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Model Checking

Algorithm for answering queries about behaviors of state machines
« Given a state machine M and a query ¢ does M E ¢ ?

Standard formulation:
« Mis a Kripke structure
« ¢ is atemporal logic formula
— Computational Tree Logic (CTL)
— Linear Temporal Logic (LTL)

Discovered independently by Clarke & Emerson and Queille & Sifakis
in the early 1980’s
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Scalability of Model Checking

Explicit statespace exploration: early 1980s

« Tens of thousands of states

Symbolic statespace exploration: millions of states
« Binary Decision Diagrams (BDD) : early 1990’s
« Bounded Model Checking: late 1990’s
— Based on propositional satisfiability (SAT) technology

Abstraction and compositional reasoning

- 10120 to effectively infinite statespaces (particularly for software)
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Models of C Code

assert (y); -

Program: Syntax Control Flow Graph Model: Sex--

Infinite State
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Existential Abstraction

Partition concrete statespace into abstract states

- Each abstract state S corresponds to a set of concrete states s
- We write a(s) to mean the abstract state corresponding to s

* Wedefine 1(S5) ={s|5=oals)} Strong & sometimes
Fix the transitions existentially / not computable
- S=5 & dsey(S).dse€y(5).s—s
Weak: computable

c S5 <« Jsey(5).ds5€y(5). s »s———
Existential Abstraction is conservative [ClarkeGrumbergLong94]
- If a ACTL* property holds on the abstraction, it also holds on the program
LTL is a subset of ACTL*

- However, the converse is not true: a property that fails on the abstraction may
still hold on the program

- Existential abstraction can be viewed as a form of abstract interpretation
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Example of Existential Abstraction

Abstract Initial

Concrete Initial I

State State |
N Concrete State
EEEN
K Abstract State
:
: . Y ‘v
Concrete
Transition
Abstractly
Reachable but
Concretely Abstl_‘a!ct
Unreachable Transition

Abstractly and Concretely
Unreachable
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Example of Existential Abstraction

Concrete State

EEEN
Abstract State
4
:
: . Y ‘v
Concrete
Transition
Abstractly
Reachable but
Concretely TAbstl_‘a!ct
Unreachable ransition

Abstractly and Concretely
Unreachable G(—l p)
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Predicate Abstraction

Partition the statespace

Cy=x+1 O(y=x based on values of a

finite set of predicates

on program variables
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Predicate Abstraction

¢ = G(— ERROR)

&@@@@

<

- P P

L States wherey # 0 }

P E(y==0) L States wherey =0 }
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Predicate Abstraction

@ Call SAT

no yes Checker

L States wherey =0 } PE(y==O)

L States wherey =0 }
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Predicate Abstraction

SAT Checker Query:

e
Xx=0Ah

no yes /,— ,
X =XA
y+0
SAT Checker Answer:
@ SAT and here’s a solution
x=0, y=1, X’=0, y’=1
- P
States wherey # 0 } _
L P=(y==0)
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Predicate Abstraction

SAT Checker Query:
e G
X0 A
no yes = x
= N
y+0
SAT Checker Answer:
@ SAT and here’s a solution
x=1, y=1, X’=1, y’=1
- P
L States wherey # 0 } P=(y——0)
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Predicate Abstraction

@ SAT Checker Query:
no yes y#0A
X =XA
y=0

SAT Checker Answer:

@ SAT and here’s a solution

x=1,y=1, X’=1, y’=2

- P

L States wherey =0 } PE(y==O)
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Predicate Abstraction

@ SAT Checker Query:
no yes y#0A
y+0

SAT Checker Answer:
SAT and here’s a solution
- P

YV=XA

x=1, y=1, X’=1, y’=1

L States wherey =0 } PE(y==O)
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Predicate Abstraction

No predicates
about x

no yes

- P P

L States wherey =0 } PE(y==O)

L States wherey =0 }
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Imprecision due to Predicate Abstraction

Counterexamples generated by model checking the abstract model
may be spurious, i.e., not concretely realizable

Need to refine the abstraction iteratively by changing the set of
predicates

Can infer new set of predicates by analyzing the spurious
counterexample

« Lot of research in doing this effectively

« Counterexample Guided Abstraction Refinement (CEGAR)
« A.K.A. lterative Abstraction Refinement

