transition graphs and complex software. 
 

§  Statecharts  
§  Esterel 

 
         

What Does It Mean to Model Check Software? 



5.  Use Bounded Model Checking and SAT [Kroening] 
 

§  Problem: How to compute set of reachable states?       
Fixpoint computation is too expensive. 

§  Restrict search to states that are reachable from initial         
state within fixed number n of transitions 

§  Implemented by unwinding program and using         SAT 
solver  

 
         

What Does It Mean to Model Check Software? 



Software Example: Device Driver Code 

     
    Also according to Wired News: 
    
    “Microsoft has developed a tool called Static Device 

Verifier or SDV, that uses ‘Model Checking’ to analyze the 
source code for Windows drivers and see if the code that 
the programmer wrote matches a mathematical model of 
what a Windows device driver should do. If the driver 
doesn’t match the model, the SDV warns that the driver 
might contain a bug.” 

     
(Ball and Rajamani, Microsoft) 
 



Future Challenge  
Can We Debug This Circuit? 

Kurt W. Kohn, Molecular Biology of the Cell 1999 



P53, DNA Repair, and Apoptosis 

    “The p53 pathway has been shown to mediate cellular stress responses; 
p53 can initiate DNA repair, cell-cycle arrest, senescence and, 
importantly, apoptosis. These responses have been implicated in an 
individual's ability to suppress tumor formation and to respond to many 
types of cancer therapy.”  

      (A. Vazquez, E. Bond, A. Levine, G. Bond. The genetics of the p53 pathway, apoptosis and cancer 
therapy. Nat Rev Drug Discovery 2008 Dec;7(12):979-87. )  

 
    The protein p53 has been described as the guardian of the genome 

referring to its role in preventing genome mutation.  
 
     In 1993, p53 was voted molecule of the year by Science Magazine.  
 



 
 

New NSF Expedition Grant 
Next-Generation Model Checking and Abstract Interpretation  
with a Focus on Systems Biology and Embedded Systems 

 

45 45 



CMACS Strategic Plan 

                  

    Verification 
•  Nonlinear Systems 
•  Statistical Techniques 
•  Compositional 
•  Beyond Reachability 

Model 
Checking 

Abstract 
Interpretation 

CMACS 
 
 

   Model Discovery 
•  Nonlinear Systems 
•  Stochastic Systems 
•  Hybrid Systems 
•  Reaction-Diffusion 

Challenge 
Problems 

Systems 
Biology 

Embedded 
Systems 

Atrial  
Fibrillation 
Onset 

Fly-by-Wire 
Control 
Software 

Automotive 
Distributed 
Control 

     Abstraction 
•  Model Reduction 
•  Infinite-State Systems 
•  Time-Scale Analysis 
•  Spatio-Temporal 

Pancreatic  
Cancer 
Pathways 
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        Jim Faeder, UPMC 
 

begin molecule types 
 

A(b,Y~U~P) 
B(a) 
 

end molecule types 
 
 
begin reaction rules 
 

A(b)+ B(a)<-> A(b!1).B(a!1) 
 
A(Y~U) -> A(Y~P) 
 

end reaction rules 

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems  
with BioNetGen.  In Methods in Molecular Biology: Systems Biology, (2009). 
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P 

B 
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B 
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The BioNetGen Language 



Existing Approach: Manual Analysis 

Many simulation  traces  need  to  be  carefully  
analyzed ! 



Model Checking Approach 

BioLab 2.0 

Automated  
Analysis ! 



Bounded Linear Temporal Logic 

§  Bounded Linear Temporal Logic (BLTL): Extension of LTL 
with time bounds on temporal operators. 

§  Let σ = (s0, t0), (s1, t1), . . . be an execution of the model 

–  along states s0, s1, . . . 

–  the system stays in state si for time ti 
§  σi: Execution trace starting at state i. 

§  V(σ, i, x): Value of the variable x at the state si . 

§  A natural model for BioNetGen traces. 
 



Bounded Linear Temporal Logic 

§  Bounded Linear Temporal Logic (BLTL): Extension of LTL 
with time bounds on temporal operators. 

§  Let σ = (s0, t0), (s1, t1), . . . be an execution of the model 

–  along states s0, s1, . . . 

–  the system stays in state si for time ti 
§  A natural model for BioNetGen traces. 

