
SPIN: Part 1

© 2011 Carnegie Mellon University

15-414 Bug Catching: Automated 
Program Verification and Testing

Sagar Chaki
October  31, 2011



What is This All About?

Spin

• On-the-fly verifier developed at Bell-labs by Gerard Holzmann and 
others

• http://spinroot.com

Promela

2

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

Promela

• Modeling language for SPIN

• Targeted at asynchronous systems

– Switching protocols

• http://spinroot.com/spin/Man/Quick.html



History

Work leading to Spin started in 1980

• First bug found on Nov 21, 1980 by Pan

• One-pass verifier for safety properties

Succeeded by

• Pandora (82), 

3

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• Pandora (82), 

• Trace (83), 

• SuperTrace (84), 

• SdlValid (88), 

• Spin (89)

Spin covered omega-regular properties



Spin Capabilities

Interactive simulation

• For a particular path

• For a random path

Exhaustive verification

• Generate C code for verifier

4

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• Generate C code for verifier

• Compile the verifier and execute

• Returns counter-example

Lots of options for fine-tuning



Spin Overall Structure

GUI

Front-end

GUI

Front-end

Promela

Parser

Promela

Parser

LTL Parser and

Translator

SyntaxSyntax InteractiveInteractive

5

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

Reports

Syntax

Error

Reports

Simulation

Interactive

Simulation
Verifier

Generator

Verifier

Generator

Optimized Model

Checker (ANSI C)

Executable O-T-F

Verifier

Counter  Example



Promela

Stands for Process Meta Language

Language for asynchronous programs

• Dynamic process creation

• Processes execute asynchronously

• Communicate via shared variables and message channels

6

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• Communicate via shared variables and message channels

– Races must be explicitly avoided

– Channels can be queued or rendezvous

• Very C like



Executability

No difference between conditions and statements

• Execution of every statement is conditional on its executability

• Executability is the basic means of synchronization

Declarations and assignments are always executable

7

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

Conditionals are executable when they hold

The following are the same

• while (a != b) skip

• (a == b)



Delimitors

Semi-colon is used a statement separator not a statement 
terminator

• Last statement does not need semi-colon

• Often replaced by → to indicate causality between two successive 

8

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• Often replaced by → to indicate causality between two successive 
statements

• (a == b); c = c + 1

• (a == b) → c = c + 1



Data Types

Basic : bit/bool, byte, short, int, chan

Arrays: fixed size

• byte state[20];

• state[0] = state[3 * i] + 5 * state[7/j];

9

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

Symbolic constants

• Usually used for message types

• mtype = {SEND, RECV};



Process Definition

byte state = 2;

proctype A() { 

(state == 1) → state = 3 

}

10

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

proctype B() { 

state = state – 1 

}



Process Instantiation

byte state = 2;

proctype A() { 

(state == 1) → state = 3 

}

Sample 1

11

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

proctype B() { 

state = state – 1 

}

init { run A(); run B() }

run can be used anywhere



Process Parameterization

byte state = 1

proctype A(byte x; short foo) 

{ 

(state == 1 && x > 0) → state = foo

Sample 2

12

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

}

init { run A(1,3); }

Data arrays or processes cannot be passed



Race Condition

byte state = 1;

proctype A() {
byte x = state;
x = x + 1;
state = x;

}

Sample 3

13

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

proctype B() {
byte y = state;
y = y + 2;
state = y;

}

init { run A(); run B() }



Deadlock

byte state = 2;

proctype A() {

(state == 1) → state = state + 1

}

Sample 4

14

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

proctype B() {

(state == 1) → state = state – 1

}

init { run A(); run B() }



Atomic sequences

byte state = 1;

proctype A() {

atomic {

byte x = state;

x = x + 1;

proctype B() {

atomic {

byte y = state;

y = y + 2;

state = y;

}

Sample 5

15

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

x = x + 1;

state = x;

}

}

}

}

init { run A(); run B() }



Message passing

Channel declaration
• chan qname = [16] of {short}

• chan qname = [5] of {byte,int,chan,short}

Sending messages
• qname!expr

16

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• qname!expr

• qname!expr1,expr2,expr3

Receiving messages
• qname?var

• qname?var1,var2,var3



Message passing

More parameters sent

• Extra parameters dropped

More parameters received

• Extra parameters undefined

17

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

Fewer parameters sent

• Extra parameters undefined

Fewer parameters received

• Extra parameters dropped



Message passing

chan x = [1] of {byte,byte};

chan y = [1] of {byte,byte};

proctype A(byte p, byte q) 

