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What is This All About?

Spin

• On-the-fly verifier developed at Bell-labs by Gerard Holzmann and 
others

• http://spinroot.com

Promela
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Promela

• Modeling language for SPIN

• Targeted at asynchronous systems

– Switching protocols

• http://spinroot.com/spin/Man/Quick.html



History

Work leading to Spin started in 1980

• First bug found on Nov 21, 1980 by Pan

• One-pass verifier for safety properties

Succeeded by

• Pandora (82), 
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• Pandora (82), 

• Trace (83), 

• SuperTrace (84), 

• SdlValid (88), 

• Spin (89)

Spin covered omega-regular properties



Spin Capabilities

Interactive simulation

• For a particular path

• For a random path

Exhaustive verification

• Generate C code for verifier
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• Generate C code for verifier

• Compile the verifier and execute

• Returns counter-example

Lots of options for fine-tuning



Spin Overall Structure
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Promela

Stands for Process Meta Language

Language for asynchronous programs

• Dynamic process creation

• Processes execute asynchronously

• Communicate via shared variables and message channels

6

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• Communicate via shared variables and message channels

– Races must be explicitly avoided

– Channels can be queued or rendezvous

• Very C like



Executability

No difference between conditions and statements

• Execution of every statement is conditional on its executability

• Executability is the basic means of synchronization

Declarations and assignments are always executable
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Conditionals are executable when they hold

The following are the same

• while (a != b) skip

• (a == b)



Delimitors

Semi-colon is used a statement separator not a statement 
terminator

• Last statement does not need semi-colon

• Often replaced by → to indicate causality between two successive 
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• Often replaced by → to indicate causality between two successive 
statements

• (a == b); c = c + 1

• (a == b) → c = c + 1



Data Types

Basic : bit/bool, byte, short, int, chan

Arrays: fixed size

• byte state[20];

• state[0] = state[3 * i] + 5 * state[7/j];
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Symbolic constants

• Usually used for message types

• mtype = {SEND, RECV};



Process Definition

byte state = 2;

proctype A() { 

(state == 1) → state = 3 

}
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proctype B() { 

state = state – 1 

}



Process Instantiation

byte state = 2;

proctype A() { 

(state == 1) → state = 3 

}

Sample 1
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proctype B() { 

state = state – 1 

}

init { run A(); run B() }

run can be used anywhere



Process Parameterization

byte state = 1

proctype A(byte x; short foo) 

{ 

(state == 1 && x > 0) → state = foo

Sample 2
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}

init { run A(1,3); }

Data arrays or processes cannot be passed



Race Condition

byte state = 1;

proctype A() {
byte x = state;
x = x + 1;
state = x;

}

Sample 3
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proctype B() {
byte y = state;
y = y + 2;
state = y;

}

init { run A(); run B() }



Deadlock

byte state = 2;

proctype A() {

(state == 1) → state = state + 1

}

Sample 4
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proctype B() {

(state == 1) → state = state – 1

}

init { run A(); run B() }



Atomic sequences

byte state = 1;

proctype A() {

atomic {

byte x = state;

x = x + 1;

proctype B() {

atomic {

byte y = state;

y = y + 2;

state = y;

}

Sample 5
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x = x + 1;

state = x;

}

}

}

}

init { run A(); run B() }



Message passing

Channel declaration
• chan qname = [16] of {short}

• chan qname = [5] of {byte,int,chan,short}

Sending messages
• qname!expr
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• qname!expr

• qname!expr1,expr2,expr3

Receiving messages
• qname?var

• qname?var1,var2,var3



Message passing

More parameters sent

• Extra parameters dropped

More parameters received

• Extra parameters undefined
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Fewer parameters sent

• Extra parameters undefined

Fewer parameters received

• Extra parameters dropped



Message passing

chan x = [1] of {byte,byte};

chan y = [1] of {byte,byte};

proctype A(byte p, byte q) 

{ 

x!p,q ; 

proctype B() { 

byte p,q;

x?p,q ; y!q,p

}

init { 

Sample 6
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x!p,q ; 

y?p,q

}

init { 

run A(5,7); 

run B() 

}



Message passing

Convention: first message field often specifies message 
type (constant)

Alternatively send message type followed by list of message 
fields in braces

• qname!expr1(expr2,expr3)
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• qname!expr1(expr2,expr3)

• qname?var1(var2,var3)



Executability

Send is executable only when the channel is not full

Receive is executable only when the channel is not empty

Optionally some arguments of receive can be constants

• qname?RECV,var,10
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• Value of constant fields must match value of corresponding fields of message 
at the head of channel queue

len(qname) returns the number of messages currently stored in qname

If used as a statement it will be unexecutable if the channel is empty



Composite conditions

Invalid in Promela

• (qname?var == 0)

• (a > b && qname!123)

• Either send/receive or pure expression

Can evaluate receives

• qname?[ack,var] Returns true if the receive
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• qname?[ack,var]

Subtle issues

• qname?[msgtype] → qname?msgtype

• (len(qname) < MAX) → qname!msgtype

• Second statement not necessarily executable after the first

– Race conditions

Returns true if the receive
would be enabled



Time for example 1

22

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



Rendezvous

Channel of size 0 defines a rendezvous port

• Can be used by two processed for a synchronous handshake

• No queueing

• The first process blocks

• Handshake occurs after the second process arrives
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Example

#define msgtype 33
chan name = [0] of {byte,byte};

proctype A() { 
name!msgtype(99); 
name!msgtype(100)

}

Sample 7
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}

proctype B() {
byte state; 
name?msgtype(state)

}

init { run A(); run B() }



Control flow

We have already seen some

• Concatenation of statements, parallel execution, atomic sequences

There are a few more

• Case selection, repetition, unconditional jumps
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Case selection

if

:: (a < b) → option1

:: (a > b) → option2

:: else → option3 /* optional */

fi
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Cases need not be exhaustive or mutually exclusive

• Non-deterministic selection



Time for example 2
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Repetition

byte count = 1;

proctype counter() {

do

:: count = count + 1

:: count = count – 1
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:: count = count – 1

:: (count == 0) → break

od

}



Repetition

proctype counter()

{

do

:: (count != 0) →

if

:: count = count + 1
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:: count = count + 1

:: count = count – 1

fi

:: (count == 0) → break

od

}



Unconditional jumps

proctype Euclid (int x, y) 

{

do

:: (x > y) → x = x – y

:: (x < y) → y = y – x
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:: (x < y) → y = y – x

:: (x == y) → goto done

od ;

done:  skip

}



Procedures and Recursion

Procedures can be modeled as processes

• Even recursive ones

• Return values can be passed back to the calling process via a global variable 
or a message
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Time for example 3
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Timeouts

Proctype watchdog() {

do

:: timeout → guard!reset

od

}
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}

Get enabled when the entire system is deadlocked

No absolute timing considerations



Assertions

assert(any_boolean_condition)

• pure expression

If condition holds ⇒ no effect

If condition does not hold ⇒ error report during verification with Spin
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Time for example 4
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Questions?

Sagar Chaki
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