Software Verification using
Predicate Abstraction and
lterative Refinement: Part 1

15-414 Bug Catching: Automated
Program Verification and Testing

Sagar Chaki
November 28, 2011

—== Software Engineering Institute | CarnegieMellon ©2006 arnege Mol Urivers

Outline

Overview of Model Checking

Creating Models from C Code: Predicate Abstraction

Eliminating spurious behaviors from the model: Abstraction Refinement

Concluding remarks : research directions, tools etc.

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

© 2006 Carnegie Mellon University

Model Checking

Algorithm for answering queries about behaviors of state machines
« Given a state machine M and a query ¢ does M E ¢ ?

Standard formulation:
« Mis a Kripke structure
« ¢ is atemporal logic formula
— Computational Tree Logic (CTL)
— Linear Temporal Logic (LTL)

Discovered independently by Clarke & Emerson and Queille & Sifakis
in the early 1980’s

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

~— © 2006 Carnegie Mellon University

Scalability of Model Checking

Explicit statespace exploration: early 1980s

« Tens of thousands of states

Symbolic statespace exploration: millions of states
« Binary Decision Diagrams (BDD) : early 1990’s
« Bounded Model Checking: late 1990’s
— Based on propositional satisfiability (SAT) technology

Abstraction and compositional reasoning

- 10120 to effectively infinite statespaces (particularly for software)

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

© 2006 Carnegie Mellon University

Models of C Code

assert (y); -

Program: Syntax Control Flow Graph Model: Sex--

Infinite State

Software Verification

=== Software Engineering Institute | CarnegieMellon sagarchaki, March 16, 2011

© 2006 Carnegie Mellon University

Existential Abstraction

Partition concrete statespace into abstract states

- Each abstract state S corresponds to a set of concrete states s
- We write a(s) to mean the abstract state corresponding to s

* Wedefine 1(S5) ={s|5=oals)} Strong & sometimes
Fix the transitions existentially / not computable
- S=5 & dsey(S).dse€y(5).s—s
Weak: computable

c S5 <« Jsey(5).ds5€y(5). s »s———
Existential Abstraction is conservative [ClarkeGrumbergLong94]
- If a ACTL* property holds on the abstraction, it also holds on the program
LTL is a subset of ACTL*

- However, the converse is not true: a property that fails on the abstraction may
still hold on the program

- Existential abstraction can be viewed as a form of abstract interpretation

Software Verification

==— Software Engineering Institute Carnegie Mellon Sagar Chaki, March 16, 2011

~— © 2006 Carnegie Mellon University

Example of Existential Abstraction

Abstract Initial

Concrete Initial I

State State |
N Concrete State
EEEN
K Abstract State
:
: . Y ‘v
Concrete
Transition
Abstractly
Reachable but
Concretely Abstl_‘a!ct
Unreachable Transition

Abstractly and Concretely
Unreachable

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

~— © 2006 Carnegie Mellon University

Example of Existential Abstraction

Concrete State

EEEN
Abstract State
4
:
: . Y ‘v
Concrete
Transition
Abstractly
Reachable but
Concretely TAbstl_‘a!ct
Unreachable ransition

Abstractly and Concretely
Unreachable G(—l p)

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

~— © 2006 Carnegie Mellon University

Predicate Abstraction

Partition the statespace

Cy=x+1 O(y=x based on values of a

finite set of predicates

on program variables

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

d © 2006 Carnegie Mellon University

Predicate Abstraction

¢ = G(— ERROR)

&@@@@

<

- P P

L States wherey # 0 }

P E(y==0) L States wherey =0 }

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction

@ Call SAT

no yes Checker

L States wherey =0 } PE(y==O)

L States wherey =0 }

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction

SAT Checker Query:

e
Xx=0Ah

no yes /,— ,
X =XA
y+0
SAT Checker Answer:
@ SAT and here’s a solution
x=0, y=1, X’=0, y’=1
- P
States wherey # 0 } _
L P=(y==0)

Software Verification
Sagar Chaki, March 16, 2011

=== Software Engineering Institute ‘ Carnegie Mellon
- © 2006 Carnegie Mellon University

Predicate Abstraction

SAT Checker Query:
e G
X0 A
no yes = x
= N
y+0
SAT Checker Answer:
@ SAT and here’s a solution
x=1, y=1, X’=1, y’=1
- P
L States wherey # 0 } P=(y——0)

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction

@ SAT Checker Query:
no yes y#0A
X =XA
y=0

SAT Checker Answer:

@ SAT and here’s a solution

x=1,y=1, X’=1, y’=2

- P

L States wherey =0 } PE(y==O)

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction

@ SAT Checker Query:
no yes y#0A
y+0

SAT Checker Answer:
SAT and here’s a solution
- P

YV=XA

x=1, y=1, X’=1, y’=1

L States wherey =0 } PE(y==O)

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction

No predicates
about x

no yes

- P P

L States wherey =0 } PE(y==O)

L States wherey =0 }

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Imprecision due to Predicate Abstraction

Counterexamples generated by model checking the abstract model
may be spurious, i.e., not concretely realizable

Need to refine the abstraction iteratively by changing the set of
predicates

Can infer new set of predicates by analyzing the spurious
counterexample

« Lot of research in doing this effectively

« Counterexample Guided Abstraction Refinement (CEGAR)
« A.K.A. lterative Abstraction Refinement

« A.K.A. lterative Refinement

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

d © 2006 Carnegie Mellon University

Model Checking

¢ = G(— ERROR) P=(y==0)

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Model Checking

¢ = G(— ERROR) P=(y==0)

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Model Checking

yes

NS

NS

P=(y==0)