§  Example: (Yeast Heterotrimec G Protein Cycle) does the 
G protein stay above 6000 for 2 time units and fall below 
6000 before 20 time units? 

§  G2 (GProtein > 6000) Λ  F20 (GProtein < 6000) 
 



Semantics of BLTL 

The semantics of the timed Until operator: 

 

§  “within time t, Φ2  will be true and Φ1 will hold until then ” 

§  σk: Execution trace starting at state k. 

§  σk     Φ1 Ut Φ2   iff  there exists natural n such that 
1)   σk+n     Φ2  

2)   Σi<n tk+i ≤ t 
3)   for each 0 ≤ j < n, σk+j     Φ1 

§  In particular: Ft Φ = true Ut Φ,   Gt Φ = ¬Ft ¬Φ 
 



Semantics of BLTL 

The semantics of BLTL for a trace σk: 

§  σk     x ~ c   iff  V(σ, k, x) ~ c, where ~ is in {≤,≥,=} 

§  σk     Φ1 v Φ2   iff  σk    Φ1 or σk    Φ2 

§  σk    ¬Φ    iff  σk    Φ does not hold 

§  σk     Φ1 Ut Φ2   iff  there exists natural i such that 
1)   σk+i     Φ2  

2)   Σj<i tk+j ≤ t 
3)   for each 0 ≤ j < i, σk+j     Φ1 

 



Probabilistic Model Checking 

§  Given a stochastic model      such as 
–  a Discrete or Continuous Markov Chain, or  
–  a stochastic differential equation 

§  a BLTL property    and a probability threshold             . 

§  Does      satisfy     with probability at least   ? 

 

§  Numerical techniques compute precise probability of 
satisfying    : 
–  Does NOT scale to large systems. 



Wait a minute! 

   Isn’t Statistical Model Checking an oxymoron? 
 
   I thought so for the first 28 years of my quest.  
 
   Much easier to simulate a complex biological system than 

to build the transition relation for it. 
 
   Moreover, we can bound the probability of error. 
 
 
 
 



Statistical Model Checking 

§  Decides between two mutually exclusive  
hypotheses: 
–  Null Hypothesis 

–  Alternate Hypothesis 

 

§  Statistical tests can determine the true hypothesis: 
–  based on sampling the traces of system  
–  answer may be wrong, but error probability is bounded. 

 

§  Statistical Hypothesis Testing            Model Checking! 



BioLab 2.0  

Model Checking Biochemical Stochastic models: M╞═ P≥θ(Φ) ? 

Model M 

BioNetGen Statistical Model Checker 

BLTL 
formula Φ 

BLTL to Monitor 
compiler 

Formula 
monitor 

M╞═ P≥θ (Φ) 
Statistical  
    Test 

M╞═ P≥θ (Φ) 



Motivation - Scalability 

§  State Space Exploration often infeasible for complex systems. 
–  May be relatively easy to simulate a system 

§  Our Goal: Provide probabilistic guarantees using fewer 
simulations 
–  How to generate each simulation run? 
–  How many simulation runs to generate? 

§  Applications: BioNetGen, Stateflow / Simulink 

 BioLab: A Statistical Model Checker for BioNetGen Models. 
E. Clarke, C. Langmead, J. Faeder, L. Harris, A. Legay and  

    S. Jha. (International Conference on Computational Methods in 
System Biology, 2008) 



Motivation – Parallel Model Checking 

•  Some success with explicit state Model Checking 

•  More difficult to distribute Symbolic MC using BDDs. 

•  Learned Clauses in SAT solving are not easy to distribute. 

•  Multiple simulations can be easily parallelized. 

•  Next Generation Model Checking should exploit 
•  multiple cores 

•  commodity clusters 



Existing Work 

§  [Younes and Simmons 02-06] use Wald’s SPRT 
§  SPRT: Sequential Probability Ratio Test 

§  [Hérault et al. 04] use Chernoff bound: 
§  Estimate the probability that M╞═ Φ 

§  [Sen et al. 04-05] use p-value: 
§  Approximates the probability that the null hypothesis 

M╞═ P≥θ(Φ) is true 

§  [Clarke et al. 09] Bayesian approach 
§  Both hypothesis testing and estimation 

§  Faster (fewer samples required) 



The End 

Questions? 