{ 

x!p,q ; 

proctype B() { 

byte p,q;

x?p,q ; y!q,p

}

init { 

Sample 6

18

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

x!p,q ; 

y?p,q

}

init { 

run A(5,7); 

run B() 

}



Message passing

Convention: first message field often specifies message 
type (constant)

Alternatively send message type followed by list of message 
fields in braces

• qname!expr1(expr2,expr3)

19

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• qname!expr1(expr2,expr3)

• qname?var1(var2,var3)



Executability

Send is executable only when the channel is not full

Receive is executable only when the channel is not empty

Optionally some arguments of receive can be constants

• qname?RECV,var,10

20

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• Value of constant fields must match value of corresponding fields of message 
at the head of channel queue

len(qname) returns the number of messages currently stored in qname

If used as a statement it will be unexecutable if the channel is empty



Composite conditions

Invalid in Promela

• (qname?var == 0)

• (a > b && qname!123)

• Either send/receive or pure expression

Can evaluate receives

• qname?[ack,var] Returns true if the receive

21

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

• qname?[ack,var]

Subtle issues

• qname?[msgtype] → qname?msgtype

• (len(qname) < MAX) → qname!msgtype

• Second statement not necessarily executable after the first

– Race conditions

Returns true if the receive
would be enabled



Time for example 1

22

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



Rendezvous

Channel of size 0 defines a rendezvous port

• Can be used by two processed for a synchronous handshake

• No queueing

• The first process blocks

• Handshake occurs after the second process arrives

23

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



Example

#define msgtype 33
chan name = [0] of {byte,byte};

proctype A() { 
name!msgtype(99); 
name!msgtype(100)

}

Sample 7

24

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

}

proctype B() {
byte state; 
name?msgtype(state)

}

init { run A(); run B() }



Control flow

We have already seen some

• Concatenation of statements, parallel execution, atomic sequences

There are a few more

• Case selection, repetition, unconditional jumps

25

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



Case selection

if

:: (a < b) → option1

:: (a > b) → option2

:: else → option3 /* optional */

fi

26

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

Cases need not be exhaustive or mutually exclusive

• Non-deterministic selection



Time for example 2

27

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



Repetition

byte count = 1;

proctype counter() {

do

:: count = count + 1

:: count = count – 1

28

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

:: count = count – 1

:: (count == 0) → break

od

}



Repetition

proctype counter()

{

do

:: (count != 0) →

if

:: count = count + 1

29

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

:: count = count + 1

:: count = count – 1

fi

:: (count == 0) → break

od

}



Unconditional jumps

proctype Euclid (int x, y) 

{

do

:: (x > y) → x = x – y

:: (x < y) → y = y – x

30

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

:: (x < y) → y = y – x

:: (x == y) → goto done

od ;

done:  skip

}



Procedures and Recursion

Procedures can be modeled as processes

• Even recursive ones

• Return values can be passed back to the calling process via a global variable 
or a message

31

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



Time for example 3

32

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



Timeouts

Proctype watchdog() {

do

:: timeout → guard!reset

od

}

33

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

}

Get enabled when the entire system is deadlocked

No absolute timing considerations



Assertions

assert(any_boolean_condition)

• pure expression

If condition holds ⇒ no effect

If condition does not hold ⇒ error report during verification with Spin

34

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



Time for example 4

35

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University



References

http://cm.bell-labs.com/cm/cs/what/spin/

http://cm.bell-
labs.com/cm/cs/what/spin/Man/Manual.html

36

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

labs.com/cm/cs/what/spin/Man/Manual.html

http://cm.bell-
labs.com/cm/cs/what/spin/Man/Quick.html



Questions?

Sagar Chaki

Senior Member of Technical Staff

RTSS Program

Telephone:  +1 412-268-1436

Email:  chaki@sei.cmu.edu

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

37

Binary Decision Diagrams – Part 2
Sagar Chaki, Sep 14, 2011

© 2011 Carnegie Mellon University

Web

www.sei.cmu.edu/staff/chaki

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax:  +1 412-268-6257