Software Verification

=== Software Engineering Institute | CarnegieMellon sagarchaki, March 16, 2011

© 2006 Carnegie Mellon University

Counterexample Validation

yes - Simulate counterexample symbolically

@ - Call SAT Checker to determine if
the post-condition is satisfiable

* In our case, Counterexample is spurious

* New set of predicates {x==0,y==0}

Software Verification

=== Software Engineering Institute | CarnegieMellon sagarchaki, March 16, 2011

© 2006 Carnegie Mellon University

Counterexample Validation

SAT Checker Query:

@ X0 A

!=x
yes y=xa
y =0

@ SAT Checker Answer:

UNSAT and here’s an
UNSAT core

{x£0,y=x,y =0}

» Used to derive new predicate (x=0)

 Different heuristics used in
practice

Software Verification

=== Software Engineering Institute | CarnegieMellon sagarchaki, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction: 2" [teration

/ﬁéé o e

T > 0 C > DA
%ﬁp Q -PQ P-Q PQ
x#0 y=0 P=(x==0) @Q=(y==0) r)({\m

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction: 2" [teration

Qé o e

G Q
%—'P Q) P Q ~Q
0 0
x#0 y= P=(x==0) Q=(y==0) r)({\m

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction: 2" [teration

. o e

no yes

@
%ﬂ%@ P Q fSel NS
x#0 y=0 P=(x==0) Q=(y==0) r)({\m

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction: 2" [teration

/ﬁéé oo

%ﬂ? -Q =P Q PoQ [FQ
x#0 y=0 P=(x==0) Q=(y==0) r)({\m

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction: 2" [teration

/J\’éé 5/

- P —IQ _‘PQ P_IQ PQ
m{ P=(x==0) Q=(y==0) r/\ﬁ

Software Verification

O._

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction: 2" [teration

o > o

@ 4

ERROR ERROR

—|PQ —| PQ

%_'P _'Q
X0 y#0 PE(X==0) QE(V==)

Software Verification

X=0y=0

}

=== Software Engineering Institute ‘ CarnegieMellon ~ sagar Chal, March 16, 2011

© 2006 Carnegie Mellon University

Model Checking: 2" Iteration

o > o

e 4
assert)

ERROR ERROR

P -Q —PQ -Q PQ

= G(— ERROR) P=(x==0) @=(y==0)

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

© 2006 Carnegie Mellon University

Iterative Refinement: Summary

Choose an initial set of predicate, and proceed iteratively as follows:

1. Abstraction: Construct an abstract model M of the program using
the predicate abstraction

2. Verification: Model check M. If model checking succeeds, exit with
success. Otherwise, get counterexample CFE.

3. Validation: Check CFE for validity. If CFE is valid, exit with failure.

4. Refinement: Otherwise, update the set of predicates and repeat
from Step 1.

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

~— © 2006 Carnegie Mellon University

lterative Refinement

Localization
5 ; Abstract Reduction, Kurshan,
rogram : Model Yes Bell Labs
Predicate Model Checkin
Abstraction 9
Initial _ y - p) System
Predicates No OK
Counterexample-
guided Abstraction
B Refinement for
o :tter Candidate Symbolic Model
redicates Checking, Clarke et al.,
SAT Checker Counter- CMU
example
| | AV
No Y Software Model
Predicate < Counterexample :Des Pro‘.’e*::‘ic'&:i“c%i';ﬁ""Ba"
Refinement Valid? % Rajamani
p \ ' Problem
Found

Software Verification

=== Software Engineering Institute ‘ CarnegieMellon ~ Sagar Chak, March 16, 2011

© 2006 Carnegie Mellon University

Predicate Abstraction: Optimizations

1. Construct transitions on-the-fly

2. Different set of predicates at different control locations

P=(x==0)

oo
no yes
P=(x==0) Cy=x+1 2(y=x) p=(xz=0)

Q=(y==0)

3. Avoid exponential number of theorem-prover calls

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

© 2006 Carnegie Mellon University

Research Areas

Finding “good” predicates

« Technically as hard as finding “good” loop invariants

« Complexity is linear in LOC but exponential in number of predicates

Combining with static analysis

« Alias analysis, invariant detection, constant propagation

« Inexpensive, and may make subsequent model checking more efficient

Bounded model checking

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

~— © 2006 Carnegie Mellon University

Software Model Checking Tools

lterative Refinement

. SLAM, BLAST, MAGIC, Copper, SATABS, ...
\ J

|
Bounded Model Checking § Next lecture }
CBMC,—

Following

Others lecture
. Engines: MOPED, BEBOP, BOPPO, ...

- Java: Java PathFiner, Bandera, BOGOR, ...
- C:CMC, CPAChecker, ...

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

d © 2006 Carnegie Mellon University

Bibliography

Existential Abstraction: Edmund M. Clarke, Orna Grumberg, David E.
Long: Model Checking and Abstraction. ACM Trans. Program. Lang. Syst.
16(5): 1512-1542 (1994)

Predicate Abstraction: Construction of abstract state graphs with PVS,
S. Graf, H. Saidi, Proceedings of Computer Aided Verification (CAV), 1997

Abstraction Refinement for C: Automatically Validating Temporal Safety
Properties of Interfaces, T. Ball, S. Rajamani, Proceedings of the SPIN
Workshop, 2001

Software Model Checking Technology Transfer: SLAM and Static
Driver Verifier: Technology Transfer of Formal Methods inside Microsoft,
T. Ball, B. Cook, V. Levin, S. Rajamani, Proceedings of Intergrated Formal
Methods, 2004

Software Verification

—== Software Engineering Institute | CarnegieMellon Sagar Chaki March 16, 2011

~— © 2006 Carnegie Mellon University

—== Software Engineering Institute | CarnegieMellon