« A.K.A. lterative Refinement
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Model Checking

¢ = G(— ERROR) P=(y==0)
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Model Checking

¢ = G(— ERROR) P=(y==0)
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Model Checking

yes

NS

NS

P=(y==0)
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Counterexample Validation

yes - Simulate counterexample symbolically

@ - Call SAT Checker to determine if
the post-condition is satisfiable

* In our case, Counterexample is spurious

* New set of predicates {x==0,y==0}
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Counterexample Validation

SAT Checker Query:

@ X0 A

!=x
yes y=xa
y =0

@ SAT Checker Answer:

UNSAT and here’s an
UNSAT core

{x£0,y=x,y =0}

» Used to derive new predicate (x=0)

 Different heuristics used in
practice
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Predicate Abstraction: 2" [teration

/ﬁéé o e

T > 0 C > DA
%ﬁp Q -PQ P-Q PQ
x#0 y=0 P=(x==0) @Q=(y==0) r)({\m
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Predicate Abstraction: 2" [teration

Qé o e

G Q
%—'P Q) P Q ~Q
0 0
x#0 y= P=(x==0) Q=(y==0) r)({\m
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Predicate Abstraction: 2" [teration

. o e

no yes

@
%ﬂ%@ P Q fSel NS
x#0 y=0 P=(x==0) Q=(y==0) r)({\m
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Predicate Abstraction: 2" [teration

/ﬁéé oo

%ﬂ? -Q =P Q PoQ [FQ
x#0 y=0 P=(x==0) Q=(y==0) r)({\m
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Predicate Abstraction: 2" [teration

/J\’éé 5/

- P —IQ _‘PQ P_IQ PQ
m{ P=(x==0) Q=(y==0) r/\ﬁ
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Predicate Abstraction: 2" [teration

o > o

@ 4

ERROR ERROR

—|PQ —| PQ

%_'P _'Q
X0 y#0 PE(X==0) QE(V== )
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Model Checking: 2" Iteration

o > o

e 4
assert)

ERROR ERROR

P -Q —PQ -Q PQ

= G(— ERROR) P=(x==0) @=(y==0)
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Iterative Refinement: Summary

Choose an initial set of predicate, and proceed iteratively as follows:

1. Abstraction: Construct an abstract model M of the program using
the predicate abstraction

2. Verification: Model check M. If model checking succeeds, exit with
success. Otherwise, get counterexample CFE.

3. Validation: Check CFE for validity. If CFE is valid, exit with failure.

4. Refinement: Otherwise, update the set of predicates and repeat
from Step 1.
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lterative Refinement

Localization
5 ; Abstract Reduction, Kurshan,
rogram : Model Yes Bell Labs
Predicate Model Checkin
Abstraction 9
Initial _ y - p) System
Predicates No OK
Counterexample-
guided Abstraction
B Refinement for
o :tter Candidate Symbolic Model
redicates Checking, Clarke et al.,
SAT Checker Counter- CMU
example
| | AV
No Y Software Model
Predicate < Counterexample :Des Pro‘.’e*::‘ic'&:i“c%i';ﬁ""Ba"
Refinement Valid? % Rajamani
p \ ' Problem
Found
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Predicate Abstraction: Optimizations

1. Construct transitions on-the-fly

2. Different set of predicates at different control locations

P=(x==0)

oo
no yes
P=(x==0) Cy=x+1 2(y=x) p=(xz=0)

Q=(y==0)

3. Avoid exponential number of theorem-prover calls
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Research Areas

Finding “good” predicates

« Technically as hard as finding “good” loop invariants

« Complexity is linear in LOC but exponential in number of predicates

Combining with static analysis

« Alias analysis, invariant detection, constant propagation

« Inexpensive, and may make subsequent model checking more efficient

Bounded model checking
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Software Model Checking Tools

lterative Refinement

. SLAM, BLAST, MAGIC, Copper, SATABS, ...
\ J

|
Bounded Model Checking § Next lecture }
CBMC,—

Following

Others lecture
. Engines: MOPED, BEBOP, BOPPO, ...

- Java: Java PathFiner, Bandera, BOGOR, ...
- C:CMC, CPAChecker, ...
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